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Given a positive integer n that isn’t a perfect square, do there exist
solutions to the equation

x2 − ny2 = 1,

and if so, how many? You’ve probably seen this equation before, and
it even has a name: the Pell Equation. In this paper, we explore the Pell
Equation and its solutions.

Proving Infinitude of Solutions

First suppose we have a solution (a, b). Is there a way we could generate
more solutions from this one? We can, and to do so we use the following
identity:

Brahmagupta’s Identity:

(x2 − ny2)(a2 − nb2) = (xa + nyb)2 − n(xb + ya)2.

Proof: We have

(x2 − ny2)(a2 − nb2) = (x + y
√
n)(x − y

√
n)(a + b

√
n)(a − b

√
n) =

(xa+nyb+
√
n(xb+ya))(xa+nyb−

√
n(xb+ya)) = (xa+nyb)2−n(xb+ya)2∎

Using this identity, we can see that a single solution to the Pell Equation
will yield infinitely many solutions. Thus, we need to find which n produce
equations that have solutions. In fact, as we will see, all Pell Equation’s
have solutions.

From now on, we will use x2 − dy2 for the Pell Equation. To proceed
further, we need the following result from Dirichlet:
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Lemma 1: Let α be an irrational number. Then the inequality

∣p − qα∣ <
1

q

has infinitely many integer solutions (p, q).

Proof: We won’t prove it here, but the idea is to consider the fractional
part of α multiplied by 1, . . . , q−1, finding the intervals they lie in, and using
pigeonhole to finish.

Using this, we first show that there exists some n such that ∣n∣ < 1 + 2
√
d

and x2 − dy2 = n has infinitely many solutions. We have that

x = x − y
√
d + y

√
d ≤ ∣x − y

√
d∣ + y

√
d <

1

y
+ y
√
d ≤ 1 + y

√
d,

where the first strict inequality comes from using Dirichlet’s result with
α =
√
d. Then we have

∣x2 − dy2∣ = (x + y
√
d) ∣x − y

√
d∣ < (1 + y

√
d + y

√
d)

1

y
=
1

y
+ 2
√
d ≤ 1 + 2

√
d.

We know there are infinitely many pairs (x, y) for which this inequality
is true because of Dirichlet’s result, so by the pigeonhole principle, there is
some n such that ∣n∣ < 1+2

√
d and x2−dy2 = n has infinitely many solutions.

∎

Now we reduce the Pell Equation mod ∣n∣. Since there infinitely many
solutions, by pigeonhole there must be two distinct solutions (x1, y1) and
(x2, y2) that are the same mod n. Write x1 = x2 +ni and y1 = y2 +nj. Then
we have

x1 + y1
√
d = (x2 + y2

√
d) + n(i + j

√
d)

x1 − y1
√
d = (x2 − y2

√
d) + n(i − j

√
d).

Substitute in n = x22 − dy
2
2 = (x2 + y2

√
d)(x2 − y2

√
d) and factor to get
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x1 + y1
√
d = (x2 + y2

√
d)(1 + (x2 − y2

√
d)(i + j

√
d))

x1 − y1
√
d = (x2 − y2

√
d)(1 + (x2 + y2

√
d)(i − j

√
d)).

Write x + y
√
d = 1 + (x2 − y2

√
d)(i + j

√
d). Then we have

x1 + y1
√
d = (x2 + y2

√
d)(x + y

√
d)

x1 − y1
√
d = (x2 − y2

√
d)(x − y

√
d).

Multiplying the equation together yields n = n(x2 −dy2), so x2 −dy2 = 1.
We just need to show that (x, y) isn’t the trivial solution (1, 0). Suppose it
was. That would imply x1 = x2, but that’s a contradiction, so we’re done.

Finding All Solutions

So now we’ve shown that every Pell Equation has a nontrivial solution, but
can we find all possible solutions? We can, and the way to generate them is
surprisingly simple.

Suppose we have two solutions to a Pell equation, (x, y) and (a, b). Note
that

(x + y
√
d)(a + b

√
d) = (xa + ybd) + (xb + ya)

√
d

(x − y
√
d)(a − b

√
d) = (xa + ybd) − (xb + ya)

√
d.

Multiplying the two equations together yields

(xa + ybd)2 − d(xb + ya)2 = 1,

so the set of solutions to Pell equations is closed under multiplication
(note this is just Brahmagupta’s Identity in disguise). This means that
given a solution, we can generate infinitely many more. We just take that
solution, (x, y), and to generate another, we take the coefficients of

(x + y
√
d)k

for some positive integer k.
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In fact, we can show something even stronger:

Theorem: Suppose we have a solution (x1, y1) to a Pell equation, where
x1 and y1 are positive integers and y1 is minimal. Then, all positive integer
solutions are generated by the coefficients of

(x1 + y1
√
d)k,

where k is a nonnegative integer.

We need a few lemmas to prove this.

Lemma 2: Suppose x2 − dy2 = 1 and x + y
√
d > 1. Then x ≥ 2 and y ≥ 1.

Proof: Note that

x + y
√
d > 1 > x − y

√
d > 0.

Thus 2y
√
d > 0 Ô⇒ y > 0, and since y is an integer, y ≥ 1. Then we

have x > y
√
d ≥
√
d > 1, so x ≥ 2. ∎

Lemma 3: If x2 − dy2 = 1 and a2 − db2 = 1, where a, b, x, y ≥ 0, then
a + b
√
d < x + y

√
d if and only if a < x and b < y.

Proof: The if direction is obvious, so suppose a + b
√
d < x + y

√
d. Recip-

rocating yields x − y
√
d < a − b

√
d, and adding these two yields

(a + x) + (b − y)
√
d < (a + x) + (y − b)

√
d.

Subtracting a + x, dividing by
√
d, and rearranging yields

2b < 2y Ô⇒ b < y.

Then we have a2 = 1 + db2 < 1 + dy2 = x2, so a < x. ∎

Now we’re ready to prove that all solutions are generated by the minimal
solution.

Proof: We already know that any solution generated by (x1 + y1
√
d)k

works, so suppose that we have a solution (x, y). We show that x + y
√
d =

(x1 + y1
√
d)k for some k.
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Since x + y
√
d > 1, and since (x1 + y1

√
d)k is increasing, we have

(x1 + y1
√
d)k ≤ x + y

√
d ≤ (x1 + y1

√
d)k+1

for some k. Dividing through by (x1 + y1
√
d)k yields

1 ≤ (x + y
√
d)(x1 + y1

√
d)−k ≤ x1 + y1

√
d.

Note that x1 + y1
√
d = 1

x1−y1
√
d
Ô⇒ (x1 + y1

√
d)−k = (x1 − y1

√
d)k.

Note that (x1 − y1
√
d)k is also a generator of solutions to the Pell equation,

since the y part of the solution is just negative. Thus, using Brahmagupta’s
Identity, we know the middle of the inequality has coefficients which are
another solution, so we can write it as

1 ≤ a + b
√
d ≤ x1 + y1

√
d.

Note by the two lemmas we proved that a and b are positive and b < y1,
contradicting minimality. Thus, all solutions are generated by (x1+y1

√
d)k.

Note that the x coefficients in (x1 + y1
√
d)k are also increasing, so we can

substitute minimal y for minimal x if we want to. ∎

Showing Existence of Solutions

So now we know that Pell equations have infinitely many solutions, and
we even know how to generate all of them. The only issue is finding the
minimal solution. How are we supposed to do that. We could try increasing
x by 1 and seeing if there is a valid solution for y. However, this isn’t always
feasible. For example, d = 61 has minimal solution (1766319049,226153980).
Instead, we have another method for finding a minimal solution.

Theorem: If (x, y) satisfies x2 − dy2 = n, with ∣n∣ <
√
d, then x

y is a

convergent of the continued fraction expansion of
√
d.

Note we are proving a more generalized version, where we replaced 1 with
n. Also, this theorem should make sense heuristically, since for a solution
to a Pell equation, we can write

d =
x2 − n

y2
Ô⇒

√
d ≈

x

y
.
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Proof: A well known theorem about continued fractions is that for a real

number α, if x and y are integers with y nonzero and ∣xy − α∣ <
1

2y2
, then

x
y =

p
q for some convergent p

q of α. Taking α =
√
d, assuming the hypothesis

of the theorem we have

∣
x

y
−
√
d∣ = ∣

x − y
√
d

y
∣ = ∣

n

y(x + y
√
d)
∣ <

√
d

y2 (xy +
√
d)
=

1

y2 ( x

y
√
d
+ 1)

.

If this is less than 1
2y2

, then we’re done. Thus, we have

y2 (
x

y
√
d
+ 1) > 2y2 Ô⇒ x > y

√
d Ô⇒ x2 − dy2 > 0,

which is evidently true for positive n. For negative, the argument breaks,
but we can instead look at y

x as an approximation of 1√
d
. This yields

∣
y

x
−

1
√
d
∣ <

1

x2 (y
√
d

x + 1)
.

It can easily be shown that this is less than 1
2x2 , so we’re done. ∎

How does this make finding the minimal solution easier? After all, for
something like d = 61, it seems like it’d take a long time to reach the correct
convergent. However, we actually have a finite search space. Although
we won’t prove it here, the continued fraction expansion for

√
d for non

square d is eventually periodic, and x2 − dy2 for that periodic section is
also periodic. Thus, one only needs to test the beginning section and the
first periodic section of the continued fraction expansion of

√
d to find the

minimal solution.


