
LLL ALGORITHM

NEIL KRISHNAN, SAMBHU GANESAN, ISAAC SUN

1. Introduction

Let B = {b1,b2, . . . ,bn} be a basis of vectors over Rn. Define a lattice, L as follows.

Definition 1.1. A lattice, L, is composed of integer combinations of basis vectors bi in basis
B.

We define the length of a vector, v, to be its norm, ||v|| in Rn. The main problem this
paper focuses on is the shortest vector problem (SVP), a problem widely discussed in the
fields of mathematics, especially cryptography, which asks what is the shortest vector in a
lattice L with basis B. We denote λ(L) to be the length shortest vector of L.

2. Minkowski’s Theorem

The first major attempt to solve this problem was by Minkowski who proved an upper
bound of the shortest vector problem using the determinant of a lattice, L defined as follows.

Definition 2.1. The determinant of a lattice, L, with basis B = {b1,b2, . . . ,bn} is

det(L) = det




...
...

...
b1 b2 · · · bn
...

...
...


 .

Let R ⊆ Rn be a region Rn. Define the properties of convexity, centrally symmetric, and
volume as follows.

Definition 2.2. A region, R is convex if for any points, x,y ∈ R, the line segment defined
by ℓ = {αx+ (1− α)y : 0 ≤ α ≤ 1} is contained in R.

Definition 2.3. A region, R is centrally symmetric if for a point x ∈ R, −x ∈ R as well.

Definition 2.4. For a region R, define νR(x) as 1 if x ∈ R and 0 if x ̸∈ R. The volume of
R, denoted as vol(R), is

vol(R) =

∫
x∈Rn

νR(x).

With this in mind, let us introduce the theorem of Minkowski.

Theorem 2.5 (Minkowski). Given some lattice, L, if a region R is convex and symmetric
about the origin and has volume of at least 2n det(L) where n is the number of basis vectors
defining L, R contains a nonzero lattice point.

Let us start by defining the Fundamental Region of a lattice.

Date: December 11, 2023.
1

2 NEIL KRISHNAN, SAMBHU GANESAN, ISAAC SUN

Definition 2.6. The fundamental region is a set, F ∈ Rn such that the translations of F
defined by x+ F = {x+ y : y ∈ F} for all x ∈ L satisfy

(1) Intersection condition -
⋂

x∈L x+ F = ∅,
(2) Union condition -

⋃
x∈L x+ F = Rn.

We will now prove the theorem.

Proof. Define R′ = R/2 or rather R′ = {x/2 : x ∈ R}. As a result vol(R′) ≥ det(L). Between
R and R′, the ratio of the side length of the hyper-cubes is 2 : 1, so vol(R) = 2nvol(R′).
Thus, vol(R′) = det(L). Note that vol(F) = det(L). Denote R′

v to be R′ ∩ (v + F) where
v ∈ L. Thus, R′

v − v ⊆ F . Thus, we have∑
v∈L

vol(R′
v − v) =

∑
v∈L

vol(R′
v) = vol(R′) > det(L) = vol(F),

so there must be a point, z ∈ F which lies on R′
v−v and R′

u−u where v ̸= u. Let x,y ∈ R′

be defined as x = z + v and let y = z + u. By definition then, 2x ∈ R and 2y ∈ R as well.
Because, R is centrally symmetric, we have that −2y ∈ R, and because R is convex, we also
know that the midpoint of 2x and −2y, x− y which is nonzero, is contained within R. ■

As a corollary, we can see that this bounds the length of the shortest vector of L.

Corollary 2.7. Given some lattice, L, we have that λ(L) ≤
√
n det(L)1/n.

Proof. Define R to be the n-dimensional sphere of radius
√
n det(L)−1/n. Because of this,

R must contain the n-dimensional hypercube, [− det(L)−1/n, det(L)−1/n]n, so we have that
vol(R) > 2n det(L). Thus, by Minkowski’s theorem, R contains a nonzero lattice point,
and because the radius of R is

√
n det(L)−1/n, there is a vector in L with length less than√

n det(L)−1/n. Therefore, λ(L) ≤
√
n det(L)1/n. ■

Though this upper bound is useful, we still have not solved SVP, and to this day, we do
not have an efficient algorithm that can solve SVP. The LLL algorithm, rather, just serves as
an approximation of SVP which runs in polynomial time in terms of the rank of the matrix
constructed from the basis vectors: 

...
...

...
b1 b2 · · · bn
...

...
...

 .

3. Basis Reduction

The process of basis reduction is given some basis B, we try to construct a different basis
B′ over the same lattice where the basis vectors of B′ generally have a smaller norm and are
more orthogonal. The definition of a reduced basis varies between algorithms.

Example. In Figure 1, the left image depicts a lattice spanned by a basis, and the right image
depicts the same lattice spanned by a reduced basis.

LLL ALGORITHM 3

Figure 1. Two basis which span the same lattice. The right image depicts a
reduced basis.

The reason why basis reduction is useful for the SVP is because once we cannot reduce
the basis anymore, one of the basis vectors must be the shortest vector, solving the problem
entirely.

This type of strategy is useful in solving SVP for the 2-dimensional case which was done
by Gauss in the 1800s. Let us start with a definition of a reduced basis in two dimensions.

Definition 3.1. A basis, B = (b1,b2), is reduced if the following hold

||b1||≤ ||b2||.

|u|=
∣∣∣∣b1 · b2

||b1||2

∣∣∣∣ ≤ 1

2
.

We need to show that in a reduced basis, b1 is the shortest vector of the lattice.

Theorem 3.2. If a basis B = (b1, b2) is reduced, then b1 is the shortest vector.

Proof. Let v = rb1 + tb2 be a vector of the lattice constructed from B. Then,

||v||2 = ||rb1 + tb2||2,
= ||rb1 + t(b∗

2 + ub1)||2,
= ||(r + tu)b1 + tb∗

2||2,
= ||(r + tu)b1||2+||tb∗

2||2,

where b∗
2 refers to the part of b2 orthogonal to b1. Note that

||b∗
2||2= ||b2||2−||ub1||2.

because ||b2||, ||b∗
2|| and ||ub1|| are the lengths of the hypotenuse and legs, respectively of a

right triangle constructed from b2,b
∗
2, and ub1. Therefore,

||b∗
2||2= ||b2||2−u2||b1||2≥ ||b1||2−

1

4
||b1||2=

3

4
||b1||2.

4 NEIL KRISHNAN, SAMBHU GANESAN, ISAAC SUN

As a result, we have that

||v||2 = ||(r + tu)b1||2+||tb∗
2||2,

≥ (r + tu)2||b1||2+t2
3

4
||b1||2,

≥ ||b1||2

Thus, b1 is the shortest vector of the lattice in a reduced basis. ■

Using this, Gauss developed the following algorithm

(1) Start with basis vectors b1 and b2. If ||b1||> ||b2||, then swap them
(2) If |u|= b1·b2

||b1||2 ≤
1
2
, terminate.

(3) Otherwise, let m = ⌊u⌋ if u is positive and ⌈u⌉ if u is negative. Make b2 = b1−mb2.
Repeat the first step.

Example. Let us try Gauss’s method with the basis B = (b1 = ⟨3, 4⟩,b2 = ⟨1, 6⟩). We have:

(1) ||⟨3, 4⟩||= 5 ≤ ||⟨1, 6⟩||=
√
37.

(2) |u|=
∣∣∣∣⟨3, 4⟩ · ⟨1, 6⟩||⟨3, 4⟩||2

∣∣∣∣ = 27

25
>

1

2
.

(3) m = ⌊u⌋ = 1⇒ b2 = ⟨1, 6⟩ − ⟨3, 4⟩ = ⟨−2, 2⟩.

(1) ||⟨3, 4⟩||= 5 > ||⟨−2, 2⟩||=
√
8⇒ b1 = ⟨−2, 2⟩,b2 = ⟨3, 4⟩.

(2) |u|=
∣∣∣∣⟨−2, 2⟩ · ⟨3, 4⟩||⟨−2, 2⟩||2

∣∣∣∣ = 1

4
≤ 1

2
.

Thus, the shortest vector in the lattice is ⟨−2, 2⟩.

4. Gram-Schmidt Orthogonalization

Recall that an orthogonal basis is a basis where the pairwise dot products of the basis
vectors is 0. The idea behind using the Gram-Schmidt Orthogonalization method is to use
its orthogonal basis to construct a nearly orthogonal basis over L. Then, as we will show,
the shortest vector is close to the smallest basis vector of the orthogonal basis. Let us start
by proving the Gram-Schmidt Orthogonalization Method.

Theorem 4.1 (Gram-Schmidt Orthogonalization Method). Let B be a basis with basis vec-
tors b1, b2, . . . , bn. Define

b∗1 = b1,

b∗2 = b2 − u1,2b
∗
1,

b∗3 = b3 − u1,3b
∗
1 − u2,3b

∗
2,

...

b∗n = bn −
∑
i<n

ui,nb
∗
i ,

where ui,j =
bj ·b∗i
||b∗i ||2

. Then, B∗ = (b∗1, b
∗
2, b

∗
3, . . . , b

∗
n) is an orthogonal basis of Rn.

LLL ALGORITHM 5

Figure 2. Construction of b∗
2 using orthogonalization process

The intuition behind the Gram-Schmidt Orthogonalization Method and specifically the
orthogonalization coefficients, ui,j, is that for any basis vector bj, ui,j is the portion of bj

that lies on b∗
i . Thus, after deleting the portion of bj on b∗

1, the portion of bj on b∗
2 and

so on, from bj to create b∗
j , the result is a vector which is orthogonal to all of the previous

orthogonal basis vectors. Let us prove that the Gram-Schmidt Orthogonalization Method
does indeed provide an orthogonal basis.

Definition 4.2. The Gram-Schmidt Orthogonalization Method does indeed provide an or-
thogonal basis.

Proof. We can do this by induction on the number of vectors we are considering, k, and at
each step show that the vectors are orthogonal.

For k = 1 as the base case, b∗
1 = b1 and can be considered to be orthogonal. For the

inductive case say we have shown that b∗
1,b

∗
2, . . . ,b

∗
k are all orthogonal to each other. Each

of the terms, ui,kb
∗
i represent the projection of b∗

i onto bk. Thus, after the first subtraction,
bk+1 − u1,kb

∗
1, the result is a vector orthogonal to b∗

1. Because b
∗
1 is orthogonal to b∗

2 by the
inductive hypothesis, the projection of bk+1 − u1,kb

∗
1 onto b∗

2 is the same as the projection
of bk onto b∗

2 which is u2,kb
∗
2. Thus, after subtraction we get a vector orthogonal to both b∗

1

and b∗
2. As this process continues, we see that b∗

k+1 is orthogonal to b∗
i for 1 ≤ i ≤ k.

To show that the orthogonal basis spans Rn, note that every vector in the original basis,
B, can be represented as a linear combination of basis vectors in B∗. Thus, the basis must
span Rn. ■

As a corollary of the Gram-Schmidt Orthogonalization method, we have the following.

Corollary 4.3. ||b∗i ||≤ ||bi||.

Proof. We have that:

bk =
∑
i<k

ui,kb
∗
i .

6 NEIL KRISHNAN, SAMBHU GANESAN, ISAAC SUN

Thus, because all of b∗
1,b

∗
2, . . . ,b

∗
k are orthogonal to each other:

||bk||2=
∑
i<k

ui,k||b∗
k||2⇒ ||bk||2≥ ||b∗

k||2⇒ ||bk||≥ ||b∗
k||.

■

From the Gram-Schmidt Orthogonalization Method, we can see that the smallest vector
of lattice over basis B = (b∗

1,b
∗
2, . . . ,b

∗
n) must be larger than the smallest vector of the

orthogonal basis.

Corollary 4.4. λ(L) ≥ mini||b∗i ||.

Proof. Let v =
∑n

i=1 cibi be some vector of L. Say that the largest i for which ci is nonzero
is i = k. Then we have that:

v =
k∑

i=1

cibi,

=
k∑

i=1

ci

i∑
j=1

ui,jb
∗
j ,

=
k∑

j=1

b∗
j

k∑
i=j

ciui,j,

= ckb
∗
k +

k−1∑
j=1

b∗
j

k∑
i=j

ciui,j.

Notice that every vector on the sum is based off of b∗
j where 1 ≤ j ≤ k − 1, so all of those

vectors are orthogonal to b∗
k, so the sum itself is orthogonal to b∗

k. As a result, we see that:

||v||2= ||ckb∗
k||2+||

k−1∑
j=1

b∗
j

k∑
i=j

ciui,j||2,

⇒ ||v||2≥ ||ckb∗
k||2,

⇒ ||v||≥ ||ckb∗
k||.

Therefore, ||v||≥ ||ckb∗
k||≥ ||b∗

k||. Thus, any vector of the lattice must have a magnitude
larger than one of the basis vectors in the Gram-Schmidt Orthogonalized basis, meaning
that the shortest vector is longer than min(||b∗

1||, ||b∗
2||, . . . , ||b∗

n||). ■

5. LLL Reduction

The main problem occurs when SVP is extended to higher dimensions. SVP is solved in
2-dimensions using a two dimensional basis and Gauss’s Algorithm. But extending SVP to
higher dimensions remains an open problem. In the two dimension case we noticed that to
reduce a base we had to make the basis vectors as orthogonal as possible. Extracting this
same idea, A. Lenstra, H. Lenstra, and L. Lovasz came up with an approximation called the
LLL algorithm.

LLL ALGORITHM 7

Definition 5.1. Let b = {b1,b2, . . .bn} be a n-dimensional basis and define the Gram-
Schmidt Process orthogonal basis to be b∗ = {b∗

1,b
∗
2, . . .b

∗
n}. Let the Gram-Schmidt coeffi-

cients be

ui,j =
bj · b∗

i

b∗
i · b∗

i

for any i, j. An LLL-reduced basis satisfies:

• (Size Reduction Condition) For all i ̸= j, ui,j ≤ 1
2
.

• (Lovasz Condition) For each i,

δ||b∗
i ||2≤ ||b∗

i+1 + ui+1,ib
∗
i ||2

for some δ ∈ [0.25, 1).

The first condition is called the size-reduction and by definition it guarantees the length
reduction of the basis. The second condition is called the Lovasz Condition which ensures
the ordering of the basis. The δ is introduced because polynomial-time complexity is only
guaranteed for δ ∈ [0.25, 1). In the original paper, A. Lenstra, H. Lenstra and L. Lovász
used δ = 3

4
.

Theorem 5.2. Using this idea of a reduced basis, we have the LLL-reduction algorithm as
follows. Given some basis B = (b1, b2, b3, . . . , bn),

(1) Gram Schmidt - Perform the Gram-Schmidt Orthogonalization to obtain the basis
B = (b∗1, b

∗
2, . . . , b

∗
n).

(2) Reduction step - For each 1 ≤ i ≤ n, for each j from i− 1 to 1, let mj,i = ⌊uj,i⌉ and
make bi ← bi −mj,ibj.

(3) Ordering step - For every pair of consecutive vectors, bi, bi+1, check that δ||b∗i ||2≤
||b∗i+1 + ui,i+1b

∗
i ||2. If not, swap the two and return back to step 1.

Example. Let us perform the LLL algorithm to reduce the basis of

b1 = ⟨17, 20, 34⟩,b2 = ⟨60, 1, 15⟩,b3 = ⟨3, 6, 50⟩.
We start by performing the Gram-Schmidt orthogonalization to get the vectors

b∗
1 = ⟨70, 20, 34⟩,b∗

2 = ⟨45.718,−15.802,−13.564⟩,b∗
3 = ⟨−2.722,−18.263, 12.104⟩.

We can now reduce all of the vectors. For b2, we have that m1,2 = ⌊u1,2⌉ = 1. Thus,
b2 ← b2 − b1 = ⟨43,−19,−19⟩. For b3, we need to reduce first by b2 and then by b1. We
have m2,3 = ⌊u2,3⌉ = 0, so b3 does not change. Also, m1,3 = ⌊u1,3⌉ = 1, so x3 ← x3 − x1 =
⟨−14,−14, 16⟩.
Let us start ordering the vectors. In order to check the Lovasz Condition, we can simplify

it in order to reduce the amount of work.

δ||b∗
i ||2≤ ||b∗

i+1 + ui+1,ib
∗
i ||2.

⇒δ||b∗
i ||2≤ ||b∗

i+1||2+u2
i,i+1||b∗

i ||2.
⇒||b∗

i+1||2≥ (δ − u2
i,i+1)||b∗

i ||2.
For i = 1, we have that ||b∗

2||2= 2523.83 and (δ − u2
1,2)||b∗

1||2= 1336.58. Thus, this pair

satisfies the Lovasz condition. For i = 2 on the other hand, we have that ||b∗
3||2= 487.44 and

(δ − u2
2,3)||b∗

2||2= 1732.68 which does not satisfy the Lovasz condition. Thus, we must swap
b2 and b3. The vectors are now:

b1 = ⟨17, 20, 34⟩,b2 = ⟨−14,−14, 16⟩,b3 = ⟨43,−19,−19⟩.

8 NEIL KRISHNAN, SAMBHU GANESAN, ISAAC SUN

Performing the Gram-Schmidt Orthogonalization, we have that:

b∗
1 = ⟨17, 20, 34⟩,b∗

2 = ⟨−14.240,−14.282, 15.54⟩,b∗
3 = ⟨31.738,−29.824, 1.675⟩.

We can now reduce the vectors. We have that m1,2 = ⌊u1,2⌉ = 0, so b2 does not change.
As for b3, reducing by b2, we get m2,3 = ⌊u2,3⌉ = −1, so b3 ← b3 + b2 = ⟨29,−33,−3⟩.
Reducing by b1, we have m1,3 = ⌊u1,3⌋ = 0, so b3 does not change.
Checking the ordering, we have ||b∗

2||2= 647.63 and (δ − u2
1,2)||b∗

1||2= 1383.38, breaking
the Lovasz condition, so we have to swap the two vectors.

Our basis is now:

b1 = ⟨−14,−14, 16⟩,b2 = ⟨17, 20, 34⟩,b3 = ⟨29,−33,−3⟩.

The Gram-Schmidt Orthogonalized basis is then:

b∗
1 = ⟨−14,−14, 16⟩,b∗

2 = ⟨17.562, 20.562, 33.358⟩,b∗
3 = ⟨31.738,−29.824, 1.675⟩.

Reducing the vectors, we see that m1,2 = ⌊u1,2⌉ = 0, m2,3 = ⌊u2,3⌉ = 0, and m1,3 =
⌊u1,3⌉ = 0, so nothing changes as a result of the reduction.

Checking the ordering of the basis vectors, we have that:

1843.96 = ||b∗
2||2≥ (δ − u2

1,2)||b∗
1||2= 484.96.

1899.565 = ||b∗
3||2≥ (δ − u2

2,3)||b∗
2||2= 1343.63.

Thus, the basis,

b1 = ⟨−14,−14, 16⟩,b2 = ⟨17, 20, 34⟩,b3 = ⟨29,−33,−3⟩,

is an LLL reduced basis.

We will now present some properties of the LLL reduced basis.

Theorem 5.3. Let b = {b1, b2, . . . bn} be an n-dimensional LLL reduced basis of lattice L.
Then

||b1||≤
(

2√
4δ − 1

)n−1

· λ(L)

for some δ ∈ [0.25, 1) and where λ(L) is the shortest vector in L.

Proof. Note that by our definition of LLL base reduction we have that

||b∗
i ||2 ≤

1

δ
||b∗

i+1 + ui,i+1b
∗
i ||2

=
1

δ
||b∗

i+1||2+
1

δ
u2
i,i+1||b∗

i ||2.

By the size-reduction condition we know that ui,i+1 ≤ 1
2
which means that u2

i,i+1 ≤ 1
4
. Hence

||bi||2≤
1

δ
||b∗

i+1||2+
1

4δ
||b∗

i ||2⇒
4δ − 1

4
||b∗

i ||2≤ ||b∗
i+1||2

LLL ALGORITHM 9

By chaining the inequalities:

4δ − 1

4
||b∗

i ||2 ≤ ||b∗
i+1||2,

4δ − 1

4
||b∗

i−1||2 ≤ ||b∗
i ||2,

...

4δ − 1

4
||b∗

1||2 ≤ ||b∗
2||2,

we get

||b∗
i+1||2≥

(
4δ − 1

4

)i

||b1||2.

Note that as a result of Corollary 4.4 from before, λ(L) ≥ min(||b∗
i ||). Therefore, we know

that:

λ(L)2 ≥ min
i
(||b∗

i ||) ≥
(
4δ − 1

4

)n−1

||b1||2.

Taking the square root of both sides of the inequality, we find that:

λ(L) ≥
(
4δ − 1

4

)n−1
2

||b1||⇒ ||b1||≤
(

2√
4δ − 1

)n−1

· λ(L)

■

6. Time Complexity

Analyzing the time complexity of the LLL algorithm is a complicated task. We will first
bound the number of iterations and then find the time for a single iteration. Before we delve
into that let’s look at the potential of a lattice base.

For the sake of readability we will let X = maxi||bi||. Let us start by defining the potential
of a basis.

Definition 6.1. Let B = {b1,b2, . . .bn}, and let the Gram-Schmidt Orthogonalized basis
of B be B∗ = {b∗

1,b
∗
2, . . .b

∗
n} The potential of B, denoted by DB, is given by

DB =
n∏

i=1

||b∗
i ||n+1−i=

n∏
i=1

||b∗
1||·||b∗

2||·||b∗
3||· · · ||b∗

i ||=
n∏

i=1

DB,i

where DB,i = det(L(b1,b2, . . . ,bi)) = ||b∗
1||·||b∗

2||· · · ||b∗
i || where L(b1,b2, . . . ,bi) denotes

the lattice formed by the basis vectors b1,b2, . . . ,bi.

We can make a few observations about this potential value as the algorithm proceeds.

Proposition 6.2. DB < Xn(n+1)/2.

Proof. For the upper bound, note that ||b∗
i ||< ||bi||< maxi||bi||= X. Thus, we have that:

DB =
n∏

i=1

||b∗
i ||n+1−i<

n∏
i=1

Xn+1−i = X1+2+3+...+n = Xn(n+1)/2.

■

10 NEIL KRISHNAN, SAMBHU GANESAN, ISAAC SUN

Proposition 6.3. DB where B spans some fixed n-dimensional lattice, L, has a positive
lower bound.

Proof. We have that b∗
1,b

∗
2, . . . are all positively lower bounded because the basis vectors

are contained within a fixed lattice. As a result DB must have a positive lower bound as
well. ■

Proposition 6.4. During the reduction step (step 2) of the algorithm, DB does not change.

Proof. Note that DB is solely based off of the Gram-Schmidt basis vectors which do not
change during the reduction step. ■

Proposition 6.5. The ordering step only decreases DB by a constant factor.

Proof. Let the new potential be D′
B with D′

B,i = ||b
∗′
1 ||·||b∗′

2 ||· · · ||b∗′
i ||. Say that vectors bk

and bk+1 are swapped. Let the new Gram-Schmidt orthogonalized basis be b∗′
1 ,b

∗′
2 , . . . ,b

∗′
n .

For the vectors b∗′
i where 1 ≤ i ≤ k − 1, they remain the exact same as there counter parts

in B∗. As for b∗′
k , we have:

b∗′
k = bk + 1− bk+1 · b∗

1

||b∗
1||2

b∗
1 −

bk+1 · b∗
2

||b∗
2||2

b∗
2 − . . .−

bk+1 · b∗
k−1

||b∗
k−1||2

b∗
k−1 = b∗

k+1 + uk,k+1b
∗
k.

Thus, DB,i = D′
B,i for 1 ≤ i ≤ k − 1, D′

B,k = DB,k
b∗
k+1+uk,k+1b

∗
k

b∗
k

, and D′
B,i = DB,i for

k + 1 ≤ i ≤ n because both are determinants of a lattice formed by the same basis vectors.
Thus, D′

B, is:

D′
B =

n∏
i=1

D′
B,i,

=
k−1∏
i=1

D′
B,i ·D′

B,k ·
n∏

i=k+1

D′
B,i,

=
k−1∏
i=1

DB,i ·DB,k

||b∗
k+1 + uk,k+1b

∗
k||

||b∗
k||

·
n∏

i=k+1

DB,i,

=
||b∗

k+1 + uk,k+1b
∗
k||

||b∗
k||

n∏
i=1

DB,i,

=
||b∗

k+1 + uk,k+1b
∗
k||

||b∗
k||

DB.

Notice that as a result of the Lovasz condition being broken between bk and bk+1 as a result
of the swap, we know that:

δ||b∗
k||2> ||b∗

k+1 + uk,k+1b
∗
k||2⇒

√
δ >
||b∗

k+1 + uk,k+1b
∗
k||

||b∗
k||

.

Thus,

D′
B =

||b∗
k+1 + uk,k+1b

∗
k||

||b∗
k||

DB <
√
δDB.

Thus, as long as δ < 1 which is true since δ ∈ [0.25, 1), DB decreases by a constant factor. ■

Lemma 6.6. The number of iterations is some polynomial in terms of n.

LLL ALGORITHM 11

Proof. After every iteration, the potential decreases by a factor of at most
√
δ, and the

potential also has an upper bound. Because all of the basis in the algorithm represent the
same lattice, L, DB also has a lower bound, q. Thus, the number of iterations is at most:

log√δ

Xn(n+1)/2

q
= n(n+ 1)/2 log√δ X − log√δ q = O(n2).

Thus, the number of iterations is some polynomial on n. ■

Lemma 6.7. Each iteration happens in polynomial time.

Proof. For each iteration, there are three steps: Gram-Schmidt, Reduction step, and Order-
ing step. Let us show that each of them operate on polynomial time.

Let us start with Gram-Schmidt. To prove this, let us break up Gram-Schmidt into smaller
parts. Primarily, Gram-Schmidt has to be able to calculate ui,jb

∗
i . In order to do this, it must

perform 2 dot products each which is in polynomial time and also must multiply ui,j by b∗
i

which also happens in polynomial time on n. This must be done on the order of O(n2) times
for finding the Gram-Schmidt Orthogonalized basis, so Gram-Schmidt as a whole operates
on polynomial time.

Moving on, the reduction step has the exact same structure as Gram-Schmidt except, the
orthogonalization coefficients are rounded instead. This does not change the fact that the
algorithm operates on polynomial time, so the reduction step operates on polynomial time.

Finally, for the Ordering step, the algorithm just has to verify an inequality involving a
Gram-Schmidt orthogonalization coefficient for consecutive pairs of terms. Verifying the in-
equality happens in polynomial time, and the orthogonalization coefficient can be calculated
in polynomial time. Thus, because there are at most n−1 consecutive pairs of basis vectors,
the Ordering step must operate on polynomial time. ■

Theorem 6.8. The LLL algorithm operates in polynomial time based on n.

Proof. Thus, because each iteration operates on polynomial time and the number of iterations
is some polynomial in terms of n by Lemmas 6.6 and 6.7, the LLL algorithm must operate
on polynomial time as well. ■

7. Mertens Conjecture

One well known application of the LLL Algorithm is in disproving Mertens conjecture,
which states that the Mertens function M(n) is bounded by ±

√
n. Conjectured in 1885 by

Thomas Joannes Stieltjes, it was disproved 100 years later by Andrew Odlyzko and Herman
te Riele in 1985. The Mertens Conjecture holds a lot of significance because |M(n)| ≤ k

√
n

for any constant k would imply the Riemann Hypothesis, since M(n) = O(n1/2+ϵ) for any
ϵ < 1

2
is equivalent to the Riemann Hypothesis.

Definition 7.1 (Mertens Function). The Mertens Function, M(n), is defined as follows:

M(n) =
n∑

k=1

µ(k),

where µ(k) denotes the Möbius function, which denotes the sum of the primitive k-th roots
of unity. Note that the values of µ(k) is contained in {−1, 0, 1}.

12 NEIL KRISHNAN, SAMBHU GANESAN, ISAAC SUN

Theorem 7.2 (Mertens Conjecture). The Mertens Conjecture states that for all n > 1,

|M(n)| <
√
n

Through the application of the LLL Algorithm, Andrew Odlyzko and Herman te Riele
showed that

lim
n→∞

supm(n) > 1.06 and lim
n⇒∞

infm(n) < −1.009,

where m(n) = M(n)√
n
. Although this does not directly prove that there actually exists such n,

a counterexample was later found to exist below e3.21·10
64
. As of now, it is not certain, but

seems very likely that

lim
n→∞

supm(n) =∞.

8. Cryptography

The LLL Algorithm is also prevalent throughout cryptography, and one notable example
of this is the Knapsack Problem. It goes as follows: Consider a thief who breaks into a
jewelry store. Each gem in the jewelry store has a weight and is valued at a certain price.
Which gems should he steal in order to maximize the value of the gems?

This Knapsack Problem, also known as the Subset Sum Problem, can be extended to
the Cryptographic Knapsack Scheme, which is one of the earliest public key cryptosystems,
founded by Ralph Merkle and Martin Hellman in 1973. It implements the subset sum
problem, and is mostly unsolvable, but there are instances that can be solved by the LLL
algorithm.

Suppose Bob wants to send a message to Alice, and Alice’s public key is a = (a1, a2, · · · , an).
He wants to encipher a message x = (x1, x2, · · · , xn), and sends the sum

S =
n∑

i=1

aixi

to Alice. If S is potentially eavesdropped and the enciphering key is public, finding the
message x from S and a should be intentionally hard. Given a random sequence of integers
for a, the only way to find x is to try all 2n possible values of x. However, if a is chosen
randomly, it is also extremely hard for Alice to decipher the message. This can be solved
with the Merkle-Hellman trapdoor, which gives her information called the deciphering key.
Funnily enough, this trapdoor is also what makes this system insecure. To see how this
trapdoor works, let’s first define a super-increasing sequence.

Definition 8.1. A sequence b1, b2, · · · , bn is super-increasing if for each 2 ≤ i ≤ n,

bi >

i−1∑
j=1

bj.

Determining whether or not a sequence is super-increasing only takes 1 pass, which is O(n),
so determining whether a subset sum, T , is part of a super-increasing set, the computer must
find the largest number in the set less than or equal to T then subtract it to get T ′. It repeats
this process with T ′. If T ′ = 0 then the subset sum consists of all the numbers subtracted
from T.

LLL ALGORITHM 13

Modulo transformations can then be used on the private key to generate a public key, and
by having secret information called the deciphering key, through this trapdoor and several
modulo transformations, Alice can iteratively determine the message.

To show how LLL Algorithm is useful in cracking this scheme, let’s suppose we have the
following superincreasing knapsack

S = [2, 5, 9, 24, 45, 103, 215, 450, 946],

which is our private key. Our public knapsack is ti = 1289 · si mod 2003, so our public key

T = [575, 436, 1586, 1030, 1921, 569, 721, 1183, 1570].

We encrypt 101100111 as 575 + 1586 + 1030 + 721 + 1183 + 1570 = 6665.
Given that someone wants to intercept the messages and knows that the public key

T = [575, 436, 1586, 1030, 1921, 569, 721, 1183, 1570] and ciphertext 6665, they can’t easily
decipher the message because they do not possess the deciphering key. Thus, they have to
directly find xi ∈ {0, 1} such that

575x0 + 436x1 + 1586x2 + 1030x3 + 1921x4 + 569x5 + 721x6 + 1183x7 + 1570x8 = 6665.

This can be written as T ·X = 6665. Lets rewrite the problem as a matrix below:

We can think of the matrix as comprising of vertical basis vectors. The solution then can
be written as the vector (x0, x1, . . . , x8, 0) which is an integer combination of the other basis
vectors. Note that this solution is one of the shorter vectors in the lattice spanned by the
columns of M because we only get a solution when the vector has 1s and 0s in the first 9
entries and a 0 in the last entry. Thus, applying LLL to reduce the vectors we get:

14 NEIL KRISHNAN, SAMBHU GANESAN, ISAAC SUN

And indeed, the 7-th column has the right form, which gives us our solution of 101100111
which displays the LLL-Algorithm’s application in cryptography.

Appendix

Code for the LLL algorithm:

import sys

import json

import numpy as np

from numpy import linalg as la

Initialize the basis as the user input.

basis = np.array(json.loads(sys.argv[1])).astype(float)

Initialize the Gram-Schmidt basis.

orthobasis = basis.copy()

k = 1 # Initialize the working index.

DELTA = 0.75

def projection_scale(u, v):

'''Computes <u,v>/<u,u>, which is the scale used in projection.'''

return np.dot(u, v) / np.dot(u, u)

def proj(u, v):

'''Computes the projection of vector v onto vector u.

Assumes u is not zero.'''

return np.dot(projection_scale(u, v), u)

def gram_schmidt():

'''Computes Gram Schmidt orthoganalization

(without normalization) of a basis.'''

LLL ALGORITHM 15

orthobasis[0] = basis[0]

for i in range(1, basis.shape[1]): # Loop through dimension of basis.

orthobasis[i] = basis[i]

for j in range(0, i):

orthobasis[i] -= proj(orthobasis[j], basis[i])

return orthobasis

def lovasz():

global k

'''Checks the Lovasz condition for a basis.

Either swaps adjacent basis vectors and

recomputes Gram-Scmidt or increments the working index.'''

c = DELTA - projection_scale(orthobasis[k-1], basis[k])**2

Check the Lovasz condition.

if la.norm(orthobasis[k])**2 >= np.dot(c, la.norm(orthobasis[k-1]**2)):

Increment k if the condition is met.

k += 1

else:

If the condition is not met,

swap the working vector and

the immediately preceding basis vector.

basis[[k, k-1]] = basis[[k-1, k]]

gram_schmidt() # Recompute Gram-Schmidt if swap

k = max([k-1, 1])

def reduction():

'''Performs length reduction on a basis.'''

Track the total amount by which the working vector is reduced.

total_reduction = 0

for j in range(k-1, -1, -1): # j loop. Loop down from k-1 to 0.

m = round(projection_scale(orthobasis[j], basis[k]))

total_reduction += np.dot(m, basis[j])[0]

Reduce the working vector by multiples of preceding vectors.

basis[k] -= np.dot(m, basis[j])

if total_reduction > 0:

Recompute Gram-Scmidt if the working vector has been reduced.

gram_schmidt()

def main():

while True:

x = raw_input("See the steps? Press [Y/N] and Enter. ")

if x in ['Y','N', 'y', 'n']: break

else: raw_input("See the steps? Press [Y/N] and Enter. ")

if x in ['Y', 'y']:

gram_schmidt()

steps = 0

16 NEIL KRISHNAN, SAMBHU GANESAN, ISAAC SUN

while k <= basis.shape[1] - 1:

reduction()

steps += 1

print 'Step ', steps,'. After the reduction step, the basis is\n',

basis raw_input("")

lovasz()

steps +=1

print 'Step ', steps,'. After checking the Lovasz condition,

the basis is\n', basis

raw_input("")

print 'LLL Reduced Basis:\n', basis

else:

gram_schmidt(basis)

while k<= basis.shape[1] - 1:

reduction()

lovasz()

print 'LLL Reduced Basis:\n', basis

if __name__ == "__main__":

main()

References

[1] L. Lovász A. K. Lenstra, H. W. Lenstra. Factoring polynomials with rational coefficients, 1982.
[2] Jennifer Bakker. The knapsack problem and the lll algorithm, 2004.
[3] Xinyue Deng. An introduction to lenstra-lenstra-lovasz lattice basis reduction algorithm, 2016.
[4] Swastik Kopparty. Algorithmic number theory, 2014.
[5] Vinod Vaikuntanathan. Advanced topics in cryptography: Lattices, 2015.

	1. Introduction
	2. Minkowski's Theorem
	3. Basis Reduction
	4. Gram-Schmidt Orthogonalization
	5. LLL Reduction
	6. Time Complexity
	7. Mertens Conjecture
	8. Cryptography
	Appendix
	References

