
UPPER BOUNDS FOR MORDELL EQUATIONS

NAVVYE ANAND

1. Introduction

Mordell equations are celebrated equations within number theory and elliptic curves.
They were named after Louis Mordell, an American-born British mathematician, known
for pioneering research in number theory. Mordell’s work in this area was revolutionary
as it marked the beginning of systematic study of the rational points on elliptic curves, a
field that has since become a cornerstone of modern number theory. His findings led to
the development of what is now known as the Mordell-Weil theorem, which states that the
group of rational points on an elliptic curve over a number field is finitely generated. This
theorem was a major breakthrough and laid the groundwork for further research by other
mathematicians, including André Weil and John Tate. The study of Mordell equations is
not just a theoretical pursuit, but it has practical applications in areas such as cryptography,
particularly in the creation of elliptic curve cryptography (ECC). In this expository paper,
we’ll cover some properties of Mordell Equations, as well as some interesting upper bounds
to the number of integral solutions of Mordell Equations. We will go over some of the recent
developments in the field as well.

Definition 1.1. The Mordell Equations are elliptic curves of the form y2 = x3 + k where k
is an integer.

Figure 1. Graphs of Mordell Equations
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2. Theorems of Mordell and Thue

The Mordell-Weil Theorem is a very important theorem in the the field of algebraic number
theory. It states that the number of rational solutions to elliptic curves is finitely generated,
which means that there exists a finite set of group generators for the group of rational points
on an elliptic curve. Naturally, the question arises: What about integral solutions? The
question of whether a Mordell equation could have infinitely many integer solutions was an
interesting one in the early 20th century. However, impressive work by both Axel Thue and
Louis Mordell proved that a Mordell equation can only have finitely many integral solutions.

Theorem 2.1. Every Mordell Equation has only finitely many integer solutions

2.1. Relating binary cubic forms and Mordell equations. A brief sketch of the proof
is given for brevity. We wish to establish a connection between the binary cubic forms and
Mordell Equations. Consider,

F = F (x, y) = ax3 + 3bx2y + 3cxy2 + dy3

to be a binary cubic form with the discriminant

DF = −27(a2d2 − 6abcd− 3b2c2 + 4ac3 + 4b3d)

we observe the fact that the set of the binary cubic forms of the shape F is closed within
the larger set of binary cubic forms of the set Z[x, y] under the action of both SL2 and GL2.
In order to see this, we describe the Hessian of the F to be H = HF (x, y)

H = HF (x, y) = −1

4

(
∂2F

∂x2

∂2F

∂y2
−
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and the Jacobian determinant of F and H, a cubic form G = GF defined as

G = GF (x, y) =
∂F

∂x

∂H

∂y
− ∂F

∂y

∂H

∂x
.

Now, we have
H/9 =

(
b2 − ac

)
x2 + (bc− ad)xy +

(
c2 − bd

)
y2

and

G/27 = a1x
3 + 3b1x

2y + 3c1xy
2 + d1y

3,

where

a1 = −a2d+ 3abc− 2b3, b1 = −b2c− abd+ 2ac2, c1 = bc2 − 2b2d+ acd

and d1 = −3bcd+ 2c3 + ad2. Crucially for our arguments, these covariants satisfy the linear
relation (defined as a syzygy by Hilbert)

4H(x, y)3 = G(x, y)2 + 27DF (x, y)2.

Defining D1 = D/27, H1 = H/9 and G1 = G/27, we thus have

4H1(x, y)
3 = G1(x, y)

2 +D1F (x, y)2.

If (x0, y0) satisfies the equation F (x0, y0) = 1 and D1 ≡ 0( mod 4) then necessarily
G1 (x0, y0) ≡ 0( mod 2). We may therefore conclude that Y 2 = X3 + k, where

X = H1 (x0, y0) , Y =
G1 (x0, y0)

2
and k = −D1

4
= − D

108
.
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It follows that, to a given triple (F, x0, y0), where F is a cubic form as in (2.1) with discrim-
inant −108k, and x0, y0 are integers for which F (x0, y0) = 1, we can associate an integral
point on the Mordell equation y2 = x3 + k. The converse of this can be proven easily by
taking the covariants of the factors to be

X =
G1(1, 0)

2
=

G(1, 0)

54
and Y = H1(1, 0) =

H(1, 0)

9
.

In summary, there exists a direct correspondence between the set of the integral solutions
of binary cubic forms, and the set of integral solutions of Mordell equations. Therefore,
if we prove that every binary cubic form F (x, y) = r has finitely many solutions, then we
have essentially proven that every Mordell equation has finitely many solutions. We now
give another brief sketch for the Thue–Siegel–Roth theorem, which states precisely that
every binary cubic form has finitely many solutions.

Roth’s theorem is a very important theorem in diophantine approximation of algebraic num-
bers. It states that algebraic numbers cannot have many rational number approximations
that are very good. The definition of very good has evolved over time, and was defined by
many different mathematicians such as Axel Thue (1909), Carl Ludwig Siegel (1921), Free-
man Dyson (1947), and Klaus Roth (1955).

The theorem states that for any algebraic number α has an approximation exponent equal
to 2. In other words, for any ϵ > 0, then there exist only finitely many co-prime integers p
and q such that the inequality ∣∣∣∣α− p

q

∣∣∣∣ < 1

q2+ϵ

holds.

This proof technique involves the creation of an auxiliary multivariate polynomial, which
is defined with a large number of variables dependent on ϵ. The technique leads to a contra-
diction when faced with an excessive number of good approximations. To apply this method,
one identifies several rational approximations of a specific irrational algebraic number. Each
of these rational approximations is then used as input for a distinct variable in the function’s
defining expression. This approach is particularly effective in demonstrating contradictions
in the context of algebraic number approximations.

An interesting extension of the theorem is we consider a constant in the original expres-
sion. If α is a real algebraic number of degree n, n ≥ 2 then there is a constant c > 0 such
that for any rational number p/q, q > 0∣∣∣∣α− p

q

∣∣∣∣ > c

qn
.

It is clearly enough to assume |α− p/q| ≤ 1. By the mean value theorem f(p/q) = f(α)−
f(p/q) ≤ |α− p/q|A where f(x) ∈ Z[x] is irreducible, f(α) = 0, and A = sup |f ′(x)|,
|x− α| ≤ 1. But since α is not rational f(p/q) ̸= 0 and |f(p/q)| ≥ 1/qn. This completes the
proof. ■
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3. Bounding using Binary Forms

In this section, we utilize the close relation between binary cubic forms and Mordell
equations to bound the number of integral solutions. The proofs of these results is beyond
the scope of the paper, but can be accessed in the bibliography.

Theorem 3.1. If F (x, y) is a homogeneous cubic polynomial with integral coefficients for
which F (x, 1) has at least two distinct complex roots, then the equation

F (x, y) = 1

possesses at most 10 solutions in integers x and y.

Theorem 3.2. If F (x, y) is a homogeneous cubic polynomial with integral coeffcients and
nonzero discriminant and m is a nonzero integer, then the equation

F (x, y) = m

possesses at most 10× 3ω(m) solutions in coprime integers x and y. Here, ω(m) denotes the
number of distinct prime factors of m.

Additionally, a result of the flavour of 3.1 leads, via an argument of Mordell to additional
bounds for the number of solutions of Mordell’s equation:

Theorem 3.3. If k is a nonzero integer, then the equation

y2 = x3 + k

has at most 10h3(−108k) solutions in integers x and y, where h3(−108k) is the class number
of binary cubic forms of discriminant k.

We note, if ϵ > 0, one may show that

h3(−108k) ≪ |k|1/2+ϵ

which yields us to the next portion of the paper: Hall’s conjecture.

4. Hall’s Conjecture

Hall’s conjecture is an open question, on the differences between perfect squares and per-
fect cubes. It asserts that a perfect square y2 and a perfect cube x3 that are not equal must
lie a substantial distance apart. Substantial in this context is defined in terms of

√
x.

Originally, the conjecture stated that |y2 − x3| > C
√
|x| for a fixed constant C. Hall sug-

gested that the constant C could be taken as 0.2, which was in line with the computations
of his era. However, an increase in computation power has yielded us with a better upper
bound on C. For example, in 1998, Noam Elkies found the current record holder for C, for
which compatibility with Hall’s conjecture would require C to be less than .0214 ≈ 1/50,
roughly 10 times smaller than the original choice of 1/5 that Hall suggested. The original,
strong, form of the conjecture with exponent 1/2 has never been disproven, although it is no
longer believed to be true and the term Hall’s conjecture now generally means the version
with the constant C(ϵ) which is a constant dependent on the ϵ. The weak form of Hall’s
conjecture, which states that |y2 − x3| > C(ϵ)x0.5−ϵ was proven in 1980.

The following table gives the 25 solutions of 0 < |k| < x1/2 with x < 1018 where k = x3 − y2

and r =
x1/2

|k|
.
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# k x r

1 1641843 5853886516781223 46.60
2 30032270 38115991067861271 6.50
3 -1090 28187351 4.87
4 -193234265 810574762403977064 4.66
5 -17 5234 4.26
6 -225 720114 3.77
7 -24 8158 3.76
8 307 939787 3.16
9 207 367806 2.93
10 -28024 3790689201 2.20
11 -117073 65589428378 2.19
12 -4401169 53197086958290 1.66
13 105077952 23415546067124892 1.46
14 -1 2 1.41
15 -497218657 471477085999389882 1.38
16 -14668 384242766 1.34
17 -14857 390620082 1.33
18 -87002345 12813608766102806 1.30
19 2767769 12438517260105 1.27
20 -8569 110781386 1.23
21 5190544 35495694227489 1.15
22 -11492 154319269 1.08
23 -618 421351 1.05
24 548147655 322001299796379844 1.04
25 -297 93844 1.03

Table 1. Table of Hall Equation Parameters

Clearly, work done in Hall’s conjecture shows that the number of integral solutions can be
asymptotically be bounded by an exponent of x

1
2 , but also shows that a tighter bound can

be achieved.

4.1. Finding Good Examples of Hall’s Conjecture.

Definition 4.1. We define good examples of Hall’s conjecture to be examples where 0 <
|y2 − x3| < x

1
2 .

An interesting algorithm, with verification of it’s proof, is given below.

Definition 4.2. Let q, p, x, and y be real numbers. Define the following functions:

B(q, p, x) = p2 − q2x,

C(q, p, x, y) = p3 − 3pq2x+ 2q3y,

F (q, p, x, y) = 4pC − 3B2,

H(q, p, x, y) = 9FB − 8C2.
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where x, y, p, q are positive integers. The algorithm is based on the four polynomials given
by the definition above. The values of these polynomials will be small when (x, y) is a good
example and p

q
is the approximation to x1/2 given by the next theorem.

Theorem 4.3. Let (x, y) be a good example. Then, there exist p, q,Q ∈ N and δ ∈ R such
that (i) p = qx1/2(1 + δ), (ii) 0 < q < x1/6 < Q and (iii) 1

qx1/2(Q+q)
< |δ| < 1

qx1/2Q
.

Proof. Proof. We know that p and q are co-prime. Now we note that x1/2 is an irrational
number when (x, y) is a good example. (If x1/2 is a natural number, then (x, y) will not be
a good example as x3− y2 = 0. But x1/2 is either a natural number or an irrational number.
Thus, x1/2 is irrational.) Let a0, a1, a2, . . . be the coefficients for the continued fraction for
x1/2, that is

x1/2 = lim
n→∞

[a0; a1, . . . , an] .

The list of coefficients will be infinite as x1/2 is irrational. Let hi and ki be, respectively, the
nominator and the denominator of the convergent [a0; a1, . . . , ai], that is

hi

ki
= [a0; a1, . . . , ai].

Then, for any i ∈ N, we have

1

ki (ki + ki+1)
<

∣∣∣∣hi

ki
− x1/2

∣∣∣∣ < 1

kiki+1

and ki < ki+1. Now, pick the least j such that kj+1 > x1/6. Let q = kj, let p = hj and let
Q = kj+1. Then, we have

1

q(q +Q)
<

∣∣∣∣pq − x1/2

∣∣∣∣ < 1

qQ

where q < x1/6 < Q (we cannot have q = x1/6 as x1/6 /∈ N ). Next, let δ be the real number
such that p = qx1/2(1 + δ). Then, we have

1

q(q +Q)
<

∣∣∣∣qx1/2(1 + δ)

q
− x1/2

∣∣∣∣ < 1

qQ
.

Thus
1

qx1/2(q +Q)
< |δ| < 1

qx1/2Q
.

Note that p and q are co-prime since hj and kj are co-prime for any convergent
hj

kj
. ■

5. Modern Work

Modern work in the field of bounding the number of integral points on an elliptic curve
has been carried out by academic stalwarts such as Akshay Venkatesh, Manjul Bhargava etc.
A brief description of some of their results, as well as some of their approaches is given in
this section.

5.1. Helgott, Venkatesh, Bhargava. The study of elliptic curves over number fields is
a rich area of inquiry, particularly concerning the set E(K,S) of S-integral points on an
elliptic curve E defined over a number field K, where S is a finite set of places of K.
Helfgott and Venkatesh seek to establish bounds for the cardinality of E(K,S). Embedding
the Mordell–Weil lattice E(K), modulo torsion, into Rrank(E(K)), aligns the canonical height
with the square of the Euclidean norm. By viewing E(K,S) as a subset of E(K), Helfgott
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and Venkatesh note that the points of E(K,S) exhibit a propensity for separation, a notion
that can be traced back to earlier work of Silverman and Gross.

Helfgott and Venkatesh propose a novel approach to bounding E(K,S) by invoking the
best sphere-packing results given by Kabatjanskii and Levenshtein, thereby improving upon
previous bounds on elliptic curves. This method, however, is noted to have a significant
drawback: its sensitivity to the rank of the Mordell-Weil lattice, which becomes problematic
when considering problems like 3-torsion in quadratic class groups.

To circumvent this limitation, Helfgott and Venkatesh explore the geometry of high-
dimensional Euclidean spaces, where certain packing problems exhibit a weak dependence on
the dimension. This is exemplified by the work of Kabatiansky and Levenshtein, which pro-
vides an upper bound for the packing problem that grows with the angle α when θ = π

2
−α.

The important aspect here, is that α grows sublinearly. Adopting this geometric insight,
Helfgott and Venkatesh introduce a sophisticated slicing technique for E(K,S), optimizing
the separation angle to significantly lower the bound per slice. This involves partitioning
E(K,S) into fibers of the reduction map to E(Fp), with the prime p serving as a tunable
parameter. The continuous dependency of the results on the separation angle leads to the
discovery that an angle of 90° is suboptimal within the interval [60°, 90°]. Thus, Helfgott
and Venkatesh are able to refine their approach and achieve bounds that surpass those ob-
tained using canonical height analogues and other traditional methods, breaking through
the h3(D) ≪ D1/2 barrier. The techniques developed herein are not confined to elliptic
curves but can also be extended to curves of higher genus. Helfgott and Venkatesh reference
further discussions which demonstrate improvements on the exponent 2

d
found in the work

of Heath-Brown and Elkies , underscoring the potential for these methods to enhance the
understanding of rational and integer points on curves.

Bhargava, Shankar, Taniguchi, Thorne, Tsimerman, and Zhao improved upon this bound
to prove that

N(E) < Oϵ(|Disc(E)|0.1117...+ϵ)

where N(E) is the number integral points on an elliptic curve.

5.2. Alpoge and Ho. Let A,B ∈ Z satisfy ∆A,B := −16 (4A3 + 16B2) ̸= 0. If EA,B is the
affine integral model y2 = x3+Ax+B of the associated elliptic curve EA,B over Q, then the
number of solutions (x, y) ∈ Z2 to y2 = x3 + Ax+B is

O

2rank(EA,B)
∏

p2|∆A,B

min

(
4

⌊
vp (∆A,B)

2

⌋
+ 1, 72

7

) ,

where vp(n) is the greatest nonnegative integer such that pvp(n) | n. Considering the fact
that the number of primes dividing n has maximal order O((log n)/ log log n) and normal
order O(log log n), this bound considerably improves upon the one mentioned earlier. It is
interesting to note that many people now believe that there exists an absolute constant c > 0
such that rank (EA,B) < c, so the rank contribution to this bound is widely believed to be
negligible. The Helfgott-Venkatesh bound

N(E) < eO(ω(∆A,B))1.33rank(EA,B) (log |∆A,B|)2 .
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where, ω(n) is the number of distinct prime factors of n, might be stronger than Alpöge
and Ho’s, depending on the prime factorization of ∆A,B. We can now take their minimum:

≪ min

2rank(EA,B)
∏

p2|∆A,B

min

(
4

⌊
vp (∆A,B)

2

⌋
+ 1, 72

7

)
,

eO(ω(∆A,B))1.33rank(EA,B) (log |∆A,B|)2
}

6. Conclusion

In conclusion, we looked at Mordell equations, and discussed various upper and lower
bounds for the same. The field of algebraic number theory will be forever indebted to Louis
Mordell for founding the study of these beautiful elliptic curves.
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