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Abstract. We look at general theory behind dynamic systems of rational functions as well
as the height function on Diophantine equations. Then from those definitions we look at
integer points in orbits of rational functions. Then we look at a way to approximate the
amount of periodic points on elliptic curves as well as the entropy of transformations on
said elliptic curves.

1. Introduction

Arithmetic dynamics combines the study of dynamical systems and the study of Diophan-
tine equations to study the arithmetic properties of certain dynamical systems. To begin to
understand dynamical systems we will need to define such a system.

Definition 1.1. We call the pair (K,φ) a dynamical system where φ will be a rational map
and K a field of numbers.

Suppose we have a function φ : S → S where S is any set then we define φn(P ) of a point
P ∈ S to be

φn(P ) := φ · φ · · · · φ · φ(P )

where we iterate φ n times The orbit Oφ(x) = {x, φ(x), φ2(x), . . . φn(x)} We say x is prepe-
riodic if Oφ(x) is finite. We call x periodic if x appears more than once in Oφ(x) Let x be
a periodic point. The period of x is n where φn(x) = x. The multiplier of a function φ at a
periodic point a is the value λa such that

λa(φ) = (φn)′(x)

we call λa superattracing if it equals 0, attracting is it’s norm is less than one, neutral if it
is of norm one and repelling in if it’s norm is grater than one.
We will put a topology on the complex projective line P⊮(C) with the chordal metric.

ρch(z, w) :=
|z − w|√

|z2|+ 1
√

|w2|+ 1
=

1

2
|z∗ − w∗|

We call a function equicontinous if for every ε > 0 there exists a δ > 0 such that if

ρch(a, b) < δ then ρch(φ
(n)a, φ(n)(b))for all n ≥ 0

The Fatou set, F(φ) of a function φ is the largest open subset of P1(C) such that φ is
equicontinous on every point in F(φ). The Julia set is the complement of the Fatou set. The
points in the Julia set behave chaotically.

Example: Let φ(z) = zd for some d ≥ 2. Then the Julia set is the unit circle in C, or

J (φ) = {z ∈ C : |z| = 1}
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Proof. First we show that S1 ⊂ J (φ). Since, if a /∈ S1, then there is a neighborhood U of a
such that limn→∞ φ(n)(U) converges to 0 or ∞. Therefore S1 ⊂ J (φ). If a ∈ S1 then there
exists a neighborhood that goes to 0 and part that goes to ∞. Therefore S1 is the Julia set
of φ □

Height Functions: Let B ∈ Q̄. The define

FB(X) = a0X
d + a1x

d−1 · · ·+ ad ∈ ZX where gcd(a0..ad) = 1

Then factor FB(X) = (X −B1)(X −B2) . . . (X −Bd). The absolute multiplicative height of
FB(X) is

FB(X) = (|a0|
d∏

i=1

max{1, |Bi|})1/d

The absolute logarithmic height is defined to be

h(B) = log(H(B))

Theorem 1.2. Let φ(x) be a rational function of degree d≥ 1. Then

h(φ(B)) = dh(B) +O(1) for all B ∈ P1(Q̄)

For all C > 0 and D > 0 the set

{B ∈ P1(Q̄) : h(B) ≤ Cand[Q(B) : Q] ≤ D}

A subset U ⊂ P1(C) is completely invariant with respect to φ if φ(U) = U = φ−1(U)

Theorem 1.3. Let φ(z) be a polynomial of degree d ≥ 2with complex coefficients.

We will briefly touch on the subject of hantine approximation which asks how close can
we get a rational number a

b
∈ Q to a number α ∈ R \Q

Proposition 1.4. Let β ∈ R\Q then there are infinitely many rational numbers such a
b
∈ Q

such that

|a
b
− β| ≤ 1

b2
.

However, a theorem by Roth shows that this is about as good as we could do.

Theorem 1.5. Let β ∈ Q̄ \Q and let ε > 0 then there is a constant c such that
a

b
− β| ≥ c

b2+ε
for all

a

b
∈ Q

Theorem 1.6. Let K be a field and let φ(z) ∈ K(z) be a rational function within degree
d ≥ 2 then the set of of preperiodic points of φ, PrePer(φ) is a set of bounded height.

Proof. Theorem 1.6 implies that there exists a constant C such that

h(φ(α)) ≥ dh(α)− C

Applying this inequality to φ1 . . . φn we get

h(φ2(α)) ≥ d2h(α)− (d+ 1)C

h(φ3(α)) ≥ d3h(α)− (d2 + d+ 1)C
...
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h(φn(α)) ≥ dnh(α)− (dn−1 + · · ·+ d+ 1)C

we can rewrite

dn−1 + · · ·+ d+ 1 =
dn − 1

d− 1
≤ dn

d− 1

which implies, after dividing by dn that

C

d− 1
≥ h(α)− 1

dn
h(φn(a)) (1)

Now suppose that we have a point β ∈ PrePer(φ) such that

φi+n(β) = φi(β) for some n≥ 1 and i ≥ 0

We substitute α = φi(β) into (1) to get

C

d− 1
≥ h(φi(β))− 1

dn
h(φi+n(β)) = (1− 1

dn
)h(φi(β))

Which mans that h(φ(β) is bounded by Cd
(d−1)2

Finally, substituting β = α and n = i into (1)

gives us

C

d− 1
≥ h(β)− 1

di
h(φi(α))

Therefore

h(β) ≤ C

d− 1
+ h(φi(β)) ≤ C

d− 1
+

Cd

(d− 1)2
=

(2d− 1)C

(d− 1)2

which shows that preperiodic points of φ have a height bounded by a constant that depends
only on φ Then, by the second part of theorem 1, since PrePer(φ, K) is a set of bounded
height, it is finite. □

2. Canonical Height

There ares cases where we want to modify the height such that h(α) = dh(α) without the
addition of a constant. So we define it as the following:

Definition 2.1. Le φ(z) ∈ Q̄ be a function of degree d ≥ 2. The for any β ∈ P1(Q̄) we
define

ĥφ(β) = lim
n→∞

1

dn
h(φn(β))

Theorem 2.2. ĥ as defined above has the following properties:
(a)

ĥφ(β) = h(β) +O(1)

(b)

ĥφ(φ(β)) = dĥφ(β)

(c)

ĥφ(β) ≥ 0and is only equal to 0 if and only if β is preperiodic point of φ
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Proof. (a) By (1) we know that

C

d− 1
≥ |h(β)− 1

dn
h(φn(β))|

letting n → ∞ we get

|ĥφ(β)− h(β)| ≤ C

d− 1
|

(b)This follows directly from the definition ĥ (c) ĥφ(β) ≥ 0 since it is the limit of non
negative quantities. Furthermore, since h(φn(β)) takes on only a finite number of quantities

as n → ∞ when β is preperiodic, by the limit definition, ĥφ = 0 when β is preperiodic.

Suppose now that β ∈ P1(K) with ĥ(β) = 0 then

h(φn(β)) = ĥφ(φ
n(β)) + C = dnĥ(β) + C = C

therefore the points in Oφ(β) have bounded height. Letting φ(z) ∈ K(z), Oφ(β) is contained
in P1(K). By the second part of theorem 1, O is finite and therefore β is preperiodic. □

3. Integer points in orbits

A natural question to 1 ask, given a rational function of degree d≥ 2 and β ∈ P(K), is
how many integer points (O)φ(β) can contain. Obviously, if φ us a a polynomial the answer
is an infinite amount. However, even if we don’t consider polynomials there are still rational
functions with an infinite number of integers in their orbit. In many of these cases we have
that φn is a polynomial, but if this happens, that means that φ2(α) is already a polynomial.

Proposition 3.1. Let φ(z) ∈ C(z) be a rational function of degree d, and suppose that φn(z)
is a polynomial for some n. Then either

φ(z) ∈ C[z]
or

φ2(z) ∈ C[z], and there exists a linear function f =az+b such that φf (z) = z−d

Proof. If φn(z) is a polynomial that implies that (φn)−1(∞) consists of the single point at
∞. Let

φi(∞) = ai for i≤ n

and let m be the smallest integer such that φm(∞) = ∞ so, ao · · · am are distinct points.
Applying the Reiman-Hurwitz formula* we get

2d− 2 =
∑

β∈P1(C)

(eβ(φ)− 1)

≥
m−1∑
i=0

(ea1(φ)− 1)

= m(d− 1)

Thus, m ≤ 2. Now there are two cases where m=1 and therefore φ is a polynomial. The
other case is that m = 2, which means a0 = a2 = ∞ and a1 ̸= ∞. Conjugating φ(z) by
f(z) = z + a1, we may assume thata1 = 0. Therefore φ−1(0) = ∞ and φ−1(∞) = 0. The

1Proof in [Sil07] theorem 1.1
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only rational function of degree d that behave like this are of the formg(z) = az−d and
conjugating by f(z) =a1/(d+1)z puts g in the for z−d □

This proposition hints at the following result.

Theorem 3.2. Let φ(z) ∈ Q(z) be a rational map such that φ2(z) is not a polynomial and
let a ∈ P1(Q) Then

Oφ(a) ∩ Z

is a finite set.

In fact, there is a stronger theorem.

Theorem 3.3. Let φ be a rational map with φ2 not a polynomial and a wandering point
α ∈ P1(Q) For all n ≥ 0,write

φn(α) =
an
bn

∈ Q

as a fraction in lowest terms. Then

lim
n→∞

an
bn

= 1

This means that as n increases, the number of digits in the denominator is the same as
the number of digits in the numerator.

Proof. Let ε > 0. We need to show that only finitely many points satisfy

|bn| ≤ |an|1−ε

Such points satisfy |an| ≥ |bn|, so

H(φn(a)) := max{|an, bn} = |an|

Where H is the multiplicative height. We can now write that

φn(a) ≥ H(φn(a))ε

Using the chordal metric and the fact that H(φn(a) ≈ dnĥφ(a))we can make the approximate
calculation that

ρch(φ
n(a),∞) ≈ 1

|φn(a)|
≤ H(φn ∗ (a)−ε ≈ e−εdnh̄φ(a)

Since φn(a) is close to ∞ the rational number φn−k(a) should be close to an algebraic
number β in the inverse image of φ−k(∞). Let dk > 6/ε and let β ∈ Q be the aforementioned
algebraic number. Assume for now that φ is unramified(i.e has no critical points). Unramified
somewhat preserve distances ans so we can say that

ρch(φ
n−k(a), β) ≈ ρch(φ

n(a), φk(β) = ρch(φ
n(a),∞
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Now we compute where the Ci’s are constants

1

|an|ε
≥ | bn

an
|

=
1

φn(a)

≥ C1ρch(φ
n(a),∞)

= C1ρch(φ
n(a), φk(β))

≥ C2ρch(φ
n−k, β)

≥ C3|φn−k(a)− β|

≥ C4

H(φn−k(a))3
Roth’s theorem withε = 1

≥ C5

H(φn(a))3/dk

=
C5

|an|3/dk

≥ C6

|an|ε/2
Since dk ≥ 6/ε

The details and what happens at ramification points can be found in [Sil07] □

4. Dynamical Systems on Elliptic Curves

We will need a tool for this section and that is p-adic valuation and the closure of Q based
on that metric. Under the usual | · | valuation R is the closure of Q. We will use the p-adic
valuation.

Definition 4.1. The p-adic valuation, notated | · |p, of a number n = pr11 · . . . prnb . We define
|n|p = p−rp where p is the largest prime that divides n. The closure of Q under the metric
induced my this valuation is called Qp

Definition 4.2. Let λp be the local height relative to the p-adic valuation. The global height

ĥ can be written as:

ĥ =
∑
p≤∞

λp(Q)for Q ∈ E(Q)

Let E1(R) denote the connected component of the identity. We will now consider a monic
polynomial vn(x) of degree n-1 with coefficients which are real algebraic numbers:

vn(x) =
∏

nQ=∞Q∈E1(R) ̸=∞

(x− x(Q))

For notational simplicity Pern(T ) will denote the group of a space X which consists of ele-
ments of order n under a homeomorphic transformation T . We also define q-transformation
as a transformation Tq(x) = qx mod (1)

Theorem 4.3. Let q ∈ Qp \ U , where U is the set of unit roots in Q Then

logPern(Tq) = nlog+|q|p
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Proof. First, consider |q|p < 1. The as n → ∞, T n
q (x) → 0 for all x ∈ Zp. Therefore Tq

has only a preperiodic point at zero. When |q| = 1, Tq(x) on Zp is multiplication, so pe-
riodic points are solutions of qnx = x. Since q is not a root of unity the only solution is q = 0.

Finally suppose that |q|p > 1. If q= p−k with k > 0. We have T n
q (x) =

∑n=∞
i=0 ai+nkp

i

and the solutions of T n
q x = x are given by the pkn with ai+nk = ai for 1 ≤ i ≤ kn − 1.

Thus, both sides of the assumed equation are equal to nk log p. Suppose that |q|p. Then,
we can claim that for any integer 0 ≤ a < pnk, there exists a unique y∈ Zp such that
T n
q (a+ pnky) = (a+ pnky). This is true because the left hand side is of the form b+ qnpnky

for some b ∈ Zp. If we write v = qnpnk for some p-adic unit v, then the equation b+vy
= a+ pnky has a unique solution for y ∈ Zp. This shows that there are at least p

nk solutions
to T n

q x = x. There can’t be anymore because if we can take a to be the coset representative

of Zp/p
nkZp meaning that ever element x ∈ Zp is represented by an a. □

Theorem 4.4. Let TQ be a dynamical system (T,Q) with T being a transformation and Q
∈ E(Q) a non torison point. Then

The entropy of TQ is given by h(TQ) = 2ĥ(Q)

(1)

the asymptotic growth of periodic point is given bylog |Pern(TQ) log |bnvn(q)|as n → ∞
(2)

Proof. By theorem 4.1 in [DEMW99] the entropy of each component of TQ is given by log βp

where βp = β if p = ∞ and βp = 2λp(Q) if p is finite. Applying theorem 4.23 in [Wal82]

h(TQ) = h(Tβ) +
∑
p<∞

(h(Tq)) = 2
∑
p

λp(Q) = 2ĥ(Q)

For the growth rate, note that if dynamical systems Ti : Xi → Xi are given and the point xi

has period m in Ti for 1 ≤ i ≤ r then xi has period m in ΠiTi. Thus we must consider the
contribution to the periodic point from each prime on their own. For a finite prime

log |Pern(TQ) = n log+ |q|p = −nlog|b|p
Since Q isn’t a torison point we know that q is not an integer, and thus, not a root of unity.
Summing over all finite primes we get a total contribution of nlog|b|. Considering the prime
at infinity by a result from [FLP94]

log |Pern(TQ)| = n log β +O(n)

and from the previous to statements we have that

log |Per|(TQ) = nlog|b|+ nlogβ = o(n)

Finally, from theorem 6.24 in [EW99],

log |vn(q)| = nlogβ + o(n)

From the previous two equations we get that |bnvn(q)| is asymptotically equivalent to Per|n(TQ)|.
□

This gives us a way to count the size of the set consisting of points of period n under a
Q−transformation.
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