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1. Introduction

The study of numbers has long been a central focus of mathematical exploration. From the
ancient Greeks to the present day, mathematicians have sought to understand the inherent
structures and patterns that underlie the vast realm of numbers. Among the various branches
of number theory, the geometry of numbers stands out as a particularly elegant and insightful
approach.

This field essentially stems from Hermann Minkowski. Mathematicians during this time
were interested in determining whether inequalities had integer solutions. These are called
Diophantine Inequalities. Mathematicians like Charles Hermite had been using algebraic
methods to answer these kinds of questions. Minkowski was also interested in this field but
his approach was much different. For example, take the following question that fascinated
mathematicians at the time:

Question 1.1. For any given real number α, are there integers m and n with m ̸= 0 such
that |α− (n/m)| ≤ 1/2m?

One way of solving this to take an arbitrary integer m > 1 and consider the closest integer
n to αm. Then we can just notice

|αm− n| ≤ 1

2

so there are an infinite number of pairs of integers m, n that satisfy the inequality. Now
Minkowski posed this fact as follows:

Proposition 1.2. The strip bounded by the straight lines αx − y = 1
2
and αx − y = −1

2
contains infinitely many lattice points.

These kinds of generalizations to geometry allowed Minkowski to find connections between
different problems that other mathematicians didn’t notice. He also generalized situations
to n-dimensional space which achieved more simple proofs of Hermite’s results. Most peo-
ple consider the pinnacle of the geometry of numbers as Minkowski’s famous convex body
theorem. This relates “geometric” properties of a set like convexity, symmetry, and volume
with “arithmetical” properties like the existence of lattice points in the set. In this paper,
we will cover generalizations by Blichfeldt and Minkowski of this result.

2. Preliminaries

2.1. Lattices. The main objects we deal with in the geometry of numbers are lattices.
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Definition 2.1. Let v1,v2, ...,vn be a set of linearly independent vectors in Rn. The set of
points

x = a1v1 + a2v2 + · · ·+ anvn

for a1, a2, ..., an ∈ Z is called a lattice Λ with basis v1,v2, ...,vn.

Example. When the basis vectors are e1, e2, ..., en, we get the familiar lattice points in the
Rn i.e. the set {(x1, ..., xn) : x1, ..., xn ∈ Z}. We call this lattice Λ0

We can also take determinants of the lattice.

Definition 2.2. The determinant of a lattice Λ with basis v1,v2, ...,vn is

d(Λ) = | det(v1, ...,vn)|
where det(v1, ...,vn) is the determinant of an n× n matrix whose ith row is vi

Notice that this definition is basis independent since every other basis of Λ can be written
as v′

1,v
′
2, ...,v

′
n where

v′
i =

∑
j

aijvj

with det(aij) = ±1, so

det(v′
1, ...,v

′
n) = det(aij) det(v1, ...,vn) = ± det(v1, ...,vn).

Additionally, since vi are linearly independent, we have

det(Λ) > 0.

2.2. Lengths. We can define the length of a vector v = (v1, ..., vn) using the typical defini-
tion:

|v| = (v21 + · · ·+ v2n)
1/2.

Now let v = (v1, ..., vn) and u = (u1, ..., un) be two vectors in Rn. Additionally let

ui =
∑
j

aijvj

for 1 ≤ i ≤ n be a real transformation with determinant det(aij) ̸= 0. We now have

|u|2 =
∑
i

(∑
j

aijvj

)2

≤ n3A2
∑
j

vj = n3A2|v|2

where A = max1≤i,j≤n |aij|. Since det(aij) ̸= 0, the transformation has an inverse so

vi =
∑
j

bijuj

which gives us
|v|2 ≤ n3B2|u|2

where B = maxi,j |bij|. Therefore, there exist constants c1 and c2 that depends on the aij’s
and bij’s such that

c1 ≤
|v|
|u|

≤ c2.

Since the aij’s and bij’s can be derived from one another, these constants really only depend
on one of the matrices. This leads to the following result:
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Lemma 2.3. Let Λ be a lattice in Rn. Then there exist constants c1 and c2 that depend only
on Λ and have the following properties

(1) If u,v ∈ Λ and |u− v| < c1, then u and v are identical.
(2) The number N(R) of points of Λ in the n-ball |v| < R is at most c2R

n + 1.

Proof. Notice that for the lattice Λ0, the first property holds for c1 = 1 and for the second
one, we can just crudely bound the n-ball with an n-cube of side length 2R. This gives us
c2 = 2n. (Of course, there has been a lot of work in finding better bounds). Now for a
general lattice Λ in Rn with basis

bj = (b1j, ..., bnj)

where 1 ≤ j ≤ n, the points of Λ are v defined by

vi =
∑
j

bijuj

with u ∈ Λ0. Therefore, we can bound |v|/|u|, based off our discussion from before, with
constants dependent on the bij’s (which in turn are dependent on Λ). This means that since
the results of lemma hold for Λ0, the must also hold for Λ. ■

2.3. Vector Sequences. Now that we have a metric, we can talk about convergence. We
say that a sequence of vectors (vr)r≥1 converges to a vector v′ if

lim
r→∞

|vr − v′| = 0.

Clearly, a sufficient and necessary condition is that the coordinates of v to converge to the
coordinates of v′. Now a consequence of Lemma 1 is that a sequence of vectors vr in a lattice
Λ converge to v′ if there exists an R such that vr = v′ for all r ≥ R.

Definition 2.4. A set of points (or vectors) P is compact if every sequence (vr)r≥1 has a
subsequence us = vrs (where r1 < r2 < · · · ) that to point in P i.e.

lim
s→∞

ys = y′ ∈ P.

A classic result of Weierstrass is that a set P in Rn is compact if and only if it is both
bounded (contained in a sphere |v| < R for some sufficiently large R) and closed (the limit
of all sequences is in P ).

2.4. Volumes. In this paper, when we talk about volume we refer to a Lebesgue measure.
However, the actual details and properties of this measure will not matter and we will be
dealing with sets that have a volume by any definition like cubes and spheres.

3. Blichfeldt’s and Minkowski’s Theorem

We first start off with the result of Blichfeldt.

Theorem 3.1. Let m be a positive integer, Λ be a lattice with determinant d(Λ), and P be
a set of points in Rn of volume V (P) (possibly infinite). If

V (P ) ≥ m · d(Λ)
and P is compact, there exists m+1 distinct points v1, ..., vm+1 of P such that all differences
xi − xj are in Λ.
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Proof. Let b0, ...,bn be a basis of Λ and let P0 be the generalized parallelopiped

y1b1 + · · ·+ ynbn

where 0 ≤ yi < 1. This is known as the fundamental parallelopiped for Λ. It’s volume is

V (P0) = | det(b0, ...,bn)| = d(Λ).

Next notice that every point x ∈ Rn can be put in the form x = u+v for u ∈ Λ and v ∈ P0

and this is unique.
Now for u ∈ Λ let R(u) be the set of vectors v ∈ P0 such that u+v ∈ P . Clearly, volumes

of R(u) satisfy ∑
u

V (R(u)) = V (P).

First suppose that V (P) > m · d(Λ). This means that∑
u

V (R(u)) > m · d(Λ) = m · V (P0).

Now since the R(u) are contained in P , there must exist a v0 ∈ P0 that belongs to at least
m+ 1 of the R(u) i.e. v0 ∈ R(ui) where 1 ≤ i ≤ m+ 1 and the ui are distinct. This means
that the points xj = v0 + uj are in P by definition and xi − xj = ui − uj ∈ Λ which proves
the theorem.

Next, suppose that V (P) = m · d(Λ). Let (εr)r≥1 be a sequence of positive numbers with

lim
r→∞

εr = 0.

Now we conisder the set of points (1 + εr)P where we scale each point in P by 1 + εr. This
means that

V ((1 + εr)P) = (1 + εr)
nV (P) > V (P) = m · d(Λ).

Therefore, we can use what we have already proven to see that there exist points xir ∈
(1 + εr)P for 1 ≤ i ≤ m+ 1 such that

ur(i, j) = xir − xjr ∈ Λ.

Without loss of generality, let

lim
r→∞

xir = x′
i

for 1 ≤ i ≤ m + 1. (We can just look at subsequences of εr and xir). Since P is compact,
we know that the x′

i are in P . Next, we have

x′
i − x′

j = lim
r→∞

ur(i, j).

Now since ur(i, j) ∈ Λ, there exists an R such that ur(i, j) = u′(i, j) for r ≥ R. Therefore,
we see that x′

i − x′
j = u′(i, j) ∈ Λ so we are done. ■

From this theorem, we can deduce another result but we first need a definition.

Definition 3.2. A set of points P is convex if every line segment between two points is
contained in P . A set is symmetric about the origin if −v ∈ P for every v ∈ P . A set with
both of these properties is called an M-set.
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Theorem 3.3. Let P be an M-set in Rn of volume V (P) (possibly infinite). Let m be an
integer and let Λ be a lattice of determinant d(Λ). If

V (P) ≥ m · 2n · d(Λ)
and P is compact, then P contains at least m different pairs of points ±ui (for 1 ≤ i ≤ m)
which are distinct from the origin 0.

Proof. Consider 1
2
P which has volume 2−nV (P) ≥ m · d(Λ). By Theorem 3.1, there exists

m+ 1 distinct points 1
2
xi ∈ 1

2
P for 1 ≤ i ≤ m+ 1 such that

1

2
xi −

1

2
xj ∈ Λ.

Next, we can order vectors and write x1 > x2 if the first non-zero component of x1 − x2

is positive. Without loss of generality, we can assume

x1 > x2 > · · · > xm+1.

Let

ui =
1

2
xi −

1

2
xm+1

so 0,±u1, ...,±um are all distinct. However, since P is an M -set and symmetric, we know
that −xm+1 ∈ P since xm+1 ∈ P . Therefore, we have

ui =
1

2
xi +

1

2
(−xm+1) ∈ P

because P is convex so we are done. ■

A famous corollary of this is when m = 1:

Corollary 3.4 (Minkowski’s convex body theorem). An M-set P in Rn with volume V (P ) ≥
2n contains a point with integral coordinates other than the origin.
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