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1 Introduction to Cryptography

A basic definition of Crytogrpahy is a data based system of keys working on
encrypting and decrytping data.

2 Asymmetric and Symmetric Algorithms

2.1 Asymmetric Algorithms

In terms of Asymmetric Algorithms a public key cryptography system is used.
When sending a message the unencrypted message is called the plaintext.
The plaintext is combined with a key which is imputed into an algorithm,
encrypting the plain text giving the result of the ciphertext. The public key
is made available to anyone who wants to communicate securely with the
owner of the key pair. It can be freely distributed and shared with others.
On the other hand, the private key is kept secret and known only to the
owner of the key pair. The private key is used for decrypting messages that
have been encrypted using the corresponding public key.

2.1.1 Asymmetric Key Algorithm Example

Looking at an example of an asymmetric key algorithms: To start, we need
to generate two large prime numbers, p and ¢q. These primes should be
of roughly equal length and their product should be much larger than the
message we want to encrypt. We can generate the primes using any primality
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testing algorithm, such as the Miller-Rabin test. Once we have the two
primes, we can compute their product n = p % ¢, which will be the modulus
for our system. Next, we need to choose an integer e such that

1 <e< ¢(n)and ged(e, p(n)) =1

where ¢(n) = (p — 1) * (¢ — 1) is Euler’s totient function.

This value of e will be the public key exponent. To compute the private key
exponent d, we need to find an integer d, such that

dxe=1 mod ¢(n)

This can be done using the extended Euclidean algorithm. Our public key is
(n,e) and our private key is (n,d). Next we need Encryption. To encrypt a
message m, we need to convert it to an integer between 0 and n— 1. This can
be done using a reversible encoding scheme, such as ASCII or UTF-8. Once
we have the integer representation of the message, we compute the ciphertext
c as

c=m° modn

This can be done efficiently using modular exponentiation algorithms, such
as binary exponentiation.

Finally Decryption: To decrypt the ciphertext ¢, we compute the plaintext
m as

m=c¢’ modn

2.1.2 Mathematical Securities

The security of asymmetric key algorithms also relies on several mathemati-
cal properties:

One-Way Functions: These functions are easy to compute in one direction
but computationally difficult to reverse. For example, it should be easy to
calculate y = f(x), but difficult to calculate x given y.

Trapdoor Functions: These are one-way functions that become easy to re-
verse if certain additional information, known as the trapdoor, is available.
The private key acts as the trapdoor in asymmetric key algorithms.
Mathematical Infeasibility: The security of asymmetric key algorithms is



based on the mathematical infeasibility of certain problems, such as factor-
ing large prime numbers or solving discrete logarithm problems. There are
also several advantages to Asymmetric key algorithms over symmetric key
algorithms. Asymmetric key algorithms enable secure communication be-
tween parties who have never met before and do not share a common secret
key. Additionally, they facilitate secure key exchange protocols and digital
signatures.

2.2 Symmetric Key Algorithms

Now talking about Symmetric algorithms, Symmetric key algorithms are a
type of cryptographic technique that use the same secret key for both en-
cryption and decryption. These algorithms are widely used in various ap-
plications, including secure communication protocols, digital signatures, and
message authentication. In this answer, we will discuss the basics of sym-
metric key algorithms, how they work, and how they differ from asymmetric
key algorithms.

2.2.1 How Symmetric Key Algorithms Work

How Symmetric Key Algorithms Work: A symmetric key algorithm consists
of two main components: a key generator and a key distributor. The key
generator creates a secret key, which is then distributed to the intended
recipient using a secure channel. Once the recipient receives the secret key,
they can use it to encrypt and decrypt messages. The encryption process
using a symmetric key algorithm works as follows:

e The sender and the recipient agree on a symmetric key.

e The sender encrypts the message using the symmetric key.

The recipient decrypts the message using the same symmetric key.

The decryption process is the reverse of the encryption process, and it
works as follows:

The recipient encrypts the message using the symmetric key.

The sender decrypts the message using the same symmetric key.



2.2.2 Symmetric Key Algorithms vs Asymmetric Key Algorithms

Asymmetric key algorithms, use a pair of keys: a public key for encryption
and a private key for decryption. In contrast, symmetric key algorithms use a
single secret key for both encryption and decryption. Other Key Differences:

1. Key Management: Symmetric key algorithms require secure key man-
agement, as the secret key must be kept confidential. Asymmetric key
algorithms, on the other hand, use a public key for encryption and a
private key for decryption, making key management easier.

2. Key Length: Symmetric key algorithms typically require longer keys
than asymmetric key algorithms. This is because symmetric key algo-
rithms rely on the strength of the key to secure the communication,
whereas asymmetric key algorithms use the public key to encrypt and
the private key to decrypt.

3. Performance: Symmetric key algorithms are generally faster and more
efficient than asymmetric key algorithms, as they require fewer compu-
tational resources.

4. Key Exchange: Symmetric key algorithms require a secure key ex-
change mechanism to distribute the secret key between the sender and
the recipient. Asymmetric key algorithms use a public key infrastruc-
ture (PKI) to exchange public keys.

2.2.3 Key Lengths importance to Symmetric and Asymmetric Al-
gorithms

Key lengths are a fundamental aspect of cryptographic algorithms in both
symmetric and asymmetric. They determine the size of the secret keys used
in encryption and decryption processes. In cryptography, a key is a piece of
information that is used to transform plaintext into ciphertext or vice versa.
The length of a key refers to the number of bits it contains. The longer
the key, the more possible combinations there are, making it harder for an
attacker to guess or brute-force the key. With a longer key length, the search
space for potential keys increases exponentially, making it computationally
infeasible to break the encryption by trying all possible keys. For example, in
the Advanced Encryption Standard (AES) algorithm, key lengths of 128, 192,
and 256 bits are supported, we will talk more about this later. The security of
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asymmetric algorithms relies on mathematical problems that are difficult to
solve without knowledge of certain secret parameters. The length of the keys
used in asymmetric cryptography is typically much larger than those used in
symmetric cryptography. This is because asymmetric algorithms are gener-
ally slower than symmetric ones and require more computational resources.
Longer keys provide increased security against attacks such as brute-force or
exhaustive search. For instance, in the RSA (Rivest-Shamir-Adleman) algo-
rithm, a typical key length ranges from 1024 to 4096 bits. The larger the
RSA key size, the stronger the encryption and the more difficult it becomes
to factorize the modulus, which is the basis of RSA’s security. Key lengths
are crucial in cryptographic algorithms as they directly impact the security
of encrypted data. A shorter key length increases the risk of successful at-
tacks, while a longer key length enhances security but may also introduce
performance trade-offs. Therefore, finding the right balance between secu-
rity and efficiency is essential when selecting key lengths for cryptographic
algorithms.

3 RSA vs AES

First looking at RSA. The RSA encryption algorithm is a widely used asym-
metric encryption algorithm that was developed by Ron Rivest, Adi Shamir,
and Leonard Adleman in 1977. It is named after their initials. RSA is based
on the mathematical properties of prime numbers and modular arithmetic.

3.1 RSA Key Genration

Select two large prime numbers, p and ¢. Using n = p % ¢, where n is the
modulus. Calculate:

o(n) = (p—1)x(q¢—1) ,where ¢(n) is Euler’s totient function
Choose an integer e, such that
1 <e < ¢(n) andged(e, p(n)) =1

This value e becomes the public key exponent. Calculate d as the modular
multiplicative inverse of

e modulo ¢(n)



This value d becomes the private key exponent. Encryption: To encrypt a
message M, convert it into a numerical representation. Use the recipient’s
public key (n,e) to compute

C' = M*®(modn) ,where C is the ciphertext

Decryption: To decrypt the ciphertext C, use the recipient’s private key
(n,d). Compute
M=C% modn

Where M is the original message

3.1.1 Pros of RSA

Security: RSA encryption provides a high level of security due to its re-
liance on prime factorization, which is computationally expensive to break.
Asymmetric Nature: The use of separate keys for encryption and decryp-
tion allows for secure communication without sharing sensitive information.
Digital Signatures: RSA can also be used for digital signatures, providing
authentication and integrity to messages.

3.1.2 Cons of RSA

Performance: RSA encryption is computationally intensive, especially for
large key sizes. This can impact performance in resource-constrained envi-
ronments. Key Management: RSA requires the secure management of keys,
including key generation, distribution, and storage.

Vulnerability to Quantum Computers: RSA encryption is vulnerable to at-
tacks by quantum computers, which could potentially break the underlying
mathematical problem upon which RSA relies.

Note: these are some of the main Pros and Cons of RSA, there are many
more that are not listed here.

3.2 AES Encryption Algorithm

The Advanced Encryption Standard (AES) is a symmetric encryption algo-
rithm that is widely used to secure sensitive data. It was selected by the
National Institute of Standards and Technology (NIST) in 2001 as the suc-
cessor to the Data Encryption Standard (DES). AES has become the stan-



dard for encryption and has various applications, including communications,
protecting rest data, and ensuring the integrity of digital signatures.

3.2.1 How AES Works

AES operates on fixed-size blocks of data, with a block size of 128 bits. As
stated previously, AES supports three key sizes: 128 bits, 192 bits, and 256
bits. The algorithm consists of several rounds, with the number of rounds
depending on the key size. For AES-128, there are 10 rounds; for AES-192,
there are 12 rounds; and for AES-256, there are 14 rounds. During each
round, AES performs four operations: SubBytes, ShiftRows, MixColumns,
and AddRoundKey. These operations involve substitution, permutation, and
linear transformations on the input data using a round key derived from the
original encryption key. The SubBytes operation substitutes each byte of
the input with a corresponding byte from an S-box lookup table. This non-
linear substitution provides confusion in the cipher. The ShiftRows operation
cyclically shifts the bytes in each row of the state matrix. This diffusion
ensures that each byte influences multiple output bytes. The MixColumns
operation applies a linear transformation to each column of the state matrix.
This operation provides further diffusion and ensures that each byte affects
multiple output bytes. The AddRoundKey operation XORs each byte of the
state matrix with a corresponding byte from the round key. The round key is
derived from the original encryption key using a key expansion algorithm. By
repeating these operations for the specified number of rounds, AES achieves
a high level of security by combining confusion and diffusion properties.

3.2.2 Pros of AES

Security: Regarded as a highly secure encryption algorithm. It has under-
gone extensive analysis and scrutiny by cryptographic experts worldwide,
and no practical attacks have been found against the full AES algorithm.
Efficiency: Designed to be efficient in both software and hardware implemen-
tations. It can encrypt and decrypt data quickly, making it suitable for a
wide range of applications.

Standardization: Standardized encryption algorithm adopted by governments,
organizations, and industries globally. Its widespread use ensures interoper-
ability and compatibility across different systems and platforms.



3.2.3 Cons of AES

Key Management: As with any encryption algorithm, the security of AES
relies heavily on proper key management practices. If the encryption keys
are weak or compromised, the effectiveness of AES can be undermined.
Side-Channel Attacks: Although AES itself is resistant to various crypto-
graphic attacks, side-channel attacks can exploit implementation vulnera-
bilities such as timing information, power consumption, or electromagnetic
radiation leakage. Quantum Computing Threat: While not specific to AES,
the advent of quantum computers poses a potential threat to all existing sym-
metric encryption algorithms. Quantum computers could potentially break
the underlying mathematical problems that provide security for AES.

4 Quantum Computing

4.1 Definition of Quantum Computing

Quantum computing is technology that uses quantum mechanics to perform
complex calculations and simulations that are beyond the capabilities of clas-
sical computers. In classical computing, information is processed using bits
that can only be in one of two states, 0 or 1. However, in quantum comput-
ing, information is processed using quantum bits that can exist in multiple
states simultaneously, allowing for exponentially faster processing times and
more accurate results.

4.2 How Quantum Computing works

Quantum computing works by using quantum-mechanical phenomena, such
as superposition and entanglement, to perform calculations that are not pos-
sible with classical computers.

Superposition: In quantum computing, qubits can exist in multiple states
simultaneously, which allows for the processing of multiple possibilities at
once.

Entanglement: When two or more qubits are entangled, their properties be-
come intertwined, allowing for the manipulation of one qubit to affect the
state of the other.

Quantum Gates: Quantum gates are the quantum equivalent of logic gates



in classical computing. They are the basic building blocks of quantum algo-
rithms and are used to manipulate qubits and perform quantum computa-
tions.

Quantum Algorithms: Quantum algorithms are designed to take advantage
of the unique properties of qubits and quantum gates to solve specific prob-
lems. Examples of quantum algorithms include Shor’s algorithm for factoring
large numbers and Grover’s algorithm for searching an unsorted database.

4.3 Super Computers vs Quantum Computers

One of the key differences between supercomputers and quantum comput-
ers lies in their underlying hardware architecture. Supercomputers typically
consist of a large number of interconnected processors working together in
parallel to solve computational problems. These processors can be either
general-purpose CPUs or specialized accelerators like GPUs or FPGAs. The
performance of a supercomputer is measured in terms of its floating-point
operations per second (FLOPS). In contrast, quantum computers rely on
quantum bits and quantum gates to perform computations. Qubits can be
implemented using various physical systems such as superconducting circuits,
trapped ions, or topological states. Quantum gates manipulate the state of
qubits through operations like superposition, entanglement, and measure-
ment. The performance of a quantum computer is measured using metrics
like the number of qubits, gate fidelity, and quantum volume. Another sig-
nificant difference between supercomputers and quantum computers is the
nature of the problems they are suited for. Supercomputers for solving com-
putationally intensive tasks that can be divided into smaller independent
parts and executed in parallel. These include simulations, data analysis, and
optimization problems. Quantum computers, on the other hand, are still in
the early developmental stages and are primarily focused on solving specific
types of problems that are difficult for classical computers. These include
factoring large numbers (which is the basis for many encryption algorithms),
simulating quantum systems, and solving optimization problems with a large
number of variables. Quantum computers have the potential to revolutionize
fields such as cryptography, drug discovery, material science, and machine
learning. It is important to note that while quantum computers have the po-
tential to outperform classical supercomputers in certain areas, they are not
expected to replace them entirely. Classical supercomputers will continue to
be essential for a wide range of applications that do not benefit from quantum



computing’s unique capabilities. Additionally, the development of practical
and scalable quantum computers still faces significant technical challenges,
such as improving qubit stability, reducing errors, and increasing the number
of qubits.

4.4 Quantum Computing breaking modern Cryptog-
raphy

Quantum computing has the potential to break modern cryptography by
exploiting the computational power and unique properties of quantum sys-
tems. Traditional cryptographic algorithms, such as RSA, AES, and ECC
(Elliptic Curve Cryptography), rely on the difficulty of certain mathematical
problems for their security. However, quantum computers can solve these
problems much more efficiently than classical computers, rendering many of
the current cryptographic techniques vulnerable. One of the most significant
threats posed by quantum computing to modern cryptography is its ability to
factor large numbers quickly. Factoring large numbers is the basis of several
widely used encryption algorithms, including RSA, and these algorithms rely
on the assumption that factoring large numbers is infeasible with classical
computers. However, Shor’s algorithm has the goal of factoring large num-
bers exponentially faster than the best known classical algorithms, such as the
general number field sieve. Developed by Peter Shor in 1994, demonstrated
that a sufficiently powerful quantum computer could factor large numbers
exponentially faster than classical computers. Shor’s algorithm exploits the
quantum phenomenon of superposition and entanglement to perform par-
allel computations on multiple inputs simultaneously. By utilizing qubits,
a quantum computer can explore a vast number of possibilities in parallel.
This allows Shor’s algorithm to factorize large numbers efficiently, breaking
the security of RSA and other similar encryption schemes. Although Shor’s
algorithm won’t be as lethal towards Symmetric key algorithms like AES and
ECC, Grover’s algorithm is there to break them as well. Looking at a quick
summary of Grovers: This algorithm can search an unsorted database using
a quantum computer with a complexity of O(v/N), where N is the number of
items in the database. This means that symmetric key algorithms with a key
length of n bits would be as secure against a quantum computer as n/2 bits
against a classical computer. Quantum computing powers towards modern
cryptography have led to interest in post-quantum cryptography, which aims
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to develop new cryptographic algorithms that are resistant to attacks from
quantum computers.

4.5 ECC (Elliptic Curve Cryptography) Algorithm

It is necessary to prove quantum computers break both symmetric and asym-
metric algorithms. So let’s first look at a very secure symmetric algorithm,
ECC (Elliptic Curve Cryptography), and then see how Grover’s Algorithm
works and breaks it. The ECC (Elliptic Curve Cryptography) algorithm is
based on the mathematics of elliptic curves over finite fields. It relies on the
difficulty of the elliptic curve discrete logarithm problem (ECDLP) for its
security. Elliptic curves are defined by equations of the form:

v =2 +ax+b

Here, x and y are variables, and a, b are constants that define the shape of
the curve. The curve is defined over a finite field, which is a finite set of
numbers with operations like addition and multiplication defined.

The core operation in ECC is called point addition. Given two points p and
q on the curve, it allows calculating a third point R, which lies on the curve
and is the result of adding p and ¢ together. Point addition is defined geo-
metrically but can also be expressed mathematically using algebraic formulas
derived from the curve equation. ECC relies on the fact that, given a point
P on the curve and an integer k, it is computationally infeasible to calculate
the point kP (multiplication of the point P by a scalar k). This forms the
basis of the ECDLP, which provides the security of ECC. To use ECC for
cryptographic purposes, a group of points on the curve is defined, with a
specific base point GG. The private key is a random integer d, and the public
key is the point () = dG (multiplication of the base point by the private key).
The security of ECC lies in most computers inability to calculate d given @)
and G. For encryption, the sender chooses a random integer k, calculates the
point R = kG, and sends the coordinates of R. The receiver, who knows the
private key d, can then calculate the shared secret point S = dR and derive
the shared secret value using the x-coordinate of S. Taking a look at simple
example: Suppose we have an elliptic curve defined with the equation

y* = 2 + 22 + 2 modulo 17

Assume base point P(5, 1) on this curve.
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1. Point Addition: Let’s perform the operation P+ P using point addition.
We draw a line through P that intersects the elliptic curve at two points
P, P1, and find the reflection point P2 across the x-axis. The slope
of the line passing through P(5,1) and P1(9,16) is ((196:51)) = 12 The
equation of the line is y = %(1’ —5)+ 1. Substituting the equation into
the elliptic curve equation, we get:
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Simplifying the equation leads to
x> 4 3z + 3 = 0 modulo 17

Solving this equation modulo 17, we find x = 7 and x = 12 as the
possible z-coordinates of the resulting reflection point P2. We can
choose either x = 7 or © = 12. Let’s take = 12. The reflection point
P2is (12,6).

2. Scalar Multiplication: Suppose we want to compute 3P, where the base
point P is still (5,1). We perform scalar multiplication by adding P
to itself two more times,ex. P + P + P. Using point addition, we get
(5,1) + (12,6) = (1,1). We have obtained the point (1,1) as the result
of scalar multiplication.

Looking at this it is easy to tell how complex these equations can get, almost
impossible to the point for humans to calculate, and on a larger scale allows
the ECC algorithm to be so efficient.

4.6 Grover’s Algorithm and how it breaks ECC

Grover’s algorithm is a quantum algorithm that provides a quadratic speedup
for unstructured search problems. It was developed by Lov Grover in 1996
and is one of the most well-known quantum algorithms due to its potential
impact on cryptography and database search. The algorithm can be used to
search an unsorted database of N items in O(v/N) time, compared to the
classical O(N) time complexity. Grover’s algorithm consists of initialization,
oracle application, and amplitude amplification. Initialization: In this step,
the quantum computer initializes a superposition of all possible states. If we
have N items in the database, this step creates an equal superposition of all
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N states. Oracle Application: The oracle is a black box function that marks
the desired state or states in the superposition. It performs a phase inversion
on the marked states, effectively flipping their sign.

Amplitude Amplification: This step involves applying a sequence of opera-
tions to amplify the amplitude of the marked states while suppressing the
amplitudes of the unmarked states. This amplification process increases the
probability of measuring the marked states when performing a measurement
at the end of the algorithm. The amplitude amplification steps are based on
repetition of two operations: the inversion about the mean and the oracle
reflection. These operations are applied v/N times, leading to the quadratic
speedup compared to classical search algorithms.

Mathematical Representation: The algorithm can be represented mathemat-
ically using quantum gates and linear algebra. Let’s consider a simple case
where we have an unsorted database with N items and we want to find a spe-
cific item marked by an oracle function. We start with an equal superposition
of all possible states:

|> = 1/V NX|z> ,where —x) represents each possible state in the database
The oracle function marks the desired state by applying a phase inversion:
Olz> = (=1)"@|z> where f(z)is 1 if is the desired state and 0 otherwise

The amplitude amplification involves applying a sequence of operations in-
volving the inversion about the mean (Hadamard gate) and the oracle re-
flection. After v/N iterations, we obtain a state that has a high probability
of measuring the marked item. The final state after amplitude amplification
can be represented as:

> = 1/VE|z>

Where K represents the number of iterations required for successful am-
plification. Breaking ECC Cryptography relies on the difficulty of solving
discrete logarithm problems over elliptic curves for its security. In classical
computing, solving this problem has exponential time complexity, making
it computationally infeasible for large key sizes. However, this algorithm
provides a quadratic speedup for this type of problem, reducing its time
complexity from O( %) to O(22). Using quantum amplitude amplification to
find the desired term, the algorithm is able to create a superposition of all the
states of the data, and then amplify using the quantum operator. Looking
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specifically into the mathematics behind the time complexity reduction from
O(%) to O(22). The time complexity of the algorithm can be analyzed by
considering the number of operations required to apply the operator O to
the state |¢)>. Since each application of O requires a single quantum opera-
tion, the total number of operations can be written as: O(%-) = O(%-)". By
substituting ¢ = 2, O(%") = (%)% = 2. Therefore, the time complexity of
Grover’s algorithm is 0(2%), which is a quadratic speedup over the classical

algorithm.

5 How Quantum Computing breaks the RSA
encryption algorithm

As explained previously, quantum computers can break through the RSA
algorithm using the Shor’s algorithm. Let’s look at the steps taken by Shor’s
algorithm to break RSA: Quantum Fourier Transform: Shor’s algorithm be-
gins by applying a quantum Fourier transform to convert the problem of
factoring into a periodicity problem. This transform allows for efficient com-
putation of periodic functions on a quantum computer.

Quantum Period Finding: After applying the quantum Fourier transform,
Shor’s algorithm uses a technique called quantum period finding to deter-
mine the period of a modular exponentiation function. This step is crucial
as it provides information about the factors of the modulus.

(Classical Post-processing: Once the period is found, classical post-processing
is performed to extract the prime factors from the obtained information. This
step involves applying classical algorithms to find the greatest common divi-
sor between the period and the modulus, which reveals the prime factors.
Looking more into depth on the mathematical structure behind Shor’s Al-
gorithm it is understood that the algorithm first uses a quantum computer
to find the period of a function that is related to the factors of the number
being factored. The function is defined as follows: Let n be the number being
factored, and let d be the smallest positive integer such that n is divisible by
d. Then, the function f(x) is defined as:

f(z) = 2 mod— n
The period of this function is the smallest positive integer r such that

fle+r)=f(z)
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for all x. We are able to find the period r of f(z) efficiently using a quantum
computer. First, The algorithm starts with a quantum register of n qubits,
where each qubit represents a possible value of the function f(x). The initial
state is a superposition of all possible values of f(z), which can be represented
as:

P> = Sw = 0" Ha>|f(z)>

Where |z> is the basis state corresponding to the value z, and |f(z)> is
the basis state corresponding to the value f(z). Using the quantum oracle,
which is basically a black box that takes as input a quantum state and returns
as output the value of the function f(x)evaluated at the input state. The
quantum oracle is implemented using a quantum circuit that computes the
function f(z)using the given input state. The quantum oracle is applied to
the initial state |¢)>, which results in the state:

> = Yo = 0" Ha>|f(2)>B82 = 0" o> |f(x)> + X2 e + 1> f(z 4+ 1)>

Where |z 4+ 1> is the basis state corresponding to the value z + 1

Measurement of the period: The final step is to measure the state |¢)> to
obtain the period r. The period r can be obtained by measuring the state
|¢p> in the basis |z>|z is an integer between 0 and n — 10. The measurement
outcome is a sequence of n integers, which can be used to compute the period
r. The probability of obtaining a particular sequence of integers is given by:

P = ()« (Dt (Lo

)n—r—l
n n n—1

Where d is the smallest positive integer such that n is divisible by d.

The period r can be computed from the measurement outcome using the
following formula:
n—1 n-—1 n—1

r= 5 + 1 +... + "

Where k is the number of times the measurement outcome is repeated.

Shor’s algorithm can be used to break the RSA encryption algorithm by
finding the factors of the modulus n. The RSA algorithm uses the difficulty
of factoring large numbers to ensure the security of the encryption. However,
Shor’s algorithm can factor large numbers exponentially fast, allowing it to
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break RSA. Shor’s algorithm, employs the modulus n, which is the product
of two large prime numbers p and ¢. The period r of the function f(z)is
found by applying the algorithm to the modulus n. Once the period r is
known, the factors can be computed using the following formula:

p=rx*xd,qg=mn/d

Where d is the smallest positive integer such that n is divisible by d.

It is important to note that while Shor’s algorithm has the potential to break
RSA encryption, it can only do so at scale, error-corrected quantum computer
with a sufficient number of qubits to be practical. Currently, quantum com-
puters are still in their early stages of development and are not yet capable
of breaking RSA encryption for large key sizes used in practice.

6 Quantum safe algorithm

6.1 What can be considered Quantum safe

There are some key features that can help reduce the voliatliy of quatum
attacks. Key Space Size: The size of the key space should be very big to
resist attacks from quantum computers. Computational Complexity: The
algorithm should require computational steps that are possibly infeasible to
perform in an amount of time. Also, even though this may seem obvious,
reliance on computationally hard base problems. Looking at the Learning
with Errors problem, LWE, for example, is said to be on the path of quatnam
resistance in combination with other cryptographic algorithms.

6.2 New Hope

Post-quantum cryptography explores alternative mathematical problems that
are believed to be hard even for quantum computers. Some of the proposed
post-quantum cryptographic algorithms include lattice-based cryptography,
code-based cryptography, multivariate cryptography, and hash-based cryp-
tography. These algorithms are designed to withstand attacks from both
classical and quantum computers, ensuring long-term security in the face of
advancing technology.
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