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Abstract. This paper delves into the the world of public-key cryptography, providing an
introductory exploration of its core concepts and essential definitions. Once the fundamen-
tals are established, we delve into familiar public-key cryptographic examples, alongside
examples we’ve developed. Shifting from theory to application, the paper will go over how
public-key cryptography functions in the real world, assessing its speed, security, authenti-
cation, and energy consumption. This paper goes from foundational principles to practical
implications, revealing the intricacies of cryptographic technologies.
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Introduction

Public-key cryptography is a core concept in modern cryptographic systems which allows
you to securely share data. Through utilizing key pairs - each comprising a private and a
public key - the private key remains confidential through a one-way mathematical function,
while the public key is publicly shared. This allows anyone possessing the public key to
encrypt a message securely, and only those with the private key can decipher it. More
formally:

Definition 0.1. Public-key cryptography, a key pair consists of a private key and a public
key. The private key is kept confidential, and the public key is openly shared for encryption
and verification.

Public-key cryptography (also known as asymmetric cryptography) surpasses traditional
methods in many aspects. It eliminates the need for an in-person meet up to exchange a key
used to encipher and decipher data, thus decreasing the risk of unauthorized access. Since
the public key is released and the private key is not, intercepting the public key does not
give you access to the encrypted message.

Furthermore, public-key cryptography introduces the concept of digital signatures. A
digital signature is a method to authenticate who the message you are receiving came from.
Since only the public key can decipher a message encrypted by the private key, the recipient
can be assured that they received the message from the correct person.

Definition 0.2. A digital signature in public-key cryptography is a unique cryptographic
identifier created using a private key. It verifies the authenticity and integrity of a message
when verified with the corresponding public key.

This layer of security enhances trust in digital interactions, particularly in scenarios where
message integrity and sender verification are crucial. Thus, public-key cryptography allows
for messages to be confidential and securely authenticated.

In this paper, we will start by introducing the basic terminology and examples of public
key cryptography. After we have finished our introduction, we will move onto more advanced
variations, and conclude with a comprehensive overview of practical applications.

1. Foundational Examples

Understanding some basic asymmetric cryptographies is crucial to developing our own
and [do something to publish ourselves somewhere]. Let’s take a look at two of the most
common examples.

1.1. Rivest-Shamir Adleman. The first example we will take a look at is Rivest-Shamir
Adleman or RSA which utilizes modular exponentiation to create the asymmetric cryptog-
raphy.

Definition 1.1. The remainder when an integer b is raised to the power e, and divided by
positive integer m ; that is c ≡ be mod m is known as the Modular exponentiation.

The principle behind RSA is the fact that if we chose chose 3 large integers e, d, and n
such that with modular exponentiation for all integers m with 0 ≤ m < n:

(me)d ≡ m mod n,
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then even when knowing e and n, it can be very difficult to find d. In this case the public key
is represented by n and e and the private key is represented by d. The message is represented
by m.

Let’s now generate the keys:

First, we chose two large prime numbers p and q. Both of these should be kept secret. We
then use n as our modulus for both the public and private key. n = pq. We then compute
λ(n) where λ is Carmichael’s Totient function.

Definition 1.2. The Carmichael Totient Function λ(n) is the smallest positive integer m
such that am ≡ 1 mod n hold for every integer a coprime to n.

Then we chose an integer e such that e and λ(n) are coprime. Finally we let d ≡ e−1

mod λ(n). The private key would be d and the public key is e.

Practical Application. Suppose Carl wants to transfer a secret message with coordinates to
a treasure map to Rebecca, then Rebecca shares her public key (n, e) to Carl. Carl then
encrypts the coordinates and Rebecca can now decipher it with her code d that has not been
shared.

• To send the coordinates m, Carl encrypts it by computing me mod n and sending
the result K to Rebecca.

• To receive the coordinates m, Rebecca computes it by Kd ≡ (me)d ≡ m mod n.

You might be wondering how we would be able to send text messages via this encryption
method. This is simple however due to the fact that the method of transferring data is
secure. Therefore, we can take our message and use a code of some sort to convert it into
numbers and send this. Once the recipient receives the number that you encoded, they can
turn it into a normal text message by undoing the simple method you used to turn the text
into numbers.

1.2. Diffie-Hellman Key Exchange. The second example we’ll explore is the Diffie-
Hellman Key Exchange, an encryption that allows two parties to establish a shared secret
over an insecure channel. The key exchange relies on modular exponentiation, similar to
RSA.

Let g be a primitive root modulo a prime number p. For a private key a, the remainder
when g is raised to the power a and divided by p; that is A ≡ ga mod p, is known as the
Public Key of party A.

The key idea of the Diffie-Hellman Key Exchange is in the ability to derive a shared se-
cret despite transmitting the public keys over an insecure channel. If two parties, A and
B, choose private keys a and b respectively, and exchange public keys A and B, then both
parties can independently compute the shared secret:

(Ba) ≡ (Ab) ≡ gab mod p

Even if an eavesdropper intercepts the public keys A and B, computing the shared secret
without knowing either private key a or b is extremely difficult.
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Key Generation. The key generation process involves the following steps:

• Choose a large prime number p and a primitive root g modulo p. These parameters
are typically public.

• Each party, A and B, independently chooses a private key: a for A, and b for B.
• Compute the public keys: A ≡ ga mod p for A, and B ≡ gb mod p for B.

The public keys A and B are exchanged, and the shared secret is independently computed
using the private keys.

Practical Application. Consider a scenario where Carl and Rebecca want to establish a secure
method to transfer data:

• Carl and Rebecca agree on a prime number p and a primitive root g modulo p.
• Carl chooses a private key a and computes her public key A ≡ ga mod p.
• Rebecca chooses a private key b and computes his public key B ≡ gb mod p.
• They exchange public keys A and B over an insecure channel.
• Carl computes the shared secret (Ba) ≡ gab mod p.
• Rebecca computes the shared secret (Ab) ≡ gab mod p.

The shared secret is now known to both parties and can be used for secure communication.
A numerical version to show the computing power needed to decrypt a code like this is

shown below:
Given d = 997 and m = 1085323 in the equation D = fz(x)

d mod m, we have:

fz1(x) = 504602 ⇒ D1 = (504602)997 mod 1085323 = 3023

fz2(x) = 304785 ⇒ D2 = (304785)997 mod 1085323 = 1831

fz3(x) = 546341 ⇒ D3 = (546341)997 mod 1085323 = 1427

fz4(x) = 426932 ⇒ D4 = (426932)997 mod 1085323 = 2818

fz5(x) = 172949 ⇒ D5 = (172949)997 mod 1085323 = 2910

fz6(x) = 320683 ⇒ D6 = (320683)997 mod 1085323 = 2846

fz7(x) = 461096 ⇒ D7 = (461096)997 mod 1085323 = 1510

fz8(x) = 21952 ⇒ D8 = (21952)997 mod 1085323 = 2114

fz9(x) = 876194 ⇒ D9 = (876194)997 mod 1085323 = 2914

fz10(x) = 406630 ⇒ D10 = (406630)997 mod 1085323 = 1710

fz11(x) = 261968 ⇒ D11 = (261968)997 mod 1085323 = 2346

The decrypted output is converted into a series of numerical values, which are then used
to categorize various things. For instance, each pair of letters could correspond to an al-
phanumeric character.
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2. Elliptic Curve Cryptography (ECC)

Elliptic Curve Cryptography is a powerful and efficient asymmetric cryptographic tech-
nique that leverages the properties of elliptic curves over finite fields. ECC is gaining pop-
ularity due to its ability to provide strong security with shorter key lengths compared to
traditional methods like RSA.

Definition 2.1. An Elliptic Curve is defined by the equation y2 ≡ x3+ax+b mod p, where
a, b, and p are parameters that define the curve. The curve is a set of points (x, y) that
satisfy this equation, along with an additional point at infinity.

Elliptic Curve Cryptography is a powerful and efficient asymmetric cryptographic tech-
nique that leverages the properties of elliptic curves over finite fields. ECC is gaining pop-
ularity due to its ability to provide strong security with shorter key lengths compared to
traditional methods like RSA.

Elliptic Curve Equation. The elliptic curve equation is given by:

(2.1) y2 ≡ x3 + ax+ b mod p

Point Addition. If P ̸= Q, the formulas for point addition are:

m =
yQ − yP
xQ − xP

mod p

xR = m2 − xP − xQ mod p

yR = m(xP − xR)− yP mod p

If P = Q, the formulas are:

m =
3x2

P + a

2yP
mod p

xR = m2 − 2xP mod p

yR = m(xP − xR)− yP mod p

Scalar Multiplication. The scalar multiplication algorithm is as follows:

Initialize R = Point at Infinity

Express k in binary: k = klen−1 . . . k0

For i = len− 1 to 0 :

R = 2R

If ki = 1 :

R = R + P

Base Point Generation. The base point generation is given by:

(2.2) G = k · P
The security of ECC is based on the difficulty of the elliptic curve discrete logarithm

problem. Given a pointG on the elliptic curve and a public keyQ = kG, it is computationally
infeasible to determine the private key k.
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Key Generation. The key generation process in ECC involves the following steps:

• Choose an elliptic curve and a base point G on the curve.
• Each party independently chooses a private key: k for Carl and l for Rebecca.
• Compute the public keys: Q = kG for Carl and R = lG for Rebecca.

The public keys Q and R are exchanged, and the shared secret is computed independently
using the private keys.

Practical Application. Suppose Carl and Rebecca decide to employ Elliptic Curve Cryptog-
raphy for secure communication:

• They agree on an elliptic curve and a base point G.
• Carl chooses a private key k and computes her public key Q = kG.
• Rebecca chooses a private key l and computes his public key R = lG.
• They exchange public keys Q and R over an insecure channel.
• Carl computes the shared secret S = kR.
• Rebecca computes the shared secret T = lQ.

The shared secrets S and T are now known to both parties and can be used for secure
communication.

Security Advantages of ECC. One of the key advantages of ECC is its ability to provide
equivalent security with much shorter key lengths compared to traditional algorithms. This
is particularly important in resource-constrained environments, such as mobile devices or
IoT devices, where shorter keys result in faster computations and lower energy consumption.

Moreover, ECC is resistant to attacks from both classical and quantum computers. The
mathematical foundation of ECC makes it a robust choice for securing digital communica-
tions in the face of evolving technological threats.

Efficiency in Practice. In addition to its security advantages, ECC is known for its efficiency
in practice. The computational requirements for key generation, encryption, and decryption
are significantly lower compared to other asymmetric cryptographic methods. This makes
ECC an attractive choice for applications where computational resources are limited.

2.1. Example: Securing IoT Communication. Consider a scenario where Carl has an
Internet of Things (IoT) device that needs to securely communicate with Rebecca’s server.
Using Elliptic Curve Cryptography, they can establish a secure communication channel as
follows:

• Carl’s IoT device and Rebecca’s server agree on an elliptic curve and a base point.
• The IoT device generates a private key and computes its public key.
• The device sends its public key to Rebecca’s server.
• Rebecca’s server, upon receiving the public key, computes the shared secret using its
private key.

• Both parties now have a shared secret, which they can use for encrypting and de-
crypting messages exchanged between the IoT device and the server.

This example illustrates the practical application of Elliptic Curve Cryptography in se-
curing communication between IoT devices and servers, where efficiency and strong security
are paramount.



PUBLIC KEY CRYPTOGRAPHY 7

2.2. Conclusion on ECC. Overall, Elliptic Curve Cryptography offers a versatile and ef-
ficient solution for securing digital communication. Its mathematical foundation, based on
the properties of elliptic curves, provides a high level of security with shorter key lengths.
ECC’s resistance to both classical and quantum attacks, along with its efficiency in compu-
tation, makes it an ideal choice for a wide range of applications, from secure messaging to
IoT communication.

As we continue to advance in the digital age, the role of ECC in safeguarding sensitive in-
formation will become increasingly critical. Understanding and implementing Elliptic Curve
Cryptography opens the door to a new era of secure and efficient communication in our
interconnected world.

3. Comprehensive Overview of Public Key Cryptography Applications

3.1. Enhancing Internet Communication Protocols. Public key cryptography is a cor-
nerstone in securing internet communication protocols, particularly in HTTPS-enabled web
interactions. Protocols such as Transport Layer Security (TLS) and Secure Sockets Layer
(SSL) employ this cryptography form to establish secure, encrypted connections between
web clients and servers. This is achieved through a robust public key infrastructure (PKI),
which facilitates the verification of identities and the encryption of data.

In these protocols, a key exchange mechanism is employed, often leveraging the mathe-
matics of elliptic curves. Consider points P and Q on an elliptic curve and a scalar k. The
process of establishing a shared secret, fundamental for secure communication, is mathemat-
ically expressed as:

(3.1) Shared Secret = k · P + k ·Q

This equation demonstrates the calculation of a shared secret that both the client and
server can use to encrypt and decrypt the transmitted data, ensuring confidentiality and
integrity.

3.2. Blockchain Technology and Digital Signatures. Blockchain technology, forming
the backbone of cryptocurrencies like Bitcoin and Ethereum, heavily relies on public key
cryptography. The integrity and authenticity of every transaction on the blockchain are
maintained through digital signatures. These signatures, created using a combination of
public and private keys, act as a robust mechanism to prevent fraud and unauthorized
transaction alterations.

The digital signature process involves complex cryptographic algorithms. For a transaction
to be validated, it must be accompanied by a signature that only the rightful owner of the
digital asset can produce. The validation of a transaction, represented by a message m with
a signature s and a public-private key pair (P,Q), is as follows:

(3.2) verify(m, s, P ) → True/False

This verification ensures that each transaction is authentic and authorized by the holder
of the private key, thereby maintaining the blockchain’s integrity.
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3.3. Identity Authentication and Authorization in Digital Systems. Public key
cryptography is also pivotal in systems requiring secure identity authentication and au-
thorization, such as Secure Shell (SSH) for remote server access and digital certificates for
email encryption. The security provided by these systems hinges on the ability to reliably
verify the identity of users or devices attempting to access sensitive resources.

The process typically involves a challenge-response mechanism. A server A presents a
challenge to a user B, who must respond correctly using their private key. The server then
verifies this response using the corresponding public key P , ensuring the user is legitimate.
This process is succinctly captured in the following formula:

(3.3) verify(P, challenge, response)

This method is widely used for secure logins, digital signing of documents, and encrypting
emails, ensuring that only authorized parties can access or modify sensitive data.

3.4. Securing Communications in Messaging Applications. In the realm of modern
messaging applications, such as Signal and WhatsApp, public key cryptography enables end-
to-end encryption, ensuring that messages remain private between the sender and receiver.
Each user in these systems possesses a unique pair of keys (PA, QA) and (PB, QB), used to
encrypt and decrypt messages.

When user A sends a message m to user B, the message is encrypted using B’s public key
QB, resulting in a ciphered message c. This encryption ensures that only user B, with the
corresponding private key, can decrypt and read the message:

(3.4) c = encrypt(m,QB)

This encryption approach ensures the confidentiality and integrity of communications,
safeguarding against eavesdropping and unauthorized access.

3.5. Public Key Cryptography in IoT Security. The burgeoning field of the Internet
of Things (IoT) also benefits significantly from public key cryptography. In IoT ecosystems,
numerous devices communicate and exchange data, often over unsecured networks. The
implementation of public key cryptography in these environments ensures the confidentiality
and integrity of the data transmitted between IoT devices and servers.

An IoT device D encrypts its data using its private key before transmitting it to a server
S. The server, possessing the corresponding public key PD, can decrypt and process the
data securely. This process is crucial for maintaining the security of sensitive information in
IoT applications:

(3.5) Encrypted Data = encrypt(data, PD)

The use of cryptography in IoT not only secures data transmission but also plays a vital
role in authenticating devices, ensuring that only authorized devices can connect and interact
within the network.
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3.6. Conclusion on Modern Applications. In conclusion, public key cryptographies have
evolved to become the cornerstone of modern digital security. From securing internet com-
munication and blockchain transactions to enabling identity authentication and end-to-end
encryption in messaging apps, the applications are diverse and widespread.

While the benefits of public key cryptographies in providing robust security are evident,
challenges such as computational overhead, key management, and user-friendliness persist.
Striking a balance between security and efficiency is an ongoing challenge in the dynamic
landscape of digital communication.

As we continue to advance, the practical implementation of public key cryptographies
will play a pivotal role in shaping the future of secure and trustworthy digital interactions.
Understanding these applications not only enriches our theoretical knowledge but also equips
us to navigate the complex realities of modern cryptographic systems.
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