
Linear Congruential Generators

Julian Schennach

December 10, 2023

1 Introduction

Random numbers are frequently used in a variety of subjects: In statistics, it is necessary to
obtain random samples, or to perform methods requiring randomness like bootstrapping. We
also need random numbers in order to have secure locks in cryptography, and finally, com-
puter simulations often feature random particles at random locations. Unfortunately, there
is no way to obtain truly random numbers — but there exist methods to create seemingly
random numbers.

A pseudo-random number generator is an algorithm that creates a sequence of numbers
that appear random and only repeat after a significant amount of time. In this paper, we
explore the properties of one particular type of pseudo-random number generator, a linear
congruential generator (abbreviated, LCG), by proving a few formal results, such as under
what conditions a LCG has a period of m. We will also describe some limitations of this
algorithm, including the predictability of the least significant digits or unwanted relations
between consecutive terms, and ways to mitigate these issues. Finally, we will implement
various examples of LCGs in Python.

2 Definition

A rather simple pseudo-random number generator using moduli, known as a linear congru-
ential generator, is defined as follows: Define four positive integers, a “multiplier” a, the
“increment” c, the “modulus” m, and the “seed” x0. Then we define the following recursive
sequence:

xn ≡ axn−1 + c (mod m).

The resulting xn terms form a sequence of pseudo-random numbers between 0 and m − 1,
inclusive. As the name suggests, an LCG is linear (no exponents), uses congruents (i.e.
moduli), and generates “random” numbers.

Note that a, c, x0 can be between 0 and m − 1, inclusive, as otherwise we can reduce
them mod m. This also means that all xi are between 0 and m − 1. To select the seed
x0, we probably want a random number. Since it is impossible to obtain a truly “random”
number, we typically use the current computer time as the seed (mod m, of course), with
high temporal precision so that it is highly unlikely that the same seed is ever selected

1



again. Some other sources exist, including time between key presses, radioactive decay, and,
surprisingly enough, lava lamps!

3 Periods

Unfortunately, an LCG cannot generate “random” numbers forever. Since it generates num-
bers mod m, we can only have at most m numbers generated. If xj = xi (i.e. when a
number repeats in the LCG), where j > i, we know that xj+1 ≡ axj + c ≡ axi + c ≡ xi+1

(mod m). In other words, whenever a number repeats itself, all future numbers repeat as
well. Thus, an upper bound for a period of a LCG is clearly m: There are only m possible
remainders mod m, so if we had a period of m+ 1 or more and no repeated values within a
cycle, there would actually have to be at least two equal terms by the Pigeonhole Principle
— a contradiction. Hence, the period of a LCG must be m or less.

Of course, we’d ideally want a period of m so that it is as difficult as possible to notice
when the LCG repeats. Fortunately, there are some simple necessary and sufficient conditions
on the LCG that result in a period of m.

Theorem 1. An LCG has period m if and only if 1) c is relatively prime to m, 2) a ≡ 1
(mod p) for every prime factor p of m, and 3), when m ≡ 0 (mod 4), a ≡ 1 (mod 4).

Remark 1. The last two conditions imply that a ≡ 1 (mod 2
∏

p|m p) (or a ≡ 1 (mod
∏

p|m p)

if m is not a multiple of 4) by the Chinese Remainder Theorem — and if m has no repeated
prime factors other than 2 (which only repeats at most once), we have a ≡ 1 (mod m) or
just a = 1. Of course, this latter case is not ideal, as it would be easy to notice an arithmetic
progression in the LCG.

Let us now proceed with the proof. We separate it into the ”if” and ”only if” conditions,
the former adapted from Hull and Dobell [1], and the latter from Knuth [2]. We also add
many clarifications to make the proofs clearer (albeit longer).

Proof. (Sufficiency) Suppose that the LCG has period n, and that we have selected a and
c that satisfy the conditions of the theorem. We must have xn+i = xi (where the repetition
may occur at any xi). Thus, we also have:

xi = xn+i ≡ axn+i−1 + c

≡ a2xn+i−2 + ac+ c ≡ · · ·
≡ anxi + (an−1 + an−2 + · · ·+ a+ 1)c

≡ anxi +
an − 1

a− 1
c (mod m). (1)

We rearrange and factorize to get the following:

0 ≡ anxi − xi +
an − 1

a− 1
c (mod m)

0 ≡ an − 1

a− 1
(xi(a− 1) + c) (mod m).

2



Assume that the conditions listed in Theorem 1 hold. While a−1 does share all prime factors
with m, the extra c that is relatively prime to c prevents xi(a − 1) + c from sharing any
factors with m. Hence, we must have an−1

a−1
≡ 0 (mod m). We wish to prove that n = m is

the smallest possible n for which this congruence holds. So we must both prove that n = m
works, and that n < m do not work. Since a = 1 is a trivial case (with c relatively prime to
m, we simply cycle through all x0 + kc (mod m) and have a period of m), we assume that
a > 1.

Note that if an
′−1

a−1
≡ 0 (mod m), we also have akn

′−1
a−1

= (an
′−1)(a(k−1)n′−a(k−2)n′

+··· )
a−1

≡ 0
(mod m) for any positive integer k. So we must only consider m′ that are the highest powers
of primes peii that divide m (as well as their respective n′). When we show that n′ is at least
and can be peii , we simply take the multiples of each pe11 , pe22 , · · · to find that n is at least and
can be m.

When m′ = pe, where e > 0 (since the m′ = 1 case is useless), we let a = kpf + 1 (≡ 1

(mod p)) where k ̸≡ 0 (mod p) and f ≥ 1. Now we expand an
′−1

a−1
, with n′ = pe, to get:

(kpf + 1)p
e − 1

kpf + 1− 1
=

(kpf )p
e
+
(
pe

1

)
(kpf )p

e−1 + · · ·+
(
pe

1

)
(kpf ) + 1− 1

kpf

= k(kpf )p
e−1 + k

(
pe

pe − 1

)
(kpf )p

e−2 + · · ·+ k

(
pe

1

)
.

We want this to be congruent to 0 (mod pe), or, in other words, be divisible by pe.
Fortunately, the k

(
pe

i

)
(kpf )i−1 terms for i < pe are divisible by pe: If some factor 0 < j < i

in the denominator of (pe)(pe−1)···(pe−i+1)
i!

(kpf )i−1 is divisible by some maximal pb where b ≤ e,
then pe − j is also divisible by pb and cancels that factor with j. And when i is divisible by
some pb ≤ pi−1 (as i ≤ pi−1), its pb factor can cancel with (kpf )i−1 = ki−1pf(i−1) (because
f ≥ 1). Since the pe factor of the binomial is not affected, the whole term is divisible
by pe. Thus, the only special term is the k(kpf )p

e−1, but because pe ≥ e + 1 for e > 0,
k(kpf )p

e−1 = kpepf(p
e−1) is in fact divisible by pe. So the whole sum written above is divisible

by pe, as desired.
So n′ = pe satisfies an−1

a−1
≡ 0 (mod pe). Now we must show that no smaller n′ works.

First, this smaller n′ must be a factor of m. Otherwise, for this n′, we have an
′−1

a−1
≡ 0

(mod pe), or an
′ ≡ 1 (mod pe(a − 1)). Let kn′ be the smallest multiple of n′ that is larger

than m. Then akn
′ ≡ 1 (mod m′(a − 1)), just like ap

e ≡ 1 (mod pe(a − 1)). If akn
′−pe ̸≡ 1

(mod pe(a− 1)), then when we multiply this by ap
e
, we find that akn

′ ̸≡ 1 (mod pe(a− 1)).
So, due to this contradiction, we must have akn

′−pe ≡ 1 (mod pe(a − 1)). Since n′ is not
a factor of m, m − kn′ is smaller than n′, so n′ is not the smallest solution to an ≡ 1
(mod pe(a− 1)). Hence, by proof by contradiction, n′ must be a factor of m′ = pe. Since all
multiples of the smallest n′ must work too, we will show that n′ = pe−1 fails (implying that
no other smaller n′ works).

Continuing, we substitute n′ = pe−1 into an
′−1

a−1
, where a = kpf + 1 again. We obtain:

3



(kpf + 1)p
e−1 − 1

kpf + 1− 1
=

(kpf )p
e−1

+
(
pe−1

1

)
(kpf )p

e−1−1 + · · ·+
(
pe−1

1

)
(kpf ) + 1− 1

kpf

= k(kpf )p
e−1−1 + k

(
pe−1

pe−1 − 1

)
(kpf )p

e−1−2 + · · ·+ k

(
pe−1

1

)
.

The final binomial is clearly not divisible by pe (as k is relatively prime to p). We reuse

the reasoning above to prove that k
(
pe−1

i

)
(kpf )i−1 is divisible by pe−1. Then, there is an

extra factor of p: i cannot be divisible by pi−1 because, for odd p, pi−1 > i, so i must be
divisible by at most pi−2. Thus, the (kpf )i−1 that cancels with i’s factor has at least one
p remaining (as f ≥ 1, and (kpf )i−1 = ki−1pf(i−1) ≥ ki−1pi−1 = p(ki−1pi−2)). So the whole
term is divisible by pe−1 and an extra p factor, so it is also divisible by pe. Finally, because
pe−1 − 1 ≥ e for odd p, k(kpf )p

e−1−1 = kpe−1
pf(p

e−1−1) has a factor of pe as well. Since all

terms except the lonely k
(
pe−1

1

)
are divisible by pe, the whole sum is not divisible by pe, as

desired.
However, note that p must be odd so that the reasoning above works. Fortunately,

little must be changed for p = 2: When e = 1, the whole sum is just k(kpf )p
1−1−1 = k,

which is not divisible by p1. And when e > 1, the two statements requiring p’s odd parity
actually hold when f > 1: (kpf )i−1 has a remaining p factor because (kpf )i−1 = ki−1pf(i−1) ≥
ki−1p2(i−1) ≥ ki−1pi (as 2(i−1) ≥ i for positive integer i), and hence its division with the (at
most) pi−1 factor of i results in an extra factor of p. Similarly, when f > 1, k(kpf )p

e−1−1 =
kpe−1

pf(p
e−1−1) ≥ kpe−1

p2(p
e−1−1) ≥ kpe−1

pe since 2pe−1 − 2 ≥ e (when e > 1) for all prime p.
So whenever m = 2e for e > 1, we need a = k2f + 1 with f > 1, so a ≡ 1 (mod 4).

Having considered all cases, we combine them to show that the conditions in Theorem 1
are indeed sufficient, completing half of the proof.

Corollary 1. When c is relatively prime to m, the period of that LCG must be a proper
divisor of m.

Proof. This follows from our proof that n′ must divide m′ = pe.

Next, we must prove that the conditions of Theorem 1 are necessary, which will fortu-
nately require a much shorter proof.

Proof. (Necessity) Since in a period of m, the LCG must repeat each possible remainder
mod m, we can assume that xi = 0. Using equation (1), we want to have 0 ≡ an−1

a−1
c (mod m)

only when n = m (i.e. only when the period is m). Note that if c shares a factor with m,
aj−1
a−1

c (= xi+j) can never equal 1 (as it shares the same factor as c with m), contradicting the
fact that we must cycle through all remainders mod m as j increases. Thus, c must indeed
be relatively prime to m.

Hence, we can divide by c in 0 ≡ an−1
a−1

c (mod m) to get an−1
a−1

≡ 0 (mod m). Using the
same reasoning as in the sufficiency proof, we only consider m′ = pe. We wish to prove that if
n must be pe, then a ≡ 1 (mod p). Let’s prove the contrapositive: Suppose a ̸≡ 1 (mod p).
Then, when an−1

a−1
≡ 0 (mod pe), we also have an − 1 ≡ 0 (mod pe) as a − 1 cannot cancel

with any potential factor of p in an − 1. When n = pe (which must satisfy this congruence),

4



we have ap
e ≡ 1 (mod pe) ≡ 1 (mod p). By Fermat’s Little Theorem, ap ≡ a (mod p), so

ap
e ≡ ap

e−1 ≡ ap
e−2 ≡ · · · ≡ ap ≡ a (mod p). Thus, ap

e
is congruent to both a and 1 mod p,

but a is not congruent to 1 (mod p), forming a contradiction. Hence, a is actually equivalent
to 1 (mod p).

However, there is an extra subtlety that occurs when p = 2. We do not want n = 2e−1

to satisfy an−1
a−1

≡ 0 (mod 2e). Yet, when a ≡ 3 (mod 4) (even a would not work regardless),

a2
e−1−1
a−1

= a2
e−1−1+a2

e−1−2+ · · ·+a+1 ≡ 3+1+3 · · · 3+1 ≡ 3(2e−2)+(2e−2) ≡ 0 (mod 2e).
Thus, we cannot have a ≡ 3 (mod 4), so we require a ≡ 1 (mod 4) when 2e has a factor of
4.

Combining these cases again, we conclude that the conditions of Theorem 1 are indeed
necessary.

4 Limitations

While an LCG with a period of m is more difficult to predict, there may still be some issues.
If our period is too short, even if it is equal to m, we’d be able to notice the repetition and
obtain the entire sequence. So we want m to be sufficiently large, and have a and c satisfy
Theorem 1 (so that we have a length-m period).

However, some problems arise in this situation as well. When m is quite large, we can
ignore the modulo in the recurrence relation xn ≡ axn−1 + c (mod m) for some smaller n
since axn−1 + c is not yet greater than m. So initially xn = axn−1 + c, and also xn−1 =
axn−2 + c. Subtracting one equation from the other, we have xn − xn−1 = a(xn−1 − xn−2,
so a = xn−xn−1

xn−1−xn−2
. If we know some smaller terms, we are able to deduce a and then also

deduce c (as c = xn − axn−1)! A solution would be to select a large a or c so that axn−1 + c
is immediately greater than m and so that the equivalence does not become an equality.

There may also be noticeable patterns in the units digits of the terms. For instance,
suppose that a = 5. Then, if m is large enough, we notice that the first few terms of the
generated sequence all have the same two units digits (that have a difference of 5). Then,
we’d be able to guess that a is a multiple of 5. A solution to this, as well as the previous,
problem is that, while we do first generate the terms using an LCG, we then remove the first
few digits of each term (and if we do not have enough digits in a term, we simply replace
the term with 0). Now, significant information is lost, and we can no longer deduce a or c.
For sufficiently large m, we still have a large variety of terms in the new sequence. And even
if some terms repeat, future terms will not necessarily repeat, unlike in a standard LCG.
Informally, this new pseudo-random sequence can be considered more “random” because we
can have repeated terms without consequences — a sequence without any repetition may be
suspicious.

5 Generalizations

A simple generalization of our recurrence relation is to square the previous term, or, in other
words, define the recurrence as xn ≡ ax2

n−1 + c (mod m). This is known as a Blum-Blum-
Shub (BBS) random number generator when a = c = 1. We can also use an “exponent” b

5



and obtain a different recurrence, xn ≡ axb
n−1 + c (mod m).

However, these generators are less useful than an LCG because they may repeat more
frequently for certain b. For instance, when b = 2, we know that x2

n−1 can only be 0 or 1
mod 4. So ax2

n−1 + c can only be certain remainders mod 4, and if m is divisible by 4, we
cannot obtain all possible remainders mod m and we can never have a period of length m.
If m is not divisible by 4, a similar issue occurs: x2 and (m− x)2 have the same remainders
mod m, so we only have ⌈m

2
⌉ possible remainders mod m for x2

n−1. So ax2
n−1 + c can only

have about half of all remainders mod m, and we cannot have a full length-m period. And
since xb and (m− x)b are congruent mod m for all even b, the same reasoning applies for all
even b. Of course, for odd b, or simply for large m, this generator is still useful. We may
not be able to reach a period of length m at all times, but we may still be able to reach a
period length of ⌈m

2
⌉ (which is still large enough if m is).

Nevertheless, a BBS is considered cryptographically secure, while an LCG is not. This
is mostly because we must factor the terms of the BBS to crack the seed and modulus,
and factoring is a famously difficult problem, while an LCG, as its name suggests, is linear
and does not require factoring. There are different conditions for a BBS to have a maximal
period ⌈m

2
⌉ (m must be a product of two approximately-equal primes that satisfy certain

congruences and gcd equations) but we do not focus on them in this paper.
LCGs and this generalization generate numbers that are remainders mod m. Often,

we’d prefer to generate random numbers from the interval [0, 1]. We can use an LCG to
create a uniform pseudo-random number generator, or, in other words, generate “random”
numbers between 0 and 1, inclusive, that are uniformly distributed: We simply divide each
term generated by the LCG by m− 1. The possible outputs are 0

m−1
, 1
m−1

, · · · , m−1
m−1

, so our
terms are indeed between 0 and 1, inclusive. They are also spaced at equal intervals and are
therefore uniformly distributed.

6 Examples

The following is a simple code for an LCG in Python. Note that we must only repeat m
times as the period is at most m.

a=5 #multiplier

c=7 #increment

m=16 #modulus

x=3 #seed

for i in range(m):

x=(a*x+c)%m

print(x)

Running the program for the values of a, c,m, x0 shown, we obtain the sequence 6, 5, 0, 7,
10, 9, 4, 11, 14, 13, 8, 15, 2, 1, 12, 3, which is indeed a full period of length m = 16. If we use
a = 5, c = 7, m = 18, and x0 = 3 (a sequence that fails conditions 2 and 3 of Theorem 1), the
sequence becomes 4, 9, 16, 15, 10, 3 and then it repeats. So, as we’d expect from Theorem 1,

6



the sequence does not have a full period m = 18. These examples help validate the theorem,
in addition to its (rather long) proof.

Also, notice that the period for this second LCG is 6, which divides m = 18, as implied
by Corollary 1.

7 Conclusion

Sequences of random numbers have uses in various fields, and LCGs allow for simple and
versatile random number generation. Theorem 1 in particular means that LCGs with certain
values for a, c,m can have full periods of length m, making their repetition difficult to notice
for large m. The Blum-Blum-Shub generalization lacks this key property. Any noticeable
patterns in the terms of an LCG can be removed by eliminating the first few digits, making
this random number generator useful to this day.

References

[1] T. E. Hull and A. R. Dobell. Random number generators. SIAM Review, 4:230–54, 1962.

[2] Donald Knuth. Art of Computer Programming, volume 2. Addison-Wesley, Reading,
Massachusetts, 1997.

7


