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1. Introduction

The evolution of cryptographic techniques can be categorized into two distinct epochs:
the classical era and the modern era. A pivotal moment marking the transition between
these periods was in 1977, when the introduction of groundbreaking algorithms such as RSA
and the Diffie-Hellman key exchange was made. These innovations indicated a paradigm
shift as they represented the first practical cryptographic schemes where security hinged on
the principles of number theory. Crucially, they facilitated secure communication between
two entities without the necessity of a shared secret, transforming cryptography from the
cumbersome task of safeguarding secret codebooks to enabling provably secure exchanges,
free from eavesdropping during key exchanges.

Modern cryptography, as we know it, is built upon the foundational concept that the en-
cryption key can be public, while the decryption key remains private—a concept encapsulated
in public key cryptographic systems. The essence of a functioning public key cryptographic
system lies in algorithms that are easily executable in one direction yet hard to reverse.
Such algorithms are termed Trapdoor Functions. The efficacy of a secure public key crypto-
graphic system depends on the careful selection of a working Trapdoor Function, with the
system’s security directly proportional to the spread between the simplicity and complexity
of the function’s two directions. The trapdoor mechanism we will look at in this paper is
Elliptic curve cryptography. Elliptic curve cryptography (ECC) is a branch of public key
cryptography that leverages the mathematical properties of elliptic curves for securing com-
munications and data. It has gained widespread adoption due to its efficiency and strong
security guarantees, making it a fundamental component of modern cryptographic systems.
To become familiar with EEC, let us first go over a few cryptographic techniques that will
help us later understand how elliptic curves work.

1.1. Diffie-Hellman Key Exchange. We will use the previous explanation I used in my
previous expository paper on Zero-Knowledge and Interactive proofs:

One of the most basic but important concepts in cryptography is the Diffie-Hellman Key
Exchange, a mathematical method of creating a cryptographic key to exchange information
between two parties in a secure manner. The goal of the exchange is so that even if you
know all the public info, not knowing any of the private info makes it near impossible to
construct the key, while knowing at least one piece of private info allows you to do so. To
see how the exchange works, let us label the two parties as Alice and Bob. Together, they
will first pick some prime number p. They then pick a base g such that g is a primitive root
modulo p. Then, in secret, Alice picks a number a, and similarly, Bob picks a number b.
Alice then computes ga (mod p) and sends it out to the public including Bob (this is public
information) and Bob similarly computes gb (mod p) and sends it to Alice. Alice now knows
the number gb (mod p) so she can now compute (gb)a = gab (mod p). In a similar manner,
Bob can also compute gab (mod p). Here, gab (mod p) is the private key that can be used
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to encrypt messages that the public does not know. This is because even if you know ga

(mod p) or gb (mod p), it is very difficult to figure out gab (mod p). The figure below shows
a conceptual idea of how the cryptographic aspect of the system works.

1.2. RSA. The RSA algorithm, denoted by Rivest-Shamir-Adleman (RSA), as discussed
above was pivotal in public-key cryptography. Announced in 1977 by Ron Rivest, Adi
Shamir, and Leonard Adleman, the algorithm relies on the mathematical complications of
factoring large composite numbers into their prime factors. The foundational security of RSA
relies upon the presumed computational complexity of factoring large numbers, a challenge
deemed hard for classical computers.

The RSA system has three primary steps: key generation, encryption, and decryption.
The key generation process begins with the selection of two distinct prime numbers, con-
ventionally denoted as p and q. The modulus n is subsequently determined through the
multiplication of these primes, establishing the equation n = p · q. Euler’s totient function
ϕ(n) is then calculated as (p−1) · (q−1), quantifying the count of positive integers less than
n that are coprime with n.

Further, an encryption exponent e is chosen, a positive integer greater than 1 and less than
ϕ(n), and is coprime to ϕ(n). The decryption exponent d is then computed as the modular
multiplicative inverse of e modulo ϕ(n), satisfying the equation (d · e) ≡ 1 (mod ϕ(n)). The
resulting public key comprises the modulus n and the encryption exponent e, while the
private key comprises n and the decryption exponent d.
The encryption phase involves representing the plaintext message m as a numeric value,

ensuring 0 ≤ m < n. The encryption function c ≡ me (mod n) transforms the message into
ciphertext c. In the decryption process, which is dependent on the private key, utilizes the
equation m ≡ cd (mod n). The successful decryption yields the original plaintext message.

A critical factor contributing to the security of RSA is the selection of the modulus size
(n) and the prime numbers (p and q). The security of the system relies on the size of these
parameters, with the vulnerability of the system increasing if the primes are small.
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2. Why Elliptic Curves over these Systems?

RSA and Diffie-Hellman rely heavily on factoring, which is known to be a difficult problem.
However, it has been addressed by specialized algorithms such as the Quadratic Sieve and
the General Number Field Sieve. These algorithms have demonstrated moderate success.
Notably, they are computationally faster than the naive approach, which involves merely
guessing pairs of known primes.

As discussed in the RSA section, the efficiency of these factoring algorithms decreases as
the magnitude of the numbers increases. The difference in difficulty between factoring large
numbers and multiplying large numbers diminishes as the number (i.e., the key’s bit length)
increases. Moreover, with the expanding resources for decrypting numbers, there is a need
for the size of the keys to increase at an even faster rate. However, this convergence poses a
challenge as larger keys become critical to maintaining cryptographic security. Unfortunately,
this escalating key size requirement is impractical for resource-constrained devices, such as
mobile and low-powered devices, which are limited in their computational capabilities. The
diminishing gap between the difficulty of factoring and multiplying is unsustainable in the
long run in the real world.

It thus becomes evident that systems like RSA may not be the optimal cryptographic
system for the future. A future-proof public key system demands a more powerful Trapdoor
Function.

3. Elliptic Curves

Following RSA and Diffie-Hellman, researchers delved into alternative mathematics-driven
cryptographic solutions, seeking algorithms beyond factoring that could function as effective
Trapdoor Functions. In 1985, cryptographic algorithms were introduced, grounded in the
branch of mathematics known as elliptic curves. Now, what exactly is an elliptic curve, and
how does it work cryptographically?

Definition 1. An elliptic curve E(F ) is defined as a set of points in a field F that satisfies
an equation of the form:

y2 + a1xy + a2y = x3 + a3x
2 + a4x+ a5

where a1, a2, . . . , a5 ∈ F . If we assume that the characteristic of the field is different than 2,
this equation can be simplified to:

y2 = x3 + a3x
2 + a4x+ a5

Further simplification is possible if the characteristic of the field is also different than 3,
leading to the more familiar equation, known as the Weierstrass normal form:

y2 = x3 + ax+ b where a = a4, b = a5.

The following figure shows an elliptic curve in R2:
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The simplified curve presented serves well for conveying and illustrating the fundamental
concept of elliptic curves. However, it does not depict the typical appearance of curves
employed in cryptographic applications.

To achieve this, a constraint is imposed on the values, similar to the approach in RSA.
Instead of permitting any arbitrary value for the points on the curve, we confine ourselves
to integers within a specified range. In the computation of the elliptic curve formula (y2 =
x3+ax+b), we employ a technique of cycling through numbers when reaching the maximum.
Opting for the maximum to be a prime number characterizes the elliptic curve as a prime
curve, endowing it with robust cryptographic properties.

An illustrative instance of such a curve, expressed as (y2 = x3 − x + 1), is plotted for all
possible integer values:

Here’s the plot of the same curve with only the whole number points represented with a
maximum of 97:
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This doesn’t quite resemble a conventional curve, yet it is one. It’s as if the initial curve
was folded around its edges, and only the segments that intersect with integer coordinates
are shaded. The horizontal symmetry is still discernible.

Defining an elliptic curve cryptosystem involves selecting a prime number as a maximum,
specifying a curve equation, and designating a public point on the curve. The private key
is represented by a numerical value, denoted as ”n,” while the public key is derived by per-
forming the dot product of the public point with itself ”n” times. The process of computing
the private key from the public key in this cryptographic system is termed the elliptic curve
discrete logarithm function. Remarkably, this function serves as the Trapdoor Function we
were searching for.

4. Applications

In the field of blockchain technology, elliptic curve cryptography plays a pivotal role in
securing transactions and generating digital signatures. Cryptocurrencies like Bitcoin and
Ethereum leverage ECC to ensure the integrity and authenticity of transactions within de-
centralized networks. The mathematical foundations of elliptic curves contribute to the
creation of secure and efficient blockchain ecosystems.

Beyond cryptography, elliptic curves find application in error-correcting codes, particularly
in the construction of algebraic geometry codes used for error detection and correction in
data transmission and storage systems.

Moreover, in biometric authentication systems, elliptic curve cryptography enhances secu-
rity, ensuring the protection of sensitive personal information. By providing a framework for
generating secure digital signatures, ECC contributes to the development of secure biometric
systems.
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