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1 Introduction

Elliptic curves are of great interest in many areas of mathematics, including from
number theory and cryptography. In this exposition we present elliptic curves
in an algebro-geometric manner, and in particular prove the associativity of the
group operation.

2 Basic Definitions

Definition 1 (Group). A group is a set G equipped with a binary operation
*: GXG — G (where axb denotes x(a, b)) that satisfies the following properties:

There exists an eg € G such that gxeqg =eg*xg =g for all g € G.

ax(bxc)=(a*b)xcforallab,ceQG.
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For all g € G, there is a g7 such that gx g™ = g7 " x g = eq.

A group is said to be abelian if * is commutative.

An element e is said to be an identity element of G, and ¢! is said to be an

inverse element of g. When the context is clear, eg and *g will be abbreviated
to e and juxtaposition respectively.

A free abelian group F' is a group with a basis S; that is, every element of F' can
be written uniquely as a sum of elements of S with coefficients in Z, where the
coefficient denotes the number of times the corresponding basis element appears
in the sum. This is well defined because the group is abelian.

Definition 2 (Ring). A ring is a set R equipped with an abelian group structure
+ (ring addition) and an operation *: R x R — R (ring multiplication) such
that for all a,b,c € R,

ax(b+c)=ab+ ac,

ax(bxc)=(axb)x*c.



When * is commutative, R is said to be a commutative ring. When there exists
an identity for % (some 1 € R such that 1 xr = r*1 = r for all r € R),
R is said to be unital. It is not required in general for the % operation to be
commutative, or have an identity. However, we assume all rings are commutative
and unital.

Definition 3 (Ideal). An ideal of a ring R is an additive subgroup that is closed
under multiplication from all elements of R.

We say an ideal p is prime if p € p and p = ab implies one of a,b € p.

Definition 4 (Localization). Let S = R — p, the set of all elements of R not
contained in a prime ideal 3. We define the localization of R at p, Ry, to be
the set R x p under the equivalence relation (a,p) ~ (a’,p’) iff (ap’ — a'p)t =0
for some t € S. This set inherits a well-defined ring structure from R.

If A is an integral domain, we define its field of fractions as A x {A — 0} under
the relation (a,b) ~ (a’,V’) iff ab’ —a’b = 0. Again, this set inherits well-defined
ring structure from A, and is a field.

Definition 5 (Quotient ring). Given a ring R and an ideal I, we define R/I

to be the set of cosets of R by I. This set inherits a well-defined ring structure
from R.

Definition 6 (Field). A field is a ring in which every nonzero element has a
multiplicative inverse.

Definition 7 (Affine space). Let k be a field. We define affine n-space over k
A7} to be the set of all ordered n-tuples of elements of k. We call elements of
A} points, and write them as P = (p1,...,pn) with p; € k.

Definition 8 (Projective space). Take a field k and an affine space AZH. We
define the projective n-space P} to be the set of equivalence classes of points in
AZ+1 given by the relation (pla s 7pn+1) ~ (qla ceey QTL+1) iff (pla s apn-‘rl) =
(aq1,...,aqn+1) for some nonzero a € k. We write elements of P as P = [pg :
S Pyl

3 Curves

We fix a field k and a projective space Pj..

Definition 9 (Projective variety). A projective variety is the set of P = [p; :
-t ppy1] € PP such that f(P) = f(p1,...,pnt1) = 0 for a homogeneous
polynomial f € k[xy,...,Zn41]. We write the variety defined by f as V(f).

This definition works because if Q = kP and f(P) = 0, then f(P) = k?f(P) =
f(EP) = f(Q), where d is the degree of f.
of _of _of

We say a curve is nonsingular if — = (0 at all points of V().
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The dimension of a variety V is the maximal integer d such that we may find a
chain of varieties {Vo C --- C Vy = V'} (the inclusions are strict).

We call a variety a curve if it is defined by a homogeneous polynomial in 3
variables.

Definition 10 (The ideal of a variety). Given a variety V, we define the ideal
of the variety I(V') to be the set of all f € k[zy...,2,41] with f(P) =0 for all
P € V. It should be noted that when V' is a single point, I(V') is prime (in fact,
it is maximal).

Definition 11 (Coordinate ring). The coordinate ring A(V') of a variety AV
is the ring k[z1, ..., Zn41]/I(V).

Definition 12 (Function field). The function field of a variety V' is the field of
fractions of A(V'), and will be denoted K (V).

Definition 13 (Elliptic curve). An elliptic curve is a nonsingular projective
curve of genus 1 with a distinguished point O.

Definition 14 (Rational map). Let V, V' be varieties in P}. A rational map be-
tween V and V’ is a function ¢: V' — V' such that ¢(P) = (f1(P),..., fat1(P))
for polynomials f;.

4 The Proof

We fix a(n algebraically closed) field k& and a projective space P}’, and consider
a nonsingular variety V.

Definition 15 (Divisor group). We define the divisor group Div(V) of V as
the free abelian group on the points of V.

The degree of an element of Div(V) is the sum of its coefficients. We define
Div?(V) to be the set of elements of Div(V') with degree 0.

We define A(V)p to be the localization of A(V') at I(P). We define a valuation
ordp on A(V)p to be the largest integer d such that x € A(P)¢, and we define
ordp for elements z = f/g € K(V) by ordp(z) = ordp(f) — ordp(g).

We associate each f € K (V) to divisor by Div(f) = > pcy ordp(f(P)).
divisor D is principal if there is a nonzero f € K(V) such that div(f) =
We note that every principal divisor has degree zero. We define PicO(V)
Div®(V') /{principal divisors of V}.
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Given a divisor D, define L(D) as the (finite-dimensional) vector space contain-
ing 0 and the nonzero functions in f € K(V') such that div(f) > —D. Write
I(D) for the dimension of this space.

Given a nonzero differential on V', we can assign it a divisor, and every such
divisor maps to the same element in Pic’. Any divisor of this form will be
denoted ky .



Theorem 16 (The Riemann-Roch Theorem). Take a nonsingular curve V' of
genus g. Then I(d) — l(ky — D) = deg(D) — g+ 1.

Theorem 17. Let E be an elliptic curve. Given a divisor D in Div’(E), we can
find a unique P € E with D — (P + O) a principal divisor. Defining ¢(D) = P,
¢ is a bijection, thus induces a group law on E.

Proof. By Riemann-Roch, [(D+(0)) = 1; taking an element f, div(f) > —D—-0
and deg(=(f)) =0, so div(f) = —D — O + P for some P. Because E has genus
1, div(f) = P — Q implies f € L(Q), and by Riemann-Roch I(Q) = 1, thus f is
constant and P = Q.

Since ¢(P—Q) = P, ¢ is surjective. Since ¢(D)—¢(D’)— (D —D’) is a principal
divisor, D — D’ is principal iff ¢(D) = ¢(D’), so ¢ is injective.

To have group operation agree with the geometric construction is seen to be
equivalent to showing (P +g Q) — P — @ + O is principal.

Let L be the line through P, @), and let R be the intersection of E and L. Letting
L’ be the line through R and O, the line z = 0 intersects F at O with mutiplicity
3, therefore div(f/Z) = P+ Q+ R —30 and div(f'/Z) = R+ (P +g Q) — 20,
so(P+pQ)—P—Q+0=div(f/f). O
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