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1 Introduction

Elliptic curves are of great interest in many areas of mathematics, including from
number theory and cryptography. In this exposition we present elliptic curves
in an algebro-geometric manner, and in particular prove the associativity of the
group operation.

2 Basic Definitions

Definition 1 (Group). A group is a set G equipped with a binary operation
∗ : G×G → G (where a∗b denotes ∗(a, b)) that satisfies the following properties:

There exists an eG ∈ G such that g ∗ eG = eG ∗ g = g for all g ∈ G.

a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ G.

For all g ∈ G, there is a g−1 such that g ∗ g−1 = g−1 ∗ g = eG.

A group is said to be abelian if ∗ is commutative.

An element eG is said to be an identity element of G, and g−1 is said to be an
inverse element of g. When the context is clear, eG and ∗G will be abbreviated
to e and juxtaposition respectively.

A free abelian group F is a group with a basis S; that is, every element of F can
be written uniquely as a sum of elements of S with coefficients in Z, where the
coefficient denotes the number of times the corresponding basis element appears
in the sum. This is well defined because the group is abelian.

Definition 2 (Ring). A ring is a set R equipped with an abelian group structure
+ (ring addition) and an operation ∗ : R × R → R (ring multiplication) such
that for all a, b, c ∈ R,

a ∗ (b+ c) = ab+ ac,

a ∗ (b ∗ c) = (a ∗ b) ∗ c.
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When ∗ is commutative, R is said to be a commutative ring. When there exists
an identity for ∗ (some 1 ∈ R such that 1 ∗ r = r ∗ 1 = r for all r ∈ R),
R is said to be unital. It is not required in general for the ∗ operation to be
commutative, or have an identity. However, we assume all rings are commutative
and unital.

Definition 3 (Ideal). An ideal of a ring R is an additive subgroup that is closed
under multiplication from all elements of R.

We say an ideal p is prime if p ∈ p and p = ab implies one of a, b ∈ p.

Definition 4 (Localization). Let S = R − p, the set of all elements of R not
contained in a prime ideal P. We define the localization of R at p, Rp, to be
the set R × p under the equivalence relation (a, p) ∼ (a′, p′) iff (ap′ − a′p)t = 0
for some t ∈ S. This set inherits a well-defined ring structure from R.

If A is an integral domain, we define its field of fractions as A× {A− 0} under
the relation (a, b) ∼ (a′, b′) iff ab′−a′b = 0. Again, this set inherits well-defined
ring structure from A, and is a field.

Definition 5 (Quotient ring). Given a ring R and an ideal I, we define R/I
to be the set of cosets of R by I. This set inherits a well-defined ring structure
from R.

Definition 6 (Field). A field is a ring in which every nonzero element has a
multiplicative inverse.

Definition 7 (Affine space). Let k be a field. We define affine n-space over k
An

k to be the set of all ordered n-tuples of elements of k. We call elements of
An

k points, and write them as P = (p1, . . . , pn) with pi ∈ k.

Definition 8 (Projective space). Take a field k and an affine space An+1
k . We

define the projective n-space Pn
k to be the set of equivalence classes of points in

An+1
k given by the relation (p1, . . . , pn+1) ∼ (q1, . . . , qn+1) iff (p1, . . . , pn+1) =

(aq1, . . . , aqn+1) for some nonzero a ∈ k. We write elements of P as P = [p1 :
· · · : pn+1].

3 Curves

We fix a field k and a projective space Pn
k .

Definition 9 (Projective variety). A projective variety is the set of P = [p1 :
· · · : pn+1] ∈ Pn

k such that f(P ) = f(p1, . . . , pn+1) = 0 for a homogeneous
polynomial f ∈ k[x1, . . . , xn+1]. We write the variety defined by f as V (f).

This definition works because if Q = kP and f(P ) = 0, then f(P ) = kdf(P ) =
f(kP ) = f(Q), where d is the degree of f .

We say a curve is nonsingular if
∂f

∂x
=

∂f

∂y
=

∂f

∂z
= 0 at all points of V (f).
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The dimension of a variety V is the maximal integer d such that we may find a
chain of varieties {V0 ⊂ · · · ⊂ Vd = V } (the inclusions are strict).

We call a variety a curve if it is defined by a homogeneous polynomial in 3
variables.

Definition 10 (The ideal of a variety). Given a variety V , we define the ideal
of the variety I(V ) to be the set of all f ∈ k[x1 . . . , xn+1] with f(P ) = 0 for all
P ∈ V . It should be noted that when V is a single point, I(V ) is prime (in fact,
it is maximal).

Definition 11 (Coordinate ring). The coordinate ring A(V ) of a variety AV
is the ring k[x1, . . . , xn+1]/I(V ).

Definition 12 (Function field). The function field of a variety V is the field of
fractions of A(V ), and will be denoted K(V ).

Definition 13 (Elliptic curve). An elliptic curve is a nonsingular projective
curve of genus 1 with a distinguished point O.

Definition 14 (Rational map). Let V, V ′ be varieties in Pn
k . A rational map be-

tween V and V ′ is a function ϕ : V → V ′ such that ϕ(P ) = (f1(P ), . . . , fn+1(P ))
for polynomials fi.

4 The Proof

We fix a(n algebraically closed) field k and a projective space Pn
k , and consider

a nonsingular variety V .

Definition 15 (Divisor group). We define the divisor group Div(V ) of V as
the free abelian group on the points of V .

The degree of an element of Div(V ) is the sum of its coefficients. We define
Div0(V ) to be the set of elements of Div(V ) with degree 0.

We define A(V )P to be the localization of A(V ) at I(P ). We define a valuation
ordP on A(V )P to be the largest integer d such that x ∈ A(P )d, and we define
ordP for elements x = f/g ∈ K(V ) by ordP (x) = ordP (f)− ordP (g).

We associate each f ∈ K(V ) to divisor by Div(f) =
∑

P∈V ordP (f(P )). A
divisor D is principal if there is a nonzero f ∈ K(V ) such that div(f) = D.
We note that every principal divisor has degree zero. We define Pic0(V ) =
Div0(V )/{principal divisors of V}.

Given a divisor D, define L(D) as the (finite-dimensional) vector space contain-
ing 0 and the nonzero functions in f ∈ K(V ) such that div(f) ≥ −D. Write
l(D) for the dimension of this space.

Given a nonzero differential on V , we can assign it a divisor, and every such
divisor maps to the same element in Pic0. Any divisor of this form will be
denoted kV .
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Theorem 16 (The Riemann-Roch Theorem). Take a nonsingular curve V of
genus g. Then l(d)− l(kV −D) = deg(D)− g + 1.

Theorem 17. Let E be an elliptic curve. Given a divisor D in Div0(E), we can
find a unique P ∈ E with D− (P +O) a principal divisor. Defining ϕ(D) = P ,
ϕ is a bijection, thus induces a group law on E.

Proof. By Riemann-Roch, l(D+(O)) = 1; taking an element f , div(f) ≥ −D−O
and deg(÷(f)) = 0, so div(f) = −D−O+P for some P . Because E has genus
1, div(f) = P −Q implies f ∈ L(Q), and by Riemann-Roch l(Q) = 1, thus f is
constant and P = Q.

Since ϕ(P−Q) = P , ϕ is surjective. Since ϕ(D)−ϕ(D′)−(D−D′) is a principal
divisor, D −D′ is principal iff ϕ(D) = ϕ(D′), so ϕ is injective.

To have group operation agree with the geometric construction is seen to be
equivalent to showing (P +E Q)− P −Q+O is principal.

Let L be the line through P,Q, and let R be the intersection of E and L. Letting
L′ be the line through R and O, the line z = 0 intersects E at O with mutiplicity
3, therefore div(f/Z) = P +Q+R− 3O and div(f ′/Z) = R+ (P +E Q)− 2O,
so (P +E Q)− P −Q+O = div(f/f ′).
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