
Public-Key Cryptography

Grace Howard

December 2023

Symmetric key encryption schemes

In symmetric key encryption, there is a secret key k shared between the two parties.
Symmetric key encryption schemes consist of 3 algorithms: one which generates the key,
one which encrypts the message using that key, and one which decrypts the message
using that key. It also uses 3 sets: the set K of keys, the set P of plaintext, and the set
C of ciphertext.

The algorithm which generates the key works as follows: Given some security pa-
rameter 1κ, the function G outputs the secret key k ∈ K, or

G(1κ) → k.

Similarly, the encryption algorithm takes the key k and a message p ∈ P and outputs
ciphertext c ∈ C, or

E(k, p) → c.

The decryption algorithm does the same, but using the ciphertext c as input and out-
putting a message p ∈ P , or

D(k, c) → p.

This scheme is said to have correctness if for all p ∈ P, k ∈ K,

D(k,E(k, p)) = p.

An example of this is a shift cipher, which encrypts a message by shifting each letter
some number of positions forward or backward in the alphabet. Let K = {1, .., 26},
P = {a, b, .., z}, and C = {A,B, .., Z}. Then, informally, if the shift is 5 then the
message “five” is “KNAJ” if shifted to the left and “ADQZ” if shifted to the right.
Using the formal definition, G() is some k ∈ K. The function E(k, p) is defined based
on the length l of the message. Then, for some message

p = p1p2 . . . pl,

ci = pi + k (mod 26)

for all i ∈ {1, . . . l}. Similarly, the algorithm D(k, p) is defined in terms of the length of
c (or p). For some ciphertext

c = c1c2 . . . cl,

pi = ci − k (mod 26).

This is not particularly secure. Firstly, it is not terribly difficult to use brute force to
find the key. There would not be many words which are meaningful when guessing,
so the options would be narrowed down very fast. Secondly, symmetric encryption in
general is problematic when it comes to security. At some point, a key must be created
and conveyed to another party. In transit it could be observed and copied. Given that
anyone with the key can decrypt the message, this is quite bad.

1



Asymmetric key encryption

Public key cryptography aims to resolve such shortfalls. It relies on an asymmetric
scheme, which uses a pair of keys: a public key (for encryption) and a private key (for
decryption). Anyone can use the public to encrypt information, and the private key is
kept secret. This eliminates the possibility of the key being observed in transit, as the
private key is never being conveyed.

Public key encryption schemes make use of one-way functions. A function f : X → Y
is a one-way function if it is “easy” to compute f(x) for all x ∈ X, but “hard” to compute
f−1.

Example

Consider two primes p = 11 and q = 3. Then, let n = pq = 33 and define X =
{1, 2, . . . , 32}. Additionally, define the function f : X → N by f(x) = x3 (mod n).
Then, for instance, f(31) = 25. Without x, inverting f is challenging. If p and q are
given, it is quite simple, though. A trapdoor one-way function is a one-way function
fk : X → Y , where, given k, one can find an x ∈ X for which f(x) = y for all y ∈ Imf .

RSA

A number n is known by both parties. Then, split the plaintext into log2(n) bits.
Then each block represents some number M < n. Then encryption is defined as

E ≡ Me (mod n)

and decryption is defined as

D = Cd ≡ (Me)d (mod n)

where e and d are chosen values. The public key is {e, n} and the private key is d. This
is dependent on a number of things. Firstly, it must be possible to find values of e, d,
and n such that

Med (mod n) ≡ M

for all M < N . Additionally, it must be unreasonable to find d given e and n.

RSA correctness

The goal is to show that there exist e, d, n ∈ N such that

Med (mod n) ≡ M

for all M < N . This equation holds if e and d are multiplicative inverses mod ϕ(n).

Proof. Consider when
d ≡ e−1 (mod ϕ(n))

or
de ≡ 1 (mod ϕ(n)).

This is true if and only if d and e are such that gcd(ϕ(n), d) = 1.

2



Example

Firstly, use two (generally large) distinct primes p and q. Here let p = 47 and
q = 71. Then compute n = pq, which is 3337 in this example, and ϕ = (p − 1)(q − 1),
which is 3220 here. After this, e must be selected, where gcd(e, ϕ) = 1 and 1 < e < ϕ.
Suppose e = 79 was selected for this example. Then, compute d = e−1 (mod ϕ). Here,
d = 79−1 (mod 3220) = 1019. Now, the public key is {79, 3337} and the private key
is {1019, 3337}. The message will be encrypted with the public key. First, break the
message M into blocks. For example,

688 232 687 966 · · · .

Then, compute
Ci = Me

i (mod n).

Here, C1 ≡ 68879 ≡ 1570 (mod 3337) and so on. The message will be decrypted with
the private key. This will mean calculating

Mi = Cd
i (mod n).

Here, M1 = 15701019 ≡ 688 (mod 3337) and so on.

Diffie-Hellman key exchange

The Diffie-Hellman key exchange is an algorithm for exchanging keys over an insecure
channel.

Definition 0.1. A primitive root g of a prime number p is a number whose powers
generate 1, . . . , p− 1.

A discrete logarithm is given g, gm (mod p), and p find m. Computing discrete
logarithms is very difficult. The Diffie-Hellman key exchange is as follows: Firstly, a
very large prime p is selected as well as a primitive root g of p. These numbers are
public. Then, one party generates a random number n1 and conveys

m1 = gn1 (mod p)

to the other party. Similarly, the other party generates a random number n2 and conveys

m2 = gn2 (mod p)

to the other party. Then, the first party’s secret key,

K = (m2)
n1 (mod p)

is calculated. Similarly, the second party’s secret key

K = (m1)
n2 (mod p)

is calculated.

Example

Suppose p = 11 and g = 2. Then, suppose n1 = 4, so

m1 = 24 ≡ 5 (mod 11).

3



Similarly, suppose n2 = 6, so

m2 = 26 (mod 11) = 9.

Then,
K = 94 ≡ (mod 11)

and
56 = 5 (mod 11).

Correctness

Proof. Consider K = (m2)
n1

≡ (gn2)n1

≡ (gn2)n1

≡ (gn1)n2

≡ (m1)
n2 (mod p).

Conclusion

Adjacently, there is a field of cryptography which is concerned with quantum me-
chanics. Quantum key distribution involves quantum bits, as opposed to bits, to encode
information. Similarly, Shor’s algorithm uses quantum bits to find prime factors of an
integer. It is currently inhibited by a number of problems with quantum computers, but
were it to work, it could be used to break public-key crytopgraphy schemes, such as the
ones discussed above.

4


