
ON ELLIPTIC CURVE CRYPTOGRAPHIC PROTOCOLS

CHRISTIAN ZHOU-ZHENG

Abstract. The group structure of elliptic curves over finite fields gives rise to the elliptic
curve discrete logarithm problem, a one-way problem that lends itself exceptionally well to
cryptography. This paper will explain the theory and implementation behind some elliptic
curve-based modifications to public key cryptosystems based on the multiplicative group of
a finite field.

1. Introduction

Existing classical cryptosystems are primarily based around the structure of the mul-
tiplicative group of a finite field F×

p . In conjunction with the generalization of existing
cryptosystems to any finite abelian group, H. W. Lenstra’s 1987 discovery of integer fac-
toring algorithm based on elliptic curves immediately provoked the study of cryptosystems
based on the group structure of the points on an elliptic curve over a finite field. Koblitz
and Miller were among the first to propose such systems immediately following Lenstra’s
announcement, and the first proofs-of-concept were implemented shortly after. Practically
any cryptosystem based on the discrete logarithm problem—that is, nearly all public key
cryptosystems at the time—could be instead converted to be based on the elliptic curve
discrete logarithm problem for increased security and efficiency.

We begin by introducing the mathematical background for elliptic curves over finite fields
and their underlying groups, before introducing the principal problems of the discrete loga-
rithm and elliptic curve discrete logarithm. We then compare and contrast two cryptographic
protocols, the Diffie-Hellman key exchange system and the Digital Signature Algorithm,
when based on the discrete logarithm problem as opposed to the elliptic curve discrete log-
arithm problem. We conclude with some remarks on general comparisons between elliptic
curve cryptography and other classical cryptography, and provide appendices with further
details about real-world implementations, shortcomings, and concerns.

2. Preliminaries

Analogously to how classical cryptography takes advantage of the group structure of the
multiplicative group of integers modulo p, (Z/pZ)× ≃ F×

p , elliptic-curve cryptography takes
advantage of the group structure inherent to elliptic curves over finite fields. Thus we define
an elliptic curve.

Definition 2.1. An elliptic curve E(Fq) defined over a finite field Fq is the set of points
(x, y) ∈ F2

q that satisfy the equation y2 = x3 + ax + b, with a, b ∈ Fq, along with a ”point
at infinity” O that makes this set an abelian group under point addition. Furthermore,
∆ = −16(4a3 + 27b2) must not equal 0.

Date: December 1, 2023.
1

2 CHRISTIAN ZHOU-ZHENG

For our purposes, we suppose Fq is not of characteristic 2 or 3, because the curve equation
over fields of those characteristics cannot be written in the short Weierstrass form y2 =
x3+ax+ b as above. The last condition is required because ∆ = 0 implies the defining cubic
curve has repeated roots and therefore at least one singular point, which in turn implies the
curve is singular and can be transformed into either the form y2 = x3 or y2 = x3−x2 with an
appropriate change of variable. This in turn implies the set of curve points is isomorphic to
a finite field—either F+

p or F×
p2 , respectively. Not only does this cause the loss of the unique

structure which elliptic curves provide, it also completely nullifies any benefit over classical
cryptography, which already uses F×

p .
The elliptic curve group operation, point addition, can be geometrically thought of as

drawing the secant line between two points P1, P2 ∈ E(Fq) (or the tangent line at P1, in the
case of point doubling) and negating the third intersection point of this line with the curve
E(Fq). The negative of a point in E(Fq) is the point with the same x-coordinate but negated
y-coordinate.

Mathematically, if we have P1 = (x1, y1) and P2 = (x2, y2), then P3 = (x3, y3) is given by
the equations

(2.1) x3 = m2 − x1 − x2 y3 = −y1 +m(x1 − x3),

where m is defined as

(2.2) m =
y2 − y1
x2 − x1

if P1 ̸= P2 m =
3x2

1 + a

2y1
if P1 = P2.

We are particularly interested in the case in which P1 = P2, known as point doubling, as
it allows tractable calculation of higher multiples of a point. Point multiplication by n is
denoted nP , which can be computed in O(log n) operations of point additions and doublings.

Algorithm 2.2. A simple recursive algorithm for point multiplication, the double-and-add
method, is as follows:

(1) Begin with multiplier n and point P .
(2) If n is odd, add P and subtract 1 from n.

If n is even, double P and halve n.
(3) Repeat Step 2 until n = 0.

Example. Finding 11P can be done in 3 doublings and 2 point additions as follows:

11P = 2(5P) + P = 2(2(2P) + P) + P

Point multiplication forms the backbone of elliptic-curve cryptography, as it allows the
retrieval of a point nP seemingly unrelated to the original point P from specifying only
one parameter, the multiplier n. While nP can be computed in reasonable time, it is very
difficult to compute n and P given nP ; this is known as the elliptic curve discrete logarithm
problem, or ECDLP, formally stated as follows:

Problem 2.3. Given points P1, P2 ∈ E(Fq), find an integer n such that P2 = nP1.

Example. On the curve E(F97) := y2 = x3 + 5x + 3 and starting point P = (1, 3), we get
22P = (9, 96)—which has no obvious relationship to 22 or P whatsoever! Furthermore, as
shown in Figure 1, adding P to this to yield 23P = (63, 28) has no visible relationship to
23, P , or 22P either! There are very few hints to glean any useful information from Q.

ON ELLIPTIC CURVE CRYPTOGRAPHIC PROTOCOLS 3

Figure 1. F2
97 is graphed with points on E(F97) shown. P denotes the

starting point, (1, 3). On the left, Q = 22P , and on the right, Q = 23P .

The astute reader may notice that the ECDLP is reminiscent of the general discrete
logarithm problem over a finite group G, stated as follows:

Problem 2.4. Given elements a, b ∈ G, find an integer n such that b = an.

However, the ECDLP is remarkably more difficult to crack than the generic DLP, since
the index calculus attacks commonly used to break the DLP fail over well-chosen elliptic
curves. Thus, cryptographic systems based on the DLP can be easily modified to base their
security on the ECDLP, as we will now examine.

Remark. The index calculus method for finding discrete logarithms involves finding the dis-
crete logarithms of a set of small primes called the factor base, and then computing the
discrete logarithm of the desired number in terms of the discrete logarithms of the factor
base. This fails for elliptic curves purely because there is no notion of a ”prime element” in
the set of points on an elliptic curve.

3. The Diffie-Hellman System

3.1. Finite Field Diffie-Hellman. The Diffie-Hellman key exchange system is one of the
oldest public-key protocols for establishing a shared secret key over an insecure channel. It
is based on the eponymous Diffie-Hellman problem, or DHP, stated as follows:

Problem 3.1. Given a generator g ∈ G and the values ga and gb, what is the value of gab?

Typically G will be F×
p ≃ (Z/pZ)×, hence the name finite field Diffie-Hellman. The most

efficient known way to solve the DHP is to solve Problem 2.4, the DLP, to find logg g
x = x

and raise gy to that power once found. Assume all computation is done modulo p.
Curiously, the intractability of solving this problem, and the inexistence of an easier solu-

tion, is taken as an assumption in cryptographic circles (albeit one that has stood the test

4 CHRISTIAN ZHOU-ZHENG

of three decades and counting). In fact, no proof yet exists that either the DLP or DHP are
actually hard problems, which would imply that P ̸= NP!

Algorithm 3.2 (Finite Field Diffie-Hellman).

(1) Decide the domain parameters (g, p) over the public channel.
• g: the integer base.
• p: the prime modulus for F×

p .
(2) Determine the private keys a, b. Do not share these.
(3) Generate the public keys A = ga, B = gb and share over the public channel.
(4) Obtain shared secret key s from the public keys s = Ab = Ba.

Remark on Security. The only public information when executing Algorithm 3.2 is as follows:

• g, the integer base.
• p, the prime modulus.
• A, Alice’s public key.
• B, Bob’s public key.

Crucially, neither private key, a or b, is known to the attacker. With only the information
given, they must solve the DHP to determine the shared secret. The easiest way to do so
is to attempt to retrieve a private key from one of the public keys, which in turn requires
solving the DLP to find logg A = logg ag = a or logg B = logg bg = b.

3.2. Elliptic Curve Diffie-Hellman. A clear analog to the DHP holds in the context of
elliptic curves, the elliptic curve Diffie-Hellman problem, or ECDHP:

Problem 3.3. Given a point P ∈ E(Fq) and points aP and bP , what is the value of abP?

It is very convenient to translate the implementation of Algorithm 3.2 into the language
of elliptic curves and the ECDHP; in fact, the analogous elliptic curve algorithm is practi-
cally word-for-word identical after the relevant substitutions have been made. Assume all
computation is done in E(Fq).

Algorithm 3.4 (Elliptic Curve Diffie-Hellman).

(1) Decide the domain parameters (q, a, b, G, n, h) over the public channel.
• q: the order of Fq.
• a, b: the coefficients defining E(Fq).
• G, a point generating a cyclic subgroup of E(Fq).
• n, the order of G or the smallest integer such that nG = O.
• h, the cofactor, defined by h = 1

n
|E(Fq)|.

(2) Determine the private keys c, d ∈ [1, n− 1]. Do not share these.
(3) Generate the public keys C = cG, D = dG and share over the public channel.
(4) Obtain shared secret key S from the public keys S = dC = cD.
(5) Convert shared secret key S from a curve point to a usable form, as detailed in

Appendix A.2.

Remark on Security. The only public information when executing Algorithm 3.4 is as follows:

• q, the order of Fq.
• a and b, the coefficients defining E(Fq).

ON ELLIPTIC CURVE CRYPTOGRAPHIC PROTOCOLS 5

• G, the generator of the used cyclic subgroup of E(Fq).
• C and D, the public keys.

n and h are also publicly available, which are purely computational aids and provide no
opportunity for attack. Once again, neither private key is known to the attacker, so they
must solve the ECDHP to determine the shared secret; the easiest known way to do so is
to attempt to retrieve a private key from one of the public keys, which requires solving the
ECDLP to find logGC = logG cG = c or logGD = logG dG = d.

4. The Digital Signature Algorithm

4.1. Standard Digital Signature Algorithm. The Digital Signature Algorithm, or DSA,
is a digital signature scheme used to verify the authenticity of documents purported to have
been created by a particular person. It does not rely on any particularly named problem
like the Diffie-Hellman system does. DSA is actually comprised of three separate algorithms:
a key generation algorithm, a signature generation algorithm, and a signature verification
algorithm.

Algorithm 4.1 (DSA Key Generation).

(1) Choose a cryptographic hash function1 H with output length m bits.
(2) Choose a prime q of over m bits, and another prime p such that q | p− 1.
(3) Find a generator g for the subgroup of order q in F×

p by computing g = h(p−1)/q)

(mod p) for random elements h ∈ F×
p until g ̸= 1.

(4) Save the domain parameters (H, p, q, g) for distribution.
(5) For each individual user:

(a) Choose a random integer x ∈ [1, q − 1]. This is the private key; do not share it.
(b) Compute y = gx (mod p). This is the public key; share it!

Remark. DSA key generation essentially defines a hash function, a subgroup of F×
p of order

q, and a generator for this group. Each user then gets a random element of this subgroup
as a private key, and a corresponding public key in F×

p that sets up the DLP for later.

Algorithm 4.2 (DSA Signature Generation).
Input: m, the message; x, the private key.
Output: A signature (r, s) for the message m from the user.

(1) Define the reduction map f : F×
p → Fq defined by x 7→ x (mod q).

(2) Choose a random integer k ∈ [1, q − 1].
(3) Compute r = f(gk (mod p)) If r = 0, choose new k.

(4) Compute s = f
(

H(m)+xr
k

)
If s = 0, choose new k.

(5) Share (r, s) as the signature for the message m.

Remark. Adding the H(m) term to the xr term makes the signature dependent on both the
message and the user’s private key in a way that is difficult to reverse but easy to check, as
we will see next.

1A one-way function that takes an arbitrarily sized input and produces a random fixed-length numerical
string as output.

6 CHRISTIAN ZHOU-ZHENG

Algorithm 4.3 (DSA Signature Verification).
Input: m, the message; y, the public key; (r, s), the signature.
Output: Validity of the signature.

(1) Verify that r, s ∈ [1, q − 1], as they must be.

(2) Compute u1 =
H(m)

s
(mod q).

(3) Compute u2 =
r
s
(mod q).

(4) Compute v = (gu1yu2 (mod p)) (mod q). The signature is valid if and only if v = r.

Remark on Security. It can be mathematically proven that the above seemingly-arbitrary-
looking algorithm accurately verifies correctly generated signatures.

First, from Algorithm 4.1, we defined g = h(p−1)/q (mod p). By Fermat’s Little Theorem,
this implies that gq ≡ hp−1 ≡ 1 (mod p). Thus g has order q, since q is prime.
In Algorithm 4.2, we computed

s =
H(m) + xr

k
(mod q).

Therefore, solving for k gives

k ≡ H(m) + xr

s
≡ H(m)

s
+

xr

s
(mod q).

Since g has order q, we can raise it to the power of k and drop the (mod q) from above:

gk ≡ g
H(m)

s
+xr

s ≡ g
H(m)

s g
xr
s (mod p).

Because gx = y by Algorithm 4.1, we can rewrite the latter term as y
r
s . Clearly now

defining u1 and u2 as in Algorithm 4.3, this gives

gk ≡ gu1yu2 (mod p).

In Algorithm 4.2, we defined r = (gk (mod p)) (mod q). Thus taking modulo q of both
sides yields

r = (gu1yu2 (mod p)) (mod q)

and, as we defined v to be exactly the right side of that equation in Algorithm 4.3, we have
the equality that r = v. ■

Past the additions, multiplications, and exponentiation, which are complicated but easy to
undo for an attacker, an attacker aiming to uncover x—the private key—from the signature
(r, s) must solve the DLP in F×

p to determine y and then what x is from logg y = logg g
x = x.

Thus the DSA is, at its core, based on the DLP, and so we can modify it for use with the
ECDLP.

4.2. Elliptic Curve Digital Signature Algorithm. Now that we have seen the standard
Digital Signature Algorithm in action, we can compare and contrast it against its elliptic
curve analog.

Algorithm 4.4 (ECDSA Key Generation).

(1) Choose a cryptographic hash function H with output length m bits.
(2) Choose a finite field Fq and an elliptic curve E(Fq) over this field.
(3) Choose a point G of prime order p on this curve.

ON ELLIPTIC CURVE CRYPTOGRAPHIC PROTOCOLS 7

(4) Save the domain parameters (H,Fq, E(Fq), p, G, h) for distribution. h is defined as
in Algorithm 3.4.

(5) For each individual user:
(a) Choose a random integer x ∈ [1, p− 1]. This is the private key; do not share it.
(b) Compute Y = xG. This is the public key; share it!

Remark. ECDSA key generation also defines a hash function, a group of order p, and a
generator for this group. The similarities to DSA should be clear; setting the public key
Y = xG sets up the ECDLP for later.

Algorithm 4.5 (ECDSA Signature Generation).
Input: m, the message; x, the private key.
Output: A signature (r, s) for the message m from the user.

(1) Define the reduction map f : E(Fp) → Fp defined by P 7→ x(P) (mod p), where
x(P) is the x-coordinate of the point P .

(2) Choose a random integer k ∈ [1, p− 1].
(3) Compute r = f(kG). If r = 0, choose new k.

(4) Compute s = f
(

H(m)+xr
k

)
. If s = 0, choose new k.

(5) Share (r, s) as the signature for the message m.

Remark. Note that this is practically identical to Algorithm 4.2, with the choice of reduction
map being the only major difference. We can look at the x-coordinate only because x(nP)
depends only on x(P); the x-coordinate is the easiest piece of critical information to compute,
and stores the bulk of the data in practical elliptic curve cryptographical applications.

Algorithm 4.6 (ECDSA Signature Verification).
Input: m, the message; Y , the public key; (r, s), the signature.
Output: Validity of the signature.

(1) Verify that r, s ∈ [1, p− 1], as they must be.

(2) Compute u1 =
H(m)

s
(mod p).

(3) Compute u2 =
r
s
(mod p).

(4) Compute V = u1G+ u2Y . The signature is valid if and only if r = f(V).

Remark on Security. Like the DSA, we can prove that the above algorithm accurately verifies
correctly generated signatures. The reader is encouraged to pause here and attempt to derive
the analogous proof from the proof of Algorithm 4.3.

First, from Algorithm 4.4, we have that Y = xG. Thus we have

V = u1G+ u2xG.

By distributivity over addition, this is equivalent to

V = (u1 + u2x)G.

From the definitions of u1 and u2 as in Algorithm 4.6, this expands to

V =

(
H(m) + xr

s

)
G.

From the definition of s in Algorithm 4.5, this becomes

V =

(
H(m) + xr

H(m) + xr
· k

)
G

8 CHRISTIAN ZHOU-ZHENG

which cancels to yield V = kG. Thus f(V) = f(kG) = r as per Algorithm 4.5. ■

Once again, an attacker attempting to find the private key x from the signature (r, s) must
solve the ECDLP in E(Fq) to determine logG Y = logG xG = x.

5. Comparisons

Elliptic curve cryptography (ECDH, ECDSA) provides the same level of security as asym-
metric cryptography (resp. FFDH, DSA) with smaller key sizes; see Table 1 for the numbers.
This reduces latency for elliptic curve cryptography users, as operations can be performed
more quickly; it also reduces the amount of information transmitted, especially when using
point compression to reduce bandwidth further (again, see Appendix A.2).

In general, the best known algorithms to crack the ECDLP have a complexity of about
O(

√
n), where n is the order of the field. Thus for n bits of security, 2n, we need a field with

(2n)2 = 22n elements and thus a key of length 2n.
On the other hand, over F×

p , the general number field sieve can be exploited to factor
field entries and solve the DLP, so a much longer key is needed to make cracking classical
cryptographical schemes computationally intractable.

Symmetric Key Length Asymmetric Key Length Elliptic Curve Key Length
(Bit Security) (i.e. RSA, DSA, etc.) (i.e. ECDSA)

80 1024 160
112 2048 224
128 3072 256
192 7680 384
256 15360 512

Table 1. Security comparison between elliptic curve-based and other
cryptographic schemes.

Elliptic curve-based cryptosystems have been adapted from a variety of other classical
cryptosystems like the Massey-Omura and El-Gamal systems, and they are being increas-
ingly adopted in many modern cryptographic applications for their efficiency and security:
LINE messaging app uses elliptic curve Diffie-Hellman for end-to-end encryption, and the
Signal Protocol used by chat apps including Signal, WhatsApp, and Skype uses ECDH for
post-compromise security—ensuring future messages are secure even if a previous message
was compromised. Cryptocurrencies such as Bitcoin and Ethereum use ECDSA to sign
transactions.

Unfortunately, elliptic curve cryptography is susceptible to attacks by quantum computers
using Shor’s algorithm for quantum integer prime factorization. While elliptic curve cryp-
tography sees widespread use today, it may become obsolete in the near future in the face
of leaps in quantum computing technology, and cryptosystems based on other intractable
mathematical problems will rise in its place—only time will tell.

ON ELLIPTIC CURVE CRYPTOGRAPHIC PROTOCOLS 9

Appendix A. Notes on General Implementation

A.1. Choice of Field. There is a finite field Fq if and only if q is a power of a prime, and
this field is unique up to isomorphism. Thus we could theoretically use any field with power-
of-prime order, but we are restricted in cryptographic applications for practical reasons.
Specifically, we are restricted in q to q = p an odd prime, the prime fields, or q = 2m for
some m ≥ 1, the binary fields. This only serves to forbid fields with q = pm for p ̸= 2.

The reasoning behind this is that power-of-prime fields have no practical reason for being
implemented. Binary fields are naturally easy to implement due to computers’ binary nature,
and prime fields’ elements, being simple integers, are also convenient to work with. Other
power-of-prime fields are too inconvenient to implement to warrant their usage.

A.2. Elliptic Curve Point Conversion. When given a point (x, y) ∈ E(Fq), it is often
necessary to convert it to a suitable data format and vice versa. Typically the output will
be in the form of an octet string, comprised of octets of two hexadecimal digits each. There
are two primary methods of converting curve points: with or without point compression.

In either case, the point at infinity O is converted to the string 0016. Field elements
of prime fields are converted using standard integer-to-octet-string conversion, while field
elements of binary fields are converted by considering the coefficient string as a bit string
and using bit-string-to-octet-string conversion.

Algorithm A.1 (With Point Compression). Point compression works on the basis that
there are at most two y-coordinates for points at any given x-coordinate; therefore, the only
important information from the y-coordinate is its parity ỹ. In a prime field, ỹ = y (mod 2),
but in a binary field, if the x-coordinate is 0, ỹ = 0; otherwise, set ỹ to the constant term z0
of the binary polynomial z such that z = y

x
.

Then the leading octet of the string is set to either 0216 or 0316 if ỹ = 0 or 1, respectively.
The x-coordinate is translated from a field element to an octet string and appended to the
indicator octet to yield the converted octet string.

Algorithm A.2 (Without Point Compression). Without point compression, the leading
octet of the string is set to 0416 to denote that point compression is not being used. Then
the x-coordinate and y-coordinate are translated from field elements to octet strings and
concatenated to yield the converted octet string.

Converting data to an elliptic curve point can then be done by setting the leading octet
to indicate whether point compression is being used and reversing the above algorithms.

A.3. SEC Recommended Curves. The Standards for Efficient Cryptography Group, or
SECG, has several standards recommended for implementation of elliptic curve cryptography.
They recommend the following for prime and binary fields:

A.3.1. Prime Fields. ⌈log2 p⌉ ∈ {192, 224, 256, 384, 521} and elements should be integers.

A.3.2. Binary Fields. m ∈ {163, 233, 239, 283, 409, 571} and elements should be of the set of
binary polynomials of degree m− 1:{

am−1x
m−1 + · · ·+ a1x

1 + a0 : ai ∈ {0, 1}
}

with addition and multiplication done with respect to a reduction polynomial, a specially
chosen irreducible binary polynomial of degree m for each field.

10 CHRISTIAN ZHOU-ZHENG

Appendix B. Failure Methods

It is worth mentioning a few ways in which these algorithms can fail or be exploited in
practical applications.

B.1. Choice of Curve. Some curves are unsuitable for use in cryptography. In particular,
the set of nonsingular points on a singular curve E(Fq)—one with repeated roots, or ∆ = 0
from Definition 2.1—form a group isomorphic to Fq. Technically these are not elliptic curves,
rather general cubic curves, but the same can happen over proper elliptic curves; the ECDLP
can be lifted to the DLP over a corresponding finite field in some cases, rendering these curves
insecure.

B.2. ECDH Invalid Curve Attacks. ECDH is susceptible to attacks in which one party
maliciously chooses invalid curve points, and when the other party does not verify that these
points are indeed invalid, the malicious party is able to derive the other party’s private key
given enough time.

The general idea is that the attacker takes the elliptic curve equation and varies the
constant parameter b to generate groups with arbitrary order, possibly divisible by small
primes. For instance, suppose the attacker has a parameter b3 such that the corresponding
elliptic curve group has order divisible by 3; then, there exists a point P on this curve that
generates a subgroup of order 3. There are only 3 possibilities for a multiple xP of this point,
so by sending this to the other party and checking whether a valid response is received, the
attacker can potentially determine xP and thus x (mod 3). Doing this for enough small
primes allows the attacker to apply the Chinese Remainder Theorem to compute the much
larger private key x.

B.3. DSA True Randomness. In both the DSA and ECDSA, the random integer k must
be truly random, and no two messages can be signed with the same value of k. To see why,
suppose the user with private key x signs two messages, m1 and m2, with the same value of
k in ECDSA (equivalent for DSA with different math). This results in the signatures (r1, s1)
and (r2, s2), where:

r1 = r2 = f(kG)

s1 =
H(m1) + xr

k
(mod p)

s2 =
H(m2) + xr

k
(mod p).

Rearranging the last two equations for k and setting them equal, we have that

H(m1) + xr

s1
= k =

H(m2) + xr

s2
(mod p).

Therefore we have

xr(s1 − s2) = s1H(m2)− s2H(m1) (mod q) =⇒ x =
s1H(m2)− s2H(m1)

r(s1 − s2)
(mod q).

Since everything on the right side of the last equation is known to the attacker, this allows
for easy retrieval of the private key if the same value of k is reused.

	1. Introduction
	2. Preliminaries
	3. The Diffie-Hellman System
	3.1. Finite Field Diffie-Hellman
	3.2. Elliptic Curve Diffie-Hellman

	4. The Digital Signature Algorithm
	4.1. Standard Digital Signature Algorithm
	4.2. Elliptic Curve Digital Signature Algorithm

	5. Comparisons
	Appendix A. Notes on General Implementation
	A.1. Choice of Field
	A.2. Elliptic Curve Point Conversion
	A.3. SEC Recommended Curves

	Appendix B. Failure Methods
	B.1. Choice of Curve
	B.2. ECDH Invalid Curve Attacks
	B.3. DSA True Randomness

