
CONTINUED FRACTIONS AND PELL EQUATIONS

ARANYA KARIGHATTAM

Abstract. In this paper, we will study finite, infinite, and periodic continued fractions and discuss how

they are used to find solutions to the Pell Equation x2 − dy2 = ±1 for any integer d. Specifically, we
will look at interesting properties of convergents of continued fractions and prove Dirichlet’s Theorem on

Diophantine Approximation, which states that there are infinitely many rational numbers that are good
approximations to an irrational number. We also prove an important result by Euler and Lagrange relating

periodic continued fractions and quadratic irrationals. We will find the solutions to the Pell Equation using

properties of the periodic continued fraction of
√
d. We follow the material in [1].

1. Introduction

The Pell Equation is a diophantine equation of the form x2−dy2 = ±1 where x, y, d are positive integers.
Can we find solutions to this equation? If d = 2, then (1, 0) and (3, 2) are solutions to x2 − 2y2 = 1 and
(1, 1) and (7, 5) are solutions to x2 − 2y2 = −1. However, if d ≡ 3 (mod 4), x2 − dy2 = −1 has no solutions.
This can be seen by noticing that x2, y2 ≡ 0 or 1 (mod 4), so x2 − dy2 ≡ 0, 1, or 2 (mod 4) but not −1
(mod 4). If d is a perfect square, we can write d as m2, so x2 −m2y2 = (x+my)(x−my) = 1. In this case,
x+my and x−my are either both 1 or −1. Since x, y,m are positive integers, x+my cannot be equal to
−1, so both terms must be equal to 1. Therefore the only solution is (x, y) = (1, 0). The other equation is
x2 − m2y2 = (x + my)(x − my) = −1. One term must be equal to 1 and the other must be equal to −1.
This implies x+my = 1 and x−my = −1. The only solution to this equation is (x, y) = (0, 1) where d = 1.

In general, for any positive d that is not a perfect square, how many solutions does x2−dy2 = ±1 have and
how do we find them? In 1657, Fermat stated that there are infinitely many solutions to the Pell Equation
x2 − dy2 = 1, and Wallis and Brouncker found that continued fractions can be used to find the solutions.
Euler showed, in 1767, that if there is a fundamental solution to the Pell Equation, then there are infinitely
many solutions. A proof by Lagrange in 1768 determines all the solutions to the Pell Equation.

In this paper, we describe many important properties of finite and infinite continued fractions such as
convergents which are obtained by keeping only the first k terms of a continued fraction. We will prove
Dirichlet’s Theorem on Diophantine Approximation and a theorem, proved by Euler and Lagrange, that
every infinite simple continued fraction of an irrational number is periodic if and only if that irrational
number is a quadratic irrational. We will show how the period of the periodic simple continued fraction
of

√
d can be used to determine the solutions to the Pell Equation x2 − dy2 = ±1 and prove the following

theorem.

Theorem 1.1. Let d be a positive integer that is not a perfect square. Let n be the period of the periodic
simple continued fraction of

√
d. If n is even, then there are infinitely many positive solutions to x2−dy2 = 1

and no solutions to x2 − dy2 = −1. If n is odd, then there are infinitely many solutions to x2 − dy2 = ±1.

2. Finite Continued Fractions

Definition 2.1 (Finite Continued Fraction). For any real numbers a0, a1, . . . , an where a1, . . . , an are posi-
tive, we define a finite continued fraction to be of the form

a0 +
1

a1 +
1

a2 +
1

. . . +
1

an
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for some nonnegative integer n. We call a1, . . . , an the coefficients of the finite continued fraction. If a1, . . . , an
are integers, then we consider the finite continued fraction to be simple.

For simplicity, we will denote the finite continued fraction as [a0; a1, a2, . . . an].

Example 2.2. We will find the finite continued fraction representing 56/31. From the Euclidean algorithm,
we see that

56 = 1 · 31 + 25, (1)

31 = 1 · 25 + 6, (2)

25 = 4 · 6 + 1. (3)

If we divide (1) by 31, (2) by 25, and (3) by 6, we get

56

31
= 1 +

25

31
= 1 +

1
31
25

, (4)

31

25
= 1 +

6

25
= 1 +

1
25
6

, (5)

25

6
= 4 +

1

6
. (6)

Combining (4), (5), and (6) gives
56

31
= 1 +

1

1 + 1
4+ 1

6

.

In this case, 56/31 is represented by the finite simple continued fraction [1; 1, 4, 6].

We could also start with a finite simple continued fraction and find the number it represents.

Example 2.3. The finite simple continued fraction

1 +
1

2 + 1
3+ 1

4

can be written as

1 +
1

2 + 1
3+ 1

4

= 1 +
1

2 + 4
13

= 1 +
13

30

=
43

30
which is a rational number.

The next step would be to check if all rational numbers are represented by finite simple continued fractions
and all finite simple continued fractions represent rational numbers.

Theorem 2.4. Every finite simple continued fraction represents a rational number.

Proof. We will use induction on n to show that the finite continued fraction [a0; a1, a2, . . . , an] represents a
rational number. If n = 0, we see that [a0] = a0 is rational. Assume for n that [a0; a1, a2, . . . , an] = r/s for
some integers r, s. By induction, for n+ 1,

[a0; a1, a2, . . . , an, an+1] = a0 +
1

[a1; a2, a3, . . . , an, an+1]
= a0 +

y

x
=

a0x+ y

x

for some integers x, y such that [a1; a2, a3, . . . , an, an+1] = x/y. Therefore [a0; a1, a2, . . . , an, an+1] is rational.
□

Theorem 2.5. Every rational number can be represented by a finite simple continued fraction.

The proof of this theorem follows from the Euclidean Algorithm. We refer the reader to [1] for the proof.
We can also look at properties of the first k terms of a continued fraction.
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Definition 2.6. Let Cn be the continued fraction [a0; a1, a2, . . . , an] for some nonnegative integer n. Let k
be a positive integer and k ≤ n. The continued fraction Ck = [a0; a1, a2, . . . , ak] of the first k terms of Cn is
called the kth convergent.

Let us find the first few convergents of Cn:

C0 = [a0] = a0,

C1 = [a0; a1] = a0 +
1

a1
=

a0a1 + 1

a1
,

C2 = [a0; a1, a2] = a0 +
1

a1 +
1
a2

=
a0a1a2 + a0 + a2

a1a2 + 1
=

a2(a0a1 + 1) + a0
a1a2 + 1

,

C3 = [a0; a1, a2, a3] = a0 +
1

a1+
1

a2+ 1
a3

= a0a1a2a3+a0a1+a0a3+a2a3+1
a1a2a3+a1+a3

= a3(a2(a0a1+1)+a0)+(a0a1+1)
a3(a1a2+1)+a1

.

Notice that there is an interesting pattern in the numerators and denominators of the convergents. If
we let p0 = a0, q0 = 1, p1 = a0a1 + 1, and q1 = a1, then C0 = p0/q0, C1 = p1/q1, C2 = p2/q2 =
(a2p1 + p0)/(a2q1 + q0), and C3 = p3/q3 = (a3p2 + p1)/(a3q2 + q1). We can now extend this pattern to Ck.

Theorem 2.7. Let Cn = [a0; a1, a2, . . . , an] be a finite continued fraction. Define p0 = a0, q0 = 1, p1 =
a0a1+1, and q1 = a1. For any positive integer k with k ≤ n, let pk = akpk−1+pk−2 and qk = akqk−1+qk−2.
Then, the kth convergent Ck = [a0; a1, a2 . . . , ak] is equal to pk/qk.

Proof. We will use induction on k. If k = 0, then

C0 = [a0] = a0 =
a0
1

=
p0
q0

,

and if k = 1, then

C1 = [a0; a1] = a0 +
1

a1
=

a0a1 + 1

a1
=

p1
q1

.

Assume for k that

Ck = [a0; a1, a2, . . . , ak−1, ak] =
akpk−1 + pk−2

akqk−1 + qk−2
=

pk
qk

.

By induction, for k + 1,

Ck+1 = [a0; a1, a2, . . . , ak−1, ak, ak+1] =

[
a0; a1, a2, . . . , ak−1, ak +

1

ak+1

]
=

(ak + 1
ak+1

)pk−1 + pk−2

(ak + 1
ak+1

)qk−1 + qk−2

=
ak+1(akpk−1 + pk−2 +

1
ak+1

pk−1)

ak+1(akqk − 1 + qk−2 +
1

ak+1
qk−1)

=
ak+1pk + pk−1

ak+1qk + qk−1

=
pk+1

qk+1

as desired.
□

Example 2.8. From Example (2.2), we found that 56/31 = [1; 1, 4, 6]. Therefore we get

p0 = 1,

p1 = 1 · 1 + 1 = 2,

p2 = 4 · 2 + 1 = 9,

p3 = 6 · 9 + 2 = 56,
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and

q0 = 1,

q1 = 1,

q2 = 4 · 1 + 1 = 5,

q3 = 6 · 5 + 1 = 31.

This implies the convergents are

C0 =
p0
q0

=
1

1
= 1,

C1 =
p1
q1

=
2

1
= 2,

C2 =
p2
q2

=
9

5
,

C3 =
p3
q3

=
56

31
.

These convergents seem to alternate where the convergents with an even index are smaller than the
convergents with odd index. We would want to find out how close successive convergents really are.

Theorem 2.9. Let Cn = [a0; a1, a1, . . . an] be a finite simple continued fraction and let Ck = pk/qk be the
kth convergent for any positive integer k with k ≤ n. Then

Ck − Ck−1 =
(−1)k−1

qkqk−1
. (7)

To prove this theorem, we need the following lemma.

Lemma 2.10. Let Cn = [a0; a1, a2, . . . , an] and Ck = pk/qk be the kth convergent for any positive integer k
with k ≤ n. Then

pkqk−1 − pk−1qk = (−1)k−1.

Proof. We will use induction on k. Based on the definition of pk and qk in Theorem 2.7, if k = 1, we see
that

p1q0 − p0q1 = (a0a1 + 1) · 1− a0a1 = 1 = (−1)0.

Assume for k that

pkqk−1 − pk−1qk = (−1)k−1.

Then for k + 1,

pk+1qk − pkqk+1 = (akpk + pk−1)qk − pk(akqk + qk−1)

= akpkqk + pk−1qk − akpkqk − pkqk−1

= pk−1qk − pkqk−1

= −(pkqk−1 − pk−1qk)

= (−1)(−1)k−1

= (−1)k

as desired. □

Proof of Theorem 2.9. Notice that

Ck − Ck−1 =
pk
qk

− pk−1

qk−1
=

pkqk−1 − qkpk−1

qkqk−1
=

(−1)k−1

qkqk−1
,

so (7) holds. □

Similarly, we have the following result for convergents with index two apart.
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Corollary 2.11. Let Cn = [a0; a1, a1, . . . an] be a finite simple continued fraction and let Ck = pk/qk be the
kth convergent for any positive integer k with k ≤ n. Then

Ck − Ck−2 =
ak(−1)k

qkqk−2
. (8)

Proof. We see that

Ck − Ck−2 =
pk
qk

− pk−2

qk−2

=
pkqk−2 − pk−2qk

qkqk−2

=
(akpk−1 + pk−2)qk−2 − pk−2(akqk−1 + qk−2)

qkqk−2

=
akpk−1qk−2 + pk−2qk−2 − akpk−2qk−1 − pk−2qk−2

qkqk−2

=
ak(pk−1qk−2 − pk−2qk−1)

qkqk−2

=
ak(−1)k−2

qkqk−2

=
ak(−1)k

qkqk−2
,

so (8) holds. □

We can apply Theorem 2.9 to the convergents of the finite simple continued fraction of 56/31 in Example
2.8. We see that

C1 − C0 = 2− 1 = 1 =
(−1)0

(q1q0)
,

C2 − C1 =
9

5
− 2 = −1

5
=

(−1)1

5 · 1
=

(−1)1

(q2q1)
,

C3 − C2 =
56

31
− 9

5
=

1

155
=

(−1)2

31 · 5
=

(−1)2

q3q2
.

Also, from Corollary 2.11, we have

C3 − C1 =
56

31
− 2 = − 6

31
=

6 · (−1)3

31 · 1
=

ak(−1)k

qkqk−2

since a3 = 6.

Corollary 2.12. Let pk and qk be as defined in Theorem 2.7. Then pk and qk are relatively prime.

Proof. Let m = gcd (pk, qk). This implies m divides pkqk−1 and pk−1qk. By Lemma 2.10, m must divide
(−1)k−1 so m = 1. □

As we saw in Example 2.8, convergents of the form C2z, with an even index, are smaller than convergents
of the form C2w+1, with an odd index. Using Theorem 2.9 and Corollary 2.11, the order of the convergents
can be determined.

Theorem 2.13. Let Cn = [a0; a1, a1, . . . an] be a finite simple continued fraction and let Ck = pk/qk be
the kth convergent for any positive integer k with k ≤ n. Then for all nonnegative integers w, z with
2w + 1, 2z ≤ n, C2w+1 > C2w+3, C2z < C2z+2, and C2w+1 > C2z.

Proof. By (8) of Corollary 2.11,

C2w+3 − C2w+1 =
a2w+3(−1)2w+3

q2w+3q2w+1
.
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Since 2w+3 is odd and a2w+3, q2w+3, and q2w+1 are positive, C2w+3−C2w+1 is negative so C2w+1 > C2w+3.
Also,

C2z+2 − C2z =
a2z+2(−1)2z+2

q2z+2q2z
.

Since 2z+2 is even and a2z+2, q2z+2, and q2z are positive, C2z+2 −C2z is positive so C2z < C2z+2. To show
that C2w+1 > C2z, we first note that by (7) of Theorem 2.9,

C2w+1 − C2w =
(−1)2w

q2w+1q2w
.

Since 2w+1 is even and q2w+1 and q2w are positive, C2w+1 −C2w is positive so C2w+1 > C2w. This implies

C2w+1 > C2w+1+2z > C2w+2z > C2z.

□

3. Infinite Continued Fractions

Infinite Continued Fractions are of the form

a0 +
1

a1 +
1

a2 + . . .

where a0, a1, a2, . . . are real numbers and a1, a2, . . . are positive. As with finite simple continued fractions,
infinite continued fractions are simple if the coefficients a0, a1, . . . are integers. In Theorem 2.13, we found
that the sequence of even-index convergents is increasing, the sequence of odd-index convergents is decreasing,
and all odd-index convergents are greater than all even-index convergents. If we kept increaseing the value
of n, would these two sequences eventually converge? We will now prove that we can define any infinite
simple continued fraction as the limit of the convergents of the first k terms.

Theorem 3.1. Let [a0; a1, a2, . . .] be an infinite simple continued fraction and let Ck = [a0; a1, a2, . . . , ak]
for any positive integer k. Then there exists a real number α such that [a0; a1, a2, . . .] converges to α. In
other words,

lim
k→∞

Ck = α.

Proof. For any nonnegative integer n, from Theorem 2.13, we have C2w+1 > C2w+3, C2z < C2z+2, and
C2w+1 > C2z for all nonnegative integers w, z with 2w + 1, 2z ≤ n. Since these inequalities hold for any n,
we see that C2w+1 > C2z for all nonnegative integers w, z, so the sequence of convergents C2k+1 are bounded
below by C2z for any nonnegative integer z and the sequence of convergents C2k are bounded above by
C2w+1 for any nonnegative integer w. By the Monotone Convergence Theorem, both sequences have a limit,
so

lim
k→∞

C2k+1 = α1

and
lim
k→∞

C2k = α2.

We will now show that the limits are equal by proving that

lim
k→∞

(C2k+1 − C2k) = 0,

since
lim
k→∞

(C2k+1 − C2k) = lim
k→∞

C2k+1 − lim
k→∞

C2k.

By (7) of Theorem 2.9,

C2k+1 − C2k =
(−1)2k

q2k+1q2k
=

1

q2k+1q2k
.

Since qk ≥ 1 for all nonnegative integers k, qk ≥ qk−1 + qk−2 ≥ qk−1 + 1 ≥ k for all k ≥ 2, so

0 <
1

q2k+1q2k
≤ 1

(2k + 1)(2k)
.
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We know that

lim
k→∞

1

(2k + 1)(2k)
= 0,

so

lim
k→∞

(C2k+1 − C2k) = lim
k→∞

1

q2k+1q2k
= 0.

Therefore α = α1 = α2 and

lim
k→∞

Ck = α.

□

We proved earlier that finite simple continued fractions represent rational numbers. It turns out that
infinite simple continued fractions represent irrational numbers and that the converse is also true.

Theorem 3.2. Every infinite simple continued fraction [a0; a1, a2, . . .] is irrational.

Proof. Let α = [a0; a1, a2, . . .] and let Ck be the kth convergent of α for any nonnegative integer k. By
Theorem 3.1, C2k < α < C2k+1. This implies

0 < α− C2k < C2k+1 − C2k

so

0 < α− p2k
q2k

<
1

q2k+1q2k
Assume, for the sake of contradiction, that α is rational. Then we can write α = a/b for some integers a, b.
If we multiply all three sides of the inequality by q2kb, we get

0 < aq2k − bp2k <
b

q2k+1

Since q2k and p2k are integers, aq2k − bp2k is always an integer greater than 0. But q2k+1 ≥ k for all
nonnegative integers k, so we can choose a positive integer j greater than b such that q2j+1 > b which would
imply that b/q2j+1 < 1. This is a contradiction since there are no integers between 0 and 1. Therefore α
must be irrational. □

Now that we have proved that any infinite simple continued fraction represents an irrational number, we
would also like to show that any irrational number is always represented by an infinite simple continued
fraction. We will describe an algorithm to construct an infinite simple continued fraction representing any
irrational number α. First, expand α as follows:

α = ⌊α⌋+ {α}

= ⌊α⌋+
1

(1/{α})

= ⌊α⌋+
1

⌊1/{α}⌋+ {1/{α}}

= ⌊α⌋+
1

⌊1/{α}⌋+
1

(1/{1/{α}})

= ⌊α⌋+
1

⌊1/{α}⌋+
1

⌊1/{1/{α}}⌋+ {1/{1/{α}}

(9)

Finding the first three coefficients of the expansion of α will help us find a recursive formula for the kth
coefficient for any nonnegative integer k. From (9), the first three coefficients of the expansion of α are ⌊α⌋,
⌊1/{α}⌋, and ⌊1/{1/{α}}⌋. Let α0 = α, α1 = 1/{α0}, and α2 = 1/{α1}. If a0 = ⌊α0⌋, a1 = ⌊α1⌋, and
a2 = ⌊α2⌋, then a0, a1, and a2 are integer coefficients of the expansion of α. This implies the kth coefficient
is given by ak = ⌊αk⌋ where αk+1 = 1/{αk} and α0 = α for all nonnegative integers k. Since we want to
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show that α = [a0; a1, a2, . . .], by Theorem 3.1, we need to prove that as k approaches infinity, the finite
simple continued fraction Ck equal to [a0; a1, a2, . . . , ak, αk+1] approaches α.

Theorem 3.3. Let α be any irrational number. Define the integers a0, a1, a2, . . . recursively as follows. Let
α0 = α, αk+1 = 1/{αk}, and ak = ⌊αk⌋ for all positive integers k. If Ck = [a0; a1, a2, . . . , ak, αk+1] = α,
then

lim
k→∞

Ck = α.

Proof. We can instead show that

α− lim
k→∞

Ck = 0.

By Theorem 2.13, if k is odd, then Ck+1 < α < Ck. Subtracting Ck from all sides of the inequality, we get
Ck+1 − Ck < α− Ck < 0, and by (7) of Theorem 2.9,

α− Ck < Ck − Ck+1 =
1

qk+1qk
. (10)

If k is even, then Ck < α < Ck+1, and subtracting Ck from all sides of the inequality gives 0 < α − Ck <
Ck+1 − Ck. By (7) of Theorem 2.9,

α− Ck < Ck+1 − Ck = − 1

qk+1qk
. (11)

Based on (10) and (11), we see that

|α− Ck| <
1

qk+1qk
. (12)

As we found in the proof of Theorem 3.1,

lim
k→∞

1

qk+1qk
= 0,

so

lim
k→∞

|Ck − α| = 0.

Hence

lim
k→∞

Ck = α.

□

Therefore, we can indeed write α as the infinite simple continued fraction [a0; a1, a2, . . .]. It immediately
follows that this representation must be unique. Suppose the infinite simple continued fraction [b0; b1, b2, . . .]
is also equal to α. Then, using our definition of α, we can see by induction on k that bk = ⌊αk⌋ = ak for all
nonnegative integers k.

A notable result, proved by Dirichlet, states that there are infinitely many rational numbers that are good
approximations of any irrational number α.

Theorem 3.4 (Dirichlet’s Theorem on Diophantine Approximation). Let α be an irrational number. Then
there are infinitely many rational numbers r/s such that∣∣∣∣α− r

s

∣∣∣∣ < 1

s2
.

Proof. If pk/qk is the kth convergent of the infinite simple continued fraction of α for any nonnegative integer
k, then by (12), ∣∣∣∣α− pk

qk

∣∣∣∣ < 1

qk+1qk
.

Since qk+1 > qk, we see that 1/qk+1qk < 1/q2k. Therefore∣∣∣∣α− pk
qk

∣∣∣∣ < 1

q2k
.

There are infinitely many convergents pk/qk and hence this theorem holds. □
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We now show that the convergents pk/qk of the infinite simple continued fraction of α are the best
approximations of α compared to any other rational number r/s where s < qk.

Theorem 3.5. Let α be an irrational number and let pk/qk be the kth convergent of the infinite simple
continued fraction representing α for any nonnegative integer k. If r/s is a rational number with s > 0 such
that ∣∣∣∣α− r

s

∣∣∣∣ < ∣∣∣∣α− pk
qk

∣∣∣∣
then s > qk.

To prove this theorem, the following lemma is needed.

Lemma 3.6. Let α be an irrational number and let pk/qk be the kth convergent of the infinite simple
continued fraction representing α for any nonnegative integer k. If r and s are integers such that

|sα− r| < |qkα− pk|,
then s ≥ qk+1.

Proof. Assume, for the sake of contradiction, that 1 ≤ s < qk+1. There exists integers x, y that are solutions
to the system of equations

pkx+ pk+1y = r (13)

qkx+ qk+1y = s. (14)

To solve for y, we first multiply (13) by qk and (14) by pk to get

pkqkx+ pk+1qky = rqk (15)

qkpkx+ qk+1pky = spk, (16)

and then subtract (16) from (15), which implies

(pk+1qk − pkqk+1)y = rqk − spk.

By Lemma 2.10, we see that

y = (−1)k(rqk − spk). (17)

Similarly, to solve for x, we multiply (13) by qk+1 and (14) by pk+1 to get

pkqk+1x+ pk+1qk+1y = rqk+1 (18)

qkpk+1x+ qk+1pk+1y = spk+1, (19)

and then subtract (19) from (18) which gives

(pkqk+1 − qkpk+1)x = rqk+1 − spk+1.

By Lemma 2.10, we see that

x = (−1)k(rqk+1 − spk+1). (20)

We will show that any value of x and y leads to a contradiction. First, if x = 0, then by (20), spk+1 = rqk+1.
Since pk+1 and qk+1 are relatively prime by Corollary 2.12, qk+1 ≤ s. But this contradicts our assumption,
so x ̸= 0. Next, if y = 0, then from (13) and (14), we see that r = pkx and s = qkx, which implies

|sα− r| = |qkxα− pkx| = |x||qkα− pk| ≥ |qkα− pk|
since |x| ≥ 1. But this contradicts the statement of this theorem, so y ̸= 0. The remaining case is where x, y
are nonzero. We will first show that y < 0 implies x > 0, and y > 0 implies x < 0. From (14), we know that

x =
s− qk+1y

qk
,

so if y < 0, since s, qk, qk+1 > 0, then x > 0. If y > 0, then qk+1y ≥ qk+1 > s, which implies qkx =
s− qk+1y < 0, so x < 0. Next, based on (13) and (14),

|sα− r| = |(qkx+ qk+1y)α− (pkx+ pk+1y)|
= |(qkα− pk)x+ (qk+1α− pk+1)y|.

9



Note that by Theorem 2.13, either

pk/qk < α < pk+1/qk+1 (21)

or

pk+1/qk+1 < α < pk/qk. (22)

If (21) is true, then 0 < qkα − pk and qk+1α − pk+1 < 0, and if (22) is true, then qkα − pk > 0 and
0 < qk+1α − pk+1. This implies (qkα − pk)x and (qk+1α − pk+1)y are either both positive or negative.
Therefore, we get

|sα− r| = |x||qkα− pk|+ |y||qk+1α− pk+1|
≥ |x||qkα− pk

≥ |qkα− pk|,
which contradicts the statement of the theorem. Hence, s ≥ qk+1. □

Now we can prove Theorem 3.5.

Proof of Theorem 3.5. Assume, for the sake of contradiction, that s ≤ qk. Multiplying this inequality by
|α− r/s| < |α− pk/qk|, we obtain

s

∣∣∣∣α− r

s

∣∣∣∣ < qk

∣∣∣∣α− pk
qk

∣∣∣∣,
which is equivalent to

|sα− r| < |qkα− pk|.
But by Lemma 3.6, this inequality only holds for s ≥ qk+1, so our original assumption must be incorrect.
Therefore s > qk. □

We will show that the convergents of the infinite simple continued fraction of α are the only best approx-
imations of α.

Theorem 3.7. Let α be an irrational number and let pk/qk be the kth convergent of the infinite simple
continued fraction representing α for any nonnegative integer k. If r, s are integers with gcd (r, s) = 1 and
s > 0 such that ∣∣∣∣α− r

s

∣∣∣∣ < 1

2s2

then r/s = pk/qk for some nonnegative integer k.

Proof. Assume, for the sake of contradiction, that r/s is not a convergent of the infinite simple continued
fraction representing α. Then there exists convergents pk/qk and pk+1/qk+1 such that qk ≤ s < qk+1. By
Lemma 3.6, |qkα− pk| ≤ |sα− r|. Since |sα− r| = s|α− r/s| < 1/2s, we see that

|qkα− pk| <
1

2s
.

If we divide the inequality by qk, we get ∣∣∣∣α− pk
qk

∣∣∣∣ < 1

2sqk
.

Since r/s ̸= pk/qk, then spk − rqk ̸= 0, so 1 ≤ |spk − rqk|. This implies that

1

sqk
≤ |spk − rqk|

sqk

=

∣∣∣∣pkqk − r

s

∣∣∣∣
≤

∣∣∣∣α− pk
qk

∣∣∣∣+ ∣∣∣∣α− r

s

∣∣∣∣
<

1

2sqk
+

1

2s2
.

10



Hence,

1

2sqk
<

1

2s2
,

so qk > s which contradicts our assumption that qk ≤ s. Therefore r/s must be a convergent of the infinite
simple continued fraction of α. □

4. Periodic Continued Fractions

Let’s find the infinite simple continued fraction of
√
3. We can see that

√
3 = 1 + (

√
3− 1) = 1 +

1
√
3+1
2

= 1 +
1

1 +
√
3−1
2

= 1 +
1

1 + 1
1+

√
3

= 1 +
1

1 + 1
2+ 1

1+ 1
2+...

.

There appears to be a repeating pattern in the coefficients of this infinite simple continued fraction giving√
3 = [1; 1, 2, 1, 2, . . .]. A continued fraction with this property is called a periodic continued fraction. We

now give the precise definition.

Definition 4.1 (Periodic Continued Fractions). Let α = [a0; a1, a2, . . .] be an infinite simple continued
fraction. If there exists nonnegative integers k,N such that whenever n ≥ N , an = an+k, then α is a
periodic simple continued fraction. We write

α = [a0; , a1, . . . , aN−1, aN , aN+1, . . . , aN+k−1],

where aN , aN+1, . . . , aN+k−1 are the repeating coefficients and k is the period.

Periodic simple continued fractions are special types of infinite simple continued fractions, so they only
represent irrational numbers. We can express the irrational number

√
3 as a periodic simple continued

fraction, but can we do the same for 3 −
√
2, e, or π? Later in this section, we will state and prove a

very important result, proved by Euler and Lagrange, that the infinite simple continued fraction of every
irrational number is periodic if and only if that irrational number is a quadratic irrational. Let us start by
defining a quadratic irrational.

Definition 4.2. A quadratic irrational α is an irrational number that is a root of a quadratic equation
aα2 + bα+ c = 0 for some integers a, b, c where a ̸= 0 (i.e., α is an irrational number of the form (x+

√
d)/y

for some integers x, y, d with d > 0, where d is not a perfect square, and y ̸= 0).

Definition 4.3. Let α be a quadratic irrational equal to (a+
√
b)/c. Then the conjugate of α is α′, which

is equal to α′ = (a−
√
b)/c.

If α is a root of the polynomial ax2 + bx+ c = 0 where α is equal to (−b+
√
b2 − 4ac)/(2a), then based

on the definition above, the conjugate of α is α′ = (−b−
√
b2 − 4ac)/(2a). The following lemma is necessary

for finding conjugates of larger expressions.

Lemma 4.4. If α and β are rational or quadratic irrationals with α = (a+ b
√
d)/c and β = (x+ y

√
d)/z,

then

(i) (α+ β)′ = α′ + β′

(ii) (α− β)′ = α′ − β′

(iii) (αβ)′ = α′β′

(iv) (αβ )
′ = α′

β′ .

11



Proof. Note that α′ = (a− b
√
d)/c and β′ = (x− y

√
d)/z.

(i) We see that

(α+ β)′ =

(
a+ b

√
d

c
+

x+ y
√
d

z

)′

=

(
az + bz

√
d+ xc+ yc

√
d

cz

)′

=

(
(az + xc) + (bz + yc)

√
d

cz

)′

=
(az + xc)− (bz + yc)

√
d

cz

=
a− b

√
d

c
+

x− y
√
d

z
= α′ + β′.

(ii) Similarly,

(α− β)′ =

(
a+ b

√
d

c
− x+ y

√
d

z

)′

=

(
az + bz

√
d− xc− yc

√
d

cz

)′

=

(
(az − xc) + (bz − yc)

√
d

cz

)′

=
(az − xc)− (bz − yc)

√
d

cz

=
a− b

√
d

c
− x− y

√
d

z
= α′ − β′.

(iii) Notice that

(α · β)′ =
(
a+ b

√
d

c
· x+ y

√
d

z

)′

=

(
(ax+ byd) + (ay + bx)

√
d

cz

)′

=
(ax+ byd)− (ay + bx)

√
d

cz

=
ax− ay

√
d− bx

√
d+ byd

cz

=

(
a− b

√
d

c

)(
x− y

√
d

z

)
= α′β′.

12



(iv) Observe that (
α

β

)′

=

(
a+ b

√
d

c
· z

x+ y
√
d

)′

=

(
z(a+ b

√
d)(x− y

√
d)

c(x+ y
√
d)(x− y

√
d)

)′

=

(
(axz − byzd) + (bxz − ayz)

√
d

cx2 − cdy2

)′

=
(axz − byzd)− (bxz − ayz)

√
d

c(x2 − dy2)

=
z(ax+ ay

√
d− bx

√
d− byd)

c(x2 − dy2)

=
z(a− b

√
d)(x+ y

√
d

c(x+ y
√
d)(x− y

√
d

=

(
a− b

√
d

c

)(
z

x− y
√
d

)
=

α′

β′ .

□

In the previous section, we showed an algorithm for writing any irrational number as an infinite simple
continued fraction. Using the definition of quadratic irrationals and the following lemma, we can define an
algorithm for writing any quadratic irrational as an infinite simple continued fraction.

Lemma 4.5. Let α be a quadratic irrational. Then there exists integers P,Q, d with Q ̸= 0 and d > 0 where
d is not a perfect square such that

α =
P +

√
d

Q
,

and Q|(d− P 2).

Proof. We can write α as

α =
a+

√
b

c
,

for some integers a, b, c with b > 0, c ̸= 0. Multiplying this equation by |c| in the numerator and denominator
gives

α =
a|c|+ |c|

√
b

c|c|
=

a|c|+
√
bc2

c|c|
.

Let P = a|c|, Q = c|c|, and d = bc2. Then P,Q, d satisfy the conditions of this lemma since Q ̸= 0, d > 0, d
is not a perfect square, and Q|(d− P 2) as d− P 2 = bc2 − ac2 = c2(b− a) = ±Q(b− a). □

We now state and prove the algorithm.

Theorem 4.6. Let α be a quadratic irrational. We can write α as

α =
P0 +

√
d

Q0
,

13



for some integers P0, Q0, d with Q0 ̸= 0 and d > 0 where d is not a perfect square and Q0|(d− P 2
0 ). For all

nonnegative integers k, define

αk =
Pk +

√
d

Qk
,

ak = ⌊αk⌋,
Pk+1 = akQk − Pk,

Qk+1 =
d− P 2

k+1

Qk
, (23)

Then α = [a0; a1, a2 . . .].

Proof. We will use induction on k to prove that Pk and Qk are integers with Qk ̸= 0 and Qk|(d− P 2
k ). For

k = 0, we know that P0, Q0 are integers with Q0 ̸= 0 and Q0|(d−P 2
0 ). Assume for k that Pk, Qk are integers

with Qk ̸= 0 and Q0|(d−P 2
0 ). By induction, for k+1, since ak, Pk, Qk are integers, Pk+1 is an integer. Also

Qk+1 =
d− P 2

k+1

Qk

=
d− (akQk − Pk)

2

Qk

=
d− (akQk)

2 + 2akQkPk − P 2
k

Qk

=
d− P 2

k

Qk
+ 2akPk − a2kQk.

Since Qk divides d−P 2
k and 2akPk−a2kQk is an integer, Qk+1 is an integer. Next, we know that Qk ̸= 0 and

d is not a perfect square, so d ̸= P 2 which implies that (d − P 2
k+1)/Qk and Qk+1 ̸= 0. Finally, multiplying

(23) on both sides by Qk/Qk+1, we get

Qk =
d− P 2

k+1

Qk+1
,

and hence Qk+1|(d−P 2
k+1). Now we need to check that [a0; a1, a2, . . .] is the infinite simple continued fraction

representing α. We know that by Theorem 3.3, if

αk+1 =
1

{αk}
=

1

αk − ak
14



for all nonnegative integers k, then [a0; a1, a2, . . .] is the infinite simple continued fraction representing α.
Since

αk − ak =
Pk +

√
d

Qk
− ak

=

√
d− akQk + Pk

Qk

=

√
d− (akQk − Pk)

Qk

=

√
d− Pk+1

Qk

=
(
√
d− Pk+1)(

√
d+ Pk+1)

Qk(
√
d+ Pk+1)

=
d− P 2

k+1

Qk(
√
d+ Pk+1)

=
Qk+1√
d+ Pk+1

=
1

αk+1
.

Therefore αk+1 = 1/(αk − ak), so [a0; a1, a2, . . .] is the infinite simple continued fraction representing α. □

This algorithm will help us prove that the infinite simple continued fraction of a quadratic irrational is
periodic, which is one direction of the following important result.

Theorem 4.7 (Euler, Lagrange). The infinite simple continued fraction representing an irrational number
α is periodic if and only if α is a quadratic irrational.

Proof. We will first prove that if the infinite simple continued fraction representing α is periodic, then α is
a quadratic irrational. Since α is periodic, we can write α as

α = [a0; a1, a2, . . . , aN−1, aN , . . . , aN+k].

Let
β = [aN , . . . , aN+k].

This implies

β = [aN , . . . , aN+k, β] (24)

and

α = [a0; a1, a2, . . . , aN−1, β]. (25)

Let pk/qk and pk−1/qk−1 be convergents of the simple continued fraction [aN , . . . , aN+k] where p0/q0 = [aN ].
By (24),

β =
βpk + pk−1

βqk + qk−1
,

so
qkβ

2 + (qk−1 − pk)β − pk−1 = 0.

and hence β is a quadratic irrational. Similarly, let xN−1/yN−1 and xN−2/yN−2 be convergents of the simple
continued fraction [a0; a1, a2, . . . , aN−1] where x0/y0 = [a0]. By (25),

α =
βxN−1 + xN−2

βyN−1 + yN−2
.

Rationalizing the denominator, we find that α is a quadratic irrational.
We now prove the other direction of the theorem. We will give the motivation behind the proof that if α is

a quadratic irrational, then the infinite simple continued fraction representing α is periodic. We need to show
15



that there exists nonnegative integers i, j with i < j such that for all nonnegative integers m, ai+m = aj+m.
If this holds, then by Theorem 4.6, αi+m = αj+m. Alternatively, we can show that Pi+m = Pj+m and
Qi+m = Qj+m since αk can be written as

αk =
Pk +

√
d

Qk
,

where Pk, Qk are as defined in Theorem 4.6. This can be proved by showing that there exists an integer N
such that for all k ≥ N , Pk and Qk are bounded above and below.

Since α is a quadratic irrational, by Lemma 4.5, we can write α as

α =
P0 +

√
d

Q0
,

for some Q0 ̸= 0, d > 0 where d is not a perfect square, and Q0|(d − Pk + 12). Using the algorithm in
Theorem 4.6, we see that α = [a0; a1, a2 . . .]. Since α = [a0; a1, a2, . . . , ak−1, αk], then

α =
αkpk−1 + pk−2

αkqk−1 + qk−2
.

From Lemma 4.4, the conjugate of α is

α′ =

(
αkpk−1 + pk−2

αkqk−1 + qk−2

)′

=
α′
kpk−1 + pk−2

α′
kqk−1 + qk−2

.

To solve for α′
k, note that

α′(α′
kqk−1 + qk−2)− (α′

kpk−1 + pk−2) = 0,

which implies that

α′
k =

pk−2 − α′qk−2

α′qk−1 − pk−1
=

(
− qk−2

qk−1

)(
α′ − (pk−2/qk−2)

α′ − (pk−1/qk−1)

)
.

From Theorem 3.1, we know that pk−2/qk−2 and pk−1/qk−1 converges to α as k approaches infinity, and(
α′ − (pk−2/qk−2)

α′ − (pk−1/qk−1)

)
converges to 1. Therefore, there must exist a nonnegative integer N such that whenever k ≥ N , then α′

k is
negative. By Theorem 3.3, for all k > 1, αk is positive, so for all k ≥ N ,

αk − α′
k =

Pk +
√
d

Qk
− Pk −

√
d

Qk
=

2
√
d

Qk
> 0,

and hence Qk must be positive. From (23) of Theorem 4.6, we see that QkQk+1 = d−P 2
k+1, so for all k ≤ N ,

Qk ≤ QkQk+1 = d− P 2
k+1 ≤ d

and P 2
k+1 = d−QkQk+1 ≤ d. This implies

−
√
d ≤ Pk+1 ≤

√
d

and

0 ≤ Qk ≤ d

for all k ≥ N .
Since there are finitely many integers Pk, Qk satisfying the inequalities above and infinitely many integers

k such that k ≥ N , there must exist integers i, j with i < j such that Pi = Pj and Qi = Qj . Hence αi = αj

which implies ai+m = aj+m for all nonnegative integers m. Therefore, we see that α is represented by the
periodic simple continued fraction

α = [a0; a1, a2, . . . , ai−1, ai, ai+1, . . . , aj−1, . . .] = [a0; a1, a2, . . . , ai−1, ai, ai+1, . . . , aj−1]

□
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There are also quadratic irrationals that are represented by periodic simple continued fractions of the
form [a0; a1, a2, . . . , an] where n is the period and there are no terms before the repeating part. For example,

1 +
√
5

2
= 1 +

1

(1 +
√
5)/2

= 1 +
1

1 +
1

(1 +
√
5)/2

= 1 +
1

1 +
1

1 + . . .

,

so the periodic simple continued fraction of (1 +
√
5)/2 is [1; 1, 1, 1, . . .] or [1]. We called such continued

fractions purely periodic.

Definition 4.8. Let α = [a0; a1, a2, . . .] be a periodic simple continued fraction. Then α is purely periodic if
there exists an integer n such that ak = ak+n for all nonnegative integers k. In that case, we can write α as

[a0; a1, a2, . . .] = [a0; a1, a2, . . . , an−1]

We call the quadratic irrational α reduced if α > 1 and −1 < α′ < 0. As an example, if α is equal to
1 +

√
3, then α′ is equal to 1−

√
3. We can see that α is reduced since 1 +

√
3 > 1 and −1 < 1−

√
3 < 0.

Theorem 4.9. Let α be a quadratic irrational. Then the periodic simple continued fraction of α is purely
periodic if and only if α is reduced. If α is reduced and α = [a0; a1, a2, . . . , an−1], then the periodic simple
continued fraction of −1/α′ is [an−1; an−2, . . . , a0].

Proof. Assume that α is reduced. We will prove that the periodic simple continued fraction of α is purely
periodic. By Theorem 3.3, we know that α0 = α, ak = ⌊αk⌋, and αk+1 = 1/αk = 1/(αk − ak) for all
nonnegative integers k. This implies that

1/αk+1 = (αk − ak) (26)

and by Lemma 4.4,
1/α′

k+1 = (α′
k − ak).

We will prove by induction on k, that

−1 < α′
k < 0. (27)

If k = 0, then by the definition of reduced, −1 < α′
0 = α′ < 0. Assume for k that −1 < α′

k < 0. Note that
ak ≥ 1 for all nonnegative integers k since α > 1 and ak for all positive integers k is positive by definition.
By induction,

1

α′
k+1

= α′
k − ak < −1,

which implies that −1 < 1/α′
k+1 < 0 as desired. We know that

α′
k = ak +

1

α′
k+1

,

so by (27), we see that

−1 < α′
k = ak +

1

α′
k+1

< 0.

This implies that

−1− 1

α′
k+1

< ak < − 1

α′
k+1

,

so ak = ⌊−1/α′
k+1⌋. Since α is a quadratic irrational, α can be represented by a periodic simple continued

fraction. By the proof of Theorem 4.7, there exists nonnegative integers i, j with i < j such that for all non-
negative integers m, ai+m = aj+m. This implies that αi+m = αj+m, so 1/α′

i+m = 1/α′
j+m and −1/α′

i+m =
−1/α′

j+m. Since a(i+m)−1 = ⌊−1/α′
i+m⌋ and a(j+m)−1 = ⌊−1/α′

j+m⌋, then a(i+m)−1 = a(j+m)−1. Similarly,
we can see that a(i+m)−2 = a(j+m)−2. If we continue this process, we will find that a0 = aj−i. Therefore we
can write α as the purely periodic simple continued fraction

α = [a0; a1, . . . , aj−i−1].

We refer to [1] for a proof of the other direction that if the periodic simple continued fraction of α is purely
periodic, then α is reduced. □

17



The following theorem is useful for finding the solutions to the Pell Equation.

Theorem 4.10. Let d be a positive integer that is not a perfect square. For all nonnegative integers k,
define α0 =

√
d and

αk =
Pk +

√
d

Qk
,

ak = ⌊αk⌋,
Pk+1 = akQk − Pk,

Qk+1 =
d− P 2

k+1

Qk
.

Let pk/qk be the kth convergent of the periodic simple continued fraction of
√
d. Then,

p2k − dq2k = (−1)k−1Qk+1.

Proof. Since
√
d = α0 = [a0; a1, a2, . . . , ak, αk+1], we see that

√
d =

ak+1pk + pk−1

αk+1qk + qk−1
.

As defined in the statement of the theorem, αk+1 = (Pk+1 +
√
d)/Qk+1, so

√
d =

(Pk+1 +
√
d)pk +Qk+1pk−1

(Pk+1 +
√
d)qk +Qk+1qk−1

,

which implies

((Pk+1 +
√
d)qk +Qk+1qk−1)

√
d = (Pk+1 +

√
d)pk +Qk+1pk−1,

and therefore

dqk + (Pk+1qk +Qk+1qk−1)
√
d = (Pk+1pk +Qk+1pk−1) + pk

√
d.

Note that if r, s, t, u are rational numbers and r+ s
√
d = t+ u

√
d, then r = t and s = u. Since qk, pk, Qk, Pk

are rational numbers,

dqk = Pk+1pk +Qk+1pk−1 (28)

and

pk = Pk+1qk +Qk+1qk−1. (29)

If we multiply (28) by qk and (29) by pk, we get

dq2k = Pk+1pkqk +Qk+1pk−1qk (30)

and

p2k = Pk+1qkpk +Qk+1qk−1pk. (31)

Subtracting (30) from (31) gives

p2k − dq2k = (Pk+1qkpk +Qk+1qk−1pk)− (Pk+1pkqk +Qk+1pk−1qk)

= Qk+1qk−1pk −Qk+1pk−1qk

= (qk−1pk − pk−1qk)Qk+1

= (−1)k−1Qk+1

as desired. □
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5. Pell Equations

The solutions to the Pell Equation x2 − dy2 = ±1 can be found using properties of the periodic simple
continued fraction of

√
d. We will show that any positive solution to the Pell Equation must be a convergent

the periodic simple continued fraction of
√
d.

Theorem 5.1. Let d, n be integers such that n ≤ 0, d > 0 where d is not a perfect square, and |n| <
√
d. If

x2 − dy2 = n for positive integers x, y, then x/y is a convergent of the periodic simple continued fraction of√
d.

Before we prove this theorem, we need the following lemma.

Lemma 5.2. Let d be a positive integer that is not a perfect square such that
√
d > 1. The kth convergent

of the periodic simple continued fraction of 1/
√
d is the reciprocal of the (k− 1)th convergent of the periodic

simple continued fraction of
√
d.

Now we can prove Theorem 5.1.

Proof of Theorem 5.1. By Theorem 3.7, we need to show that∣∣∣∣xy −
√
d

∣∣∣∣ < 1

2y2
.

We will check the following two cases for n. The first case is where n > 0. Since n = (x + y
√
d)(x − y

√
d)

and x, y are positive, then x− y
√
d > 0, so x > y

√
d and (x/y)−

√
d > 0. Since 0 < n <

√
d, it follows that

x

y
−
√
d =

x− y
√
d

y
=

x2 − dy2

(x+ y
√
d)y

=
n

(x+ y
√
d)y

<

√
d

2y2
√
d
=

1

2y2
,

and hence x/y is a convergent of the periodic simple continued fraction of
√
d. The other case is where

n < 0. We can divide both sides of the equation x2 − dy2 = n by −d to get

y2 − 1

d
x2 = −n

d
.

Therefore

−n

d
=

(
y +

1√
d
x

)(
y − 1√

d
x

)
.

This implies that y − (1/
√
d)x > 0, so y

√
d > x and (y/x) − (1/

√
d) > 0. By Lemma 5.2, it is sufficient to

show that ∣∣∣∣yx − 1√
d

∣∣∣∣ < 1

2x2
.

Since 0 < −n <
√
d, it follows that

y

x
− 1√

d
=

y
√
d− x

x
√
d

=
(y
√
d− x)(y

√
d+ x)

(y
√
d+ x)x

√
d

<
dy2 − x2

2x2
√
d

= − n

2x2
√
d

<

√
d

2x2
√
d

=
1

2x2
.

Therefore, y/x is a convergent of the periodic simple continued fraction of 1/
√
d, and by Lemma 5.2, x/y is

a convergent of the periodic simple continued fraction of
√
d. □
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We will prove Theorem 1.1. Here we also include the exact solutions. This theorem uses the period of
the periodic simple continued fraction of

√
d and other properties of

√
d to find all the solutions to the Pell

Equation x2 − dy2 = ±1.

Theorem 5.3. Let d be a positive integer that is not a perfect square. We can write the periodic simple
continued fraction of

√
d as C = [a0; a1, a2, . . .] where the nonnegative integer n is the period. Let pk/qk be

the kth convergent of C for any nonnegative integer k. If n is even, then the solutions to x2 − dy2 = 1 are
x = ±pjn−1 and y = ±qjn−1 for all positive integers j, and x2 − dy2 = −1 has no solutions. If n is odd,
then the solutions to x2 − dy2 = 1 are x = ±p2jm−1 and y = ±q2jm−1, and the solutions to x2 − dy2 = −1
are x = ±p(2j−1)n−1 and y = ±q(2j−1)n−1 for all positive integers j.

Proof. Since the quadratic irrational ⌊
√
d⌋+

√
d is equal to

⌊
√
d⌋+

√
d = [⌊

√
d⌋; a1, a2, . . .] +

√
d = [2⌊

√
d⌋; a1, a2, . . .],

then it is reduced because ⌊
√
d⌋ +

√
d > 1 and −1 < ⌊

√
d⌋ −

√
d < 0. We will let β0 = ⌊

√
d⌋ +

√
d and

b0 = 2⌊
√
d⌋. By Theorem 4.9, the periodic simple continued fraction representing ⌊

√
d⌋ +

√
d is purely

periodic. Since the period of the periodic simple continued fraction of
√
d is n, we see that

√
d = [2⌊

√
d⌋; a1, a2, . . . , an−1]− ⌊

√
d⌋ = [⌊

√
d⌋; a1, a2, . . . , an−1, 2⌊

√
d⌋].

This implies Qjn = Q0 = 1 for all positive integers j. From Theorem 4.10, we get

p2jn−1 − dq2jn−1 = (−1)jnQjn = (−1)jn.

Therefore we have two cases. If n is even, then (x, y) = (pjn−1, qjn−1) is a solution of x2 − dy2 = 1
for all positive integers j. If n is odd, then (x, y) = (p2jn−1, q2jn−1) is a solution to x2 − dy2 = 1 and
(x, y) = (p(2j−1)n−1, q(2j−1)n−1) is a solution to x2 − dy2 = −1 for all positive integers j. We need to check
that these are the only solutions to the Pell Equation. Since

p2k − dq2 = (−1)k−1Qk+1,

for (pk, qk) to be a solution to x2 − dy2 = ±1, Qk+1 must be equal to Qk+1 = Qjn = 1. Therefore we can
show that if Qk+1 = 1, then n|(k + 1) and Qj ̸= −1. If Qk+1 = 1, then

αk+1 = Pk+1 +
√
d.

Since αk+1 = [ak+1; ak+2, . . .] and
√
d = [⌊

√
d⌋; a1, a2, . . . , an−1, 2⌊

√
d⌋], then the periodic simple continued

fraction representing αk+1 is purely periodic. By Theorem 4.9, αk+1 = Pk+1 +
√
d > 1 and −1 < α′

k+1 =

Pk+1 −
√
d < 0. This implies Pk+1 = ⌊

√
d⌋. Since αk+1 = ⌊

√
d⌋ +

√
d = β0, then ak+1 = b0, so n|k + 1.

Next, assume for the sake of contradiction, that Qj = −1. Then αj = −Pj −
√
d. We know that the periodic

simple continued fraction of αj is purely periodic, so αj = −Pj −
√
d > 1 and −1 < α′

j = −Pj +
√
d < 0.

This implies that Pj < −(1 +
√
d) and Pj >

√
d which is a contradiction. Hence Qj ̸= −1. Therefore, the

solutions we found earlier are the only solutions to the Pell Equation x2 − dy2 = ±1. □

Using this theorem, we can find solutions to the Pell Equation for any value of d.

Example 5.4. We will find a few solutions to the Pell Equation x2 − 3y2 = ±1 using Theorem 5.3. Since
the periodic continued fraction of

√
3 is [1; 1, 2] with period 2, the positive solutions to x2 − 3y2 = 1 are

(x, y) = (p2j − 1, q2j − 1) for all positive integers j and there are no solutions to x2 − 3y2 = −1. Note that
p0 = 1, p1 = 2, q0 = 1, and q1 = 1, so the first few convergents are C0 = 1, C1 = 2, C2 = 5/3, C3 = 7/4. This
implies that (x, y) = (7, 4) and (2, 1) are two of the solutions to x2 − 3y2 = 1.
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