CONTINUED FRACTIONS AND PELL EQUATIONS

ARANYA KARIGHATTAM

ABSTRACT. In this paper, we will study finite, infinite, and periodic continued fractions and discuss how
they are used to find solutions to the Pell Equation z? — dy? = =41 for any integer d. Specifically, we
will look at interesting properties of convergents of continued fractions and prove Dirichlet’s Theorem on
Diophantine Approximation, which states that there are infinitely many rational numbers that are good
approximations to an irrational number. We also prove an important result by Euler and Lagrange relating
periodic continued fractions and quadratic irrationals. We will find the solutions to the Pell Equation using
properties of the periodic continued fraction of v/d. We follow the material in [1].

1. INTRODUCTION

The Pell Equation is a diophantine equation of the form x? — dy? = £1 where z, ¥, d are positive integers.
Can we find solutions to this equation? If d = 2, then (1,0) and (3,2) are solutions to #? — 2y? = 1 and
(1,1) and (7,5) are solutions to 2% — 2y? = —1. However, if d = 3 (mod 4), 2 — dy? = —1 has no solutions.
This can be seen by noticing that 22,92 = 0 or 1 (mod 4), so 22 — dy?> = 0,1, or 2 (mod 4) but not —1
(mod 4). If d is a perfect square, we can write d as m?, so 22 — m?y? = (x +my)(z —my) = 1. In this case,
x 4+ my and x — my are either both 1 or —1. Since x,y, m are positive integers, x + my cannot be equal to
—1, so both terms must be equal to 1. Therefore the only solution is (z,y) = (1,0). The other equation is
22 — m?y? = (x + my)(x — my) = —1. One term must be equal to 1 and the other must be equal to —1.
This implies  + my = 1 and £ —my = —1. The only solution to this equation is (z,y) = (0,1) where d = 1.

In general, for any positive d that is not a perfect square, how many solutions does 2 —dy? = 41 have and
how do we find them? In 1657, Fermat stated that there are infinitely many solutions to the Pell Equation
2% — dy? = 1, and Wallis and Brouncker found that continued fractions can be used to find the solutions.
Euler showed, in 1767, that if there is a fundamental solution to the Pell Equation, then there are infinitely
many solutions. A proof by Lagrange in 1768 determines all the solutions to the Pell Equation.

In this paper, we describe many important properties of finite and infinite continued fractions such as
convergents which are obtained by keeping only the first k& terms of a continued fraction. We will prove
Dirichlet’s Theorem on Diophantine Approximation and a theorem, proved by Euler and Lagrange, that
every infinite simple continued fraction of an irrational number is periodic if and only if that irrational
number is a quadratic irrational. We will show how the period of the periodic simple continued fraction
of V/d can be used to determine the solutions to the Pell Equation 22 — dy? = +1 and prove the following
theorem.

Theorem 1.1. Let d be a positive integer that is not a perfect square. Let n be the period of the periodic
simple continued fraction of Vd. If n is even, then there are infinitely many positive solutions to z2 —dy® = 1
and no solutions to 22 — dy?> = —1. If n is odd, then there are infinitely many solutions to x> — dy® = +1.

2. FINITE CONTINUED FRACTIONS

Definition 2.1 (Finite Continued Fraction). For any real numbers ag, a1, ..., a, where aq,...,a, are posi-
tive, we define a finite continued fraction to be of the form

1

ap +
a1 +



for some nonnegative integer n. We call aq, . .., a, the coefficients of the finite continued fraction. If ay, ..., a,
are integers, then we consider the finite continued fraction to be simple.

For simplicity, we will denote the finite continued fraction as [ap; a1, aqg, .. . ay).

Example 2.2. We will find the finite continued fraction representing 56/31. From the Euclidean algorithm,
we see that

56 =131+ 25, (1)

31=1-25+6, 2)

25 =46+ 1. (3)

If we divide (1) by 31, (2) by 25, and (3) by 6, we get
56 25 1
S R 4
TR TR 1 @
31 6 1
21— =14 =
9% + 5% + g (5)
25 1
i 6
5 —4t% (6)
Combining (4), (5), and (6) gives
6 _, ., 1
T B
1+ 43

In this case, 56/31 is represented by the finite simple continued fraction [1;1, 4, 6].
We could also start with a finite simple continued fraction and find the number it represents.

Example 2.3. The finite simple continued fraction

1+ 1
2+3ii
can be written as
1 1
Moy =t oqa
3+1 13
13
:1 —_
+3O
43
30

which is a rational number.

The next step would be to check if all rational numbers are represented by finite simple continued fractions
and all finite simple continued fractions represent rational numbers.

Theorem 2.4. FEvery finite simple continued fraction represents a rational number.

Proof. We will use induction on n to show that the finite continued fraction [ag;as,as,. .., a,] represents a
rational number. If n = 0, we see that [ag] = ag is rational. Assume for n that [ag; a1, a9,...,a,] = r/s for
some integers r, s. By induction, for n + 1,

1 Yy apr+y
[ap;a1,a9,...,an, ant1] = ao + L=

. :a0+
[a1; a2, a3, ..., Gn, Gny1)

for some integers x, y such that [a1; a2, as, ..., an, ant1] = x/y. Therefore [ag; a1, as,. .., an, an+1] is rational.
U

T

Theorem 2.5. Fvery rational number can be represented by a finite simple continued fraction.

The proof of this theorem follows from the Euclidean Algorithm. We refer the reader to [1] for the proof.
We can also look at properties of the first k& terms of a continued fraction.
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Definition 2.6. Let C), be the continued fraction [ag; a1, as,. .. ,a,] for some nonnegative integer n. Let k
be a positive integer and k < n. The continued fraction Cy = [ag; a1, ag, . .., ax] of the first k terms of C,, is
called the kth convergent.

Let us find the first few convergents of C,,:

Co = [ao] = ao,

1 apa; + 1
Cy = lag;a1] = ap + — = ——,
ay ay
1 aparas + ag +as  as(apar + 1) + ag
Ca = [ag; a1, a2] = ap + = = )
a1+ o ajaz +1 araz +1
— - _ _ apajazastagaitagaztasaz+l _ as(az(acai+1)+ao)+(acai+1)
Cs = [ao; a1, az, as] = ao + a+—I a1azaztaitaz - az(araz+1)+a1 :

a2+g

Notice that there is an interesting pattern in the numerators and denominators of the convergents. If
we let po = ag, o = 1, p1 = apar + 1, and g1 = ay, then Co = po/qo, C1 = p1/q1, C2 = p2/q2 =
(azp1 + po)/(a2q1 + o), and C3 = p3/q3 = (asp2 + p1)/(asqz + ¢1). We can now extend this pattern to C.

Theorem 2.7. Let C,, = [ag;a1,a2,...,a,] be a finite continued fraction. Define po = ag, go = 1, p1 =
apa1+1, and ¢ = a1. For any positive integer k with k < n, let pr. = arpr_1+Pr—_2 and qx = apqr—1+ qx—_2.
Then, the kth convergent Cy = [ag; a1, as ..., a] is equal to pg/qx.

Proof. We will use induction on k. If £ = 0, then
ag Po
C = |Q =qan = — = —,
0= laol 0 1 q0

and if k = 1, then
1 apar +1  pp
Clz[ao;al]:aO*_i:i:i.
@1 a1 q
Assume for k that
axPrk—1 +Prk—2 Dk
Cr = [ao; a1, az, ..., ap_1,ay) = At TPk=2 Tk
arqr—1 + qr—2 qr

By induction, for k& + 1,

Crs1 = [ao; a1, az,...,ak_1, 0k, Gky1] =|00; 01,02, ...,a0K_1, 0} + a
k+1

(ar + aklﬂ )Pk—1 + Pr—2
(ar + V-1 + qr—2

1
Ak+1

1
k41
1
AR41

D—1)
Qk—l)

apt1(akpr—1 + Pr—2 +

apt+1(apgk — 1+ qr_o +

_ (k+1Pk + Pr-1
k419K + Qr—1
_ Pk+1
gk+1

as desired.

Example 2.8. From Example (2.2), we found that 56/31 = [1; 1,4, 6]. Therefore we get
Po = 17
p=1-1+1=2,
pp=4-24+1=9,
p3 =6-9+2 =56,
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and
QO:L
C]1:17
@ =4-1+1=05,
g3 =6-5+1=31.

This implies the convergents are

1
00:@:—:1’
g 1

2
01:22:—:2’
a1
9
02:@:77
G 5
56
Ca=D2_2
g3 31

These convergents seem to alternate where the convergents with an even index are smaller than the
convergents with odd index. We would want to find out how close successive convergents really are.

Theorem 2.9. Let C,, = [ag;a1,a1,...a,] be a finite simple continued fraction and let Cx = pi/qr be the
kth convergent for any positive integer k with k < n. Then

(-1)s?

Cr,—Ci_1= .
qrqr—1

(7)
To prove this theorem, we need the following lemma.
Lemma 2.10. Let C,, = [ag; a1, a2, ...,a,] and Cx, = pi/qx be the kth convergent for any positive integer k
with k <n. Then
Prar—1 — Pro—1qr = (—1)F 1.

Proof. We will use induction on k. Based on the definition of py and gi in Theorem 2.7, if kK = 1, we see
that

P10 — poq1 = (apar +1) -1 —aga; = 1= (-1)°.
Assume for k that
PrQk—1 — Pe—1ar = (—1)" 1.
Then for k£ + 1,
Prk+1qk — PrGk+1 = (akPr + Pr—1)qk — Pr(arqr + qr-1)

= kPrk + Pk—19k — QkPLGk — Pkqk—1
Pr—19k — PkQk—1

= —(PkQk—1 — Pr—1qk)

= (=D(=)*!

= (-1
as desired. 0

Proof of Theorem 2.9. Notice that

— 1 — - _1k71
Ck*Ck_lzzﬁfpk 1 _ PrAk—1 — qkPk 1 (1)

T Qr—1 TreQr—1 eQr—1
so (7) holds. O

Similarly, we have the following result for convergents with index two apart.
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Corollary 2.11. Let C,, = [ag;a1,a1,...ay,] be a finite simple continued fraction and let Cy, = pi/qi be the
kth convergent for any positive integer k with k < n. Then

k
Cho— Cpy — DT ®)
qkqKk—2
Proof. We see that
Ci — Cpop = & D2
qk  Gk-2
_ Pr4k—2 — Pk—24k
B qkqk—2
_ (agpr—1 + pr—2)qr—2 — Pr—2(arqr—1 + qr—2)
B qkqk—2
_ OgPE—1qk—2 + Pr—2qk—2 — QkPk—2qk—1 — Pk—2qk—2
B qkqk—2
_ap(Pr—19k—2 — Pr—2qk—1)
B qkqk—2
B ak(—l)k_Q
B qrkqr—2
_ap(=1)F
C QrGr—2
so (8) holds. O

We can apply Theorem 2.9 to the convergents of the finite simple continued fraction of 56/31 in Example
2.8. We see that

—1)0
01—00:2—1:1:( ),
(q190)
1 (=1t —1)!
oy 1 (DD
5 5 5-1 (q2q1)
1 -1)2  (-1)?
30 91 (1P (1P
31 5 155 31-5 q3q2
Also, from Corollary 2.11, we have
.713 711@
G By 66wl
31 31 31-1 kqr—2

since az = 6.
Corollary 2.12. Let p; and gy, be as defined in Theorem 2.7. Then pi and qi are relatively prime.

Proof. Let m = ged (pk, qx). This implies m divides prgr—1 and px_1qx. By Lemma 2.10, m must divide
(-1 Lsom=1. O

As we saw in Example 2.8, convergents of the form C5,, with an even index, are smaller than convergents
of the form Cy,,11, with an odd index. Using Theorem 2.9 and Corollary 2.11, the order of the convergents
can be determined.

Theorem 2.13. Let C,, = [ag;ai,a1,...a,] be a finite simple continued fraction and let C, = p/qr be
the kth convergent for any positive integer k with k < n. Then for all nonnegative integers w,z with
2w+ 1,2z < n, Coyq1 > Coyys, Oz < Corya, and Coyq1 > Co.

Proof. By (8) of Corollary 2.11,

a2w+3(_1)2w+3

Q2w+392w+1

02w+3 - C’21u+1 -
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Since 2w + 3 is odd and a2y+3, G2w+3, and oy, 41 are positive, Coyyy3 — Coyr is negative so Coyp1 > Coppys.

Also,
as 19 _1)22+2
CV22+2 - C2z = L
4224242~

Since 2z + 2 is even and as, 42, G2.+2, and go, are positive, Ca, 1o — Ca, is positive so Cs, < Ca,12. To show
that Coyy1 > Cay, we first note that by (7) of Theorem 2.9,

(~1)
q2w+192w '
Since 2w + 1 is even and ¢g,,11 and ga,, are positive, Cayyp1 — Coy is positive so Cayyqq1 > Coy. This implies

Cowt1 — Cow =

Cowt+1 > Cowgi42: > Cowgo: > Cos.

O
3. INFINITE CONTINUED FRACTIONS
Infinite Continued Fractions are of the form
N 1
a
0 1
a+ ——
ag + e
where ag, a1, as, ... are real numbers and aq, as, ... are positive. As with finite simple continued fractions,
infinite continued fractions are simple if the coefficients ag, a1, ... are integers. In Theorem 2.13, we found

that the sequence of even-index convergents is increasing, the sequence of odd-index convergents is decreasing,
and all odd-index convergents are greater than all even-index convergents. If we kept increaseing the value
of n, would these two sequences eventually converge? We will now prove that we can define any infinite
simple continued fraction as the limit of the convergents of the first k terms.

Theorem 3.1. Let [ag; a1, as,...] be an infinite simple continued fraction and let Cy, = [ag; a1, as,. .., ak]
for any positive integer k. Then there exists a real number a such that [ag; a1, as,...] converges to a. In
other words,

lim Ck = .

k—o0

Proof. For any nonnegative integer n, from Theorem 2.13, we have Coyi1 > Copys, Cop < Cyiya, and
Coy1 > Oy, for all nonnegative integers w, z with 2w + 1,2z < n. Since these inequalities hold for any n,
we see that Cy41 > Co, for all nonnegative integers w, z, so the sequence of convergents Cyi41 are bounded
below by C5, for any nonnegative integer z and the sequence of convergents Cs are bounded above by
Coy 41 for any nonnegative integer w. By the Monotone Convergence Theorem, both sequences have a limit,
SO

lim 02k+1 = 7

k—o0
and

lim ng = Q9.

k—o00

We will now show that the limits are equal by proving that
lim (Copy1 — Cox) =0,
k—o0
since
lim (C2k+1 - Cgk) = lim C2k+1 — lim Cgk.
k—o0 k—o00 k—o0
By (7) of Theorem 2.9,
(71)2]{2 1
Qok+1G2k  Q2kt1G2k
Since ¢ > 1 for all nonnegative integers k, qr > qr—1 + qu—2 > qx—1 + 1 >k for all k > 2, so
1 1

< .
Gr+1G2k — (2k +1)(2k)
6

Cog1 — Cop, =

0<




We know that
lim —————— =
e G TTA R
o) )
li — = lim — =0.
kgrolo(CQkH Car) kggo Q2k+1492k 0
Therefore & = a1 = a9 and

lim Cf = a.
k—o0

O

We proved earlier that finite simple continued fractions represent rational numbers. It turns out that
infinite simple continued fractions represent irrational numbers and that the converse is also true.

Theorem 3.2. Every infinite simple continued fraction [ag; a1, ag, .. .| is irrational.

Proof. Let a = [ag;a1,az,...] and let Cy be the kth convergent of o for any nonnegative integer k. By
Theorem 3.1, Co, < o < Coiy1. This implies

0 <a—Coy < Copy1 — Cop

SO )
O<a-— b2k < —
@2k Q2k+1G2k

Assume, for the sake of contradiction, that « is rational. Then we can write o = a/b for some integers a, b.

If we multiply all three sides of the inequality by go1b, we get

0 < agor — bpax, <
q2k+1

Since gor and poy are integers, agor — bpor is always an integer greater than 0. But gopyq > k for all
nonnegative integers k, so we can choose a positive integer j greater than b such that gg;11 > b which would
imply that b/gs;41 < 1. This is a contradiction since there are no integers between 0 and 1. Therefore o
must be irrational. O

Now that we have proved that any infinite simple continued fraction represents an irrational number, we
would also like to show that any irrational number is always represented by an infinite simple continued
fraction. We will describe an algorithm to construct an infinite simple continued fraction representing any
irrational number «. First, expand « as follows:

a=lo] +{a}
1

=l Ty

= || +

1
[1/{ed] +{1/{a}}
1

= |a| + T

(1/{1/{a}})
1

[1/{a}] +

= la) + (9)

1
[1/{a}] + [1/{1/{a}}] + {1/{1/{a}}

Finding the first three coefficients of the expansion of o will help us find a recursive formula for the kth
coefficient for any nonnegative integer k. From (9), the first three coefficients of the expansion of « are |a],
[1/{a}], and [1/{1/{a}}]. Let ap = a, a3 = 1/{ap}, and oy = 1/{a1}. If a9 = |, a1 = |1, and
as = |z ], then ag, a1, and ay are integer coefficients of the expansion of . This implies the kth coefficient
is given by ar = |ax| where agy1 = 1/{ax} and ap = « for all nonnegative integers k. Since we want to
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show that a = [ag; a1, as,...], by Theorem 3.1, we need to prove that as k approaches infinity, the finite

simple continued fraction Cj equal to [ag; a1, a9, ..., ak, akt1] approaches a.

Theorem 3.3. Let o be any irrational number. Define the integers ag, a1, as, . .. recursively as follows. Let
ag = o, agr1 = 1/{ax}, and ap = |ax| for all positive integers k. If Cy = [ag;a1,a2,..., 05, k1] = @,
then

lim Cy = a.
k—o0

Proof. We can instead show that
a— lim Cy =0.
k—o0
By Theorem 2.13, if k£ is odd, then Cy4+1 < a < C. Subtracting Cj, from all sides of the inequality, we get
Cik+1 — Cr < a— Cf <0, and by (7) of Theorem 2.9,
1
Q1

If k is even, then C;, < a < Ck41, and subtracting C}, from all sides of the inequality gives 0 < a — C} <
Cr+1 — Ck. By (7) of Theorem 2.9,

aka<C’k—Ok+1:

(10)

1
a—Cip <Cry1 —Cp=— . (11)
Ak+19k
Based on (10) and (11), we see that
1
|a — Ck| < . (12)
Ak+19k
As we found in the proof of Theorem 3.1,
lim =0,
k=00 qik+1Gk
SO
lim |Ck — Oé‘ =0.
k—o0
Hence
lim Cy = a.
k—o0
|
Therefore, we can indeed write « as the infinite simple continued fraction [ag; a1, aqg, . ..]. It immediately

follows that this representation must be unique. Suppose the infinite simple continued fraction [bg; b1, be, . . ]
is also equal to a. Then, using our definition of «, we can see by induction on k that by = |ay | = ay, for all
nonnegative integers k.

A notable result, proved by Dirichlet, states that there are infinitely many rational numbers that are good
approximations of any irrational number a.

Theorem 3.4 (Dirichlet’s Theorem on Diophantine Approximation). Let o be an irrational number. Then
there are infinitely many rational numbers r/s such that

< —.

o — —
52

S

Proof. If pi./qx is the kth convergent of the infinite simple continued fraction of « for any nonnegative integer
k, then by (12),

<

‘ Pk 1
a—— )

qk dk+19k
Since g+1 > qx, we see that 1/qx11qx < 1/q7. Therefore

’ Pk 1
gk 95
There are infinitely many convergents pg/qr and hence this theorem holds. O
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We now show that the convergents py/gr of the infinite simple continued fraction of « are the best
approximations of a compared to any other rational number r / s where s < q.

Theorem 3.5. Let a be an irrational number and let py/qr be the kth convergent of the infinite simple

continued fraction representing « for any nonnegative integer k. If r/s is a rational number with s > 0 such

that

_ Pr
qk

r
a——| < |«
S

then s > q.
To prove this theorem, the following lemma is needed.

Lemma 3.6. Let o be an irrational number and let py/qr be the kth convergent of the infinite simple
continued fraction representing o for any nonnegative integer k. If v and s are integers such that

|sa — 7| < |gro — prl,s
then s > qg+1-

Proof. Assume, for the sake of contradiction, that 1 < s < gx41. There exists integers x,y that are solutions
to the system of equations

Pk + Pry1y =T (13)
qrT + qr+1Y = 8. (14)
To solve for y, we first multiply (13) by ¢ and (14) by pi to get
PRQRT + Prr1GrY = TGk (15)
qkPkT + qr4+1PkY = SPk, (16)

and then subtract (16) from (15), which implies

(Pr+19k — PrQr+1)Y = TqK — SPk-
By Lemma 2.10, we see that

y = (=1)*(rqp — spp). (17)

Similarly, to solve for x, we multiply (13) by gx+1 and (14) by pgy1 to get
PkQk+1T + Dk+19k+1Y = Tqk+1 (18)
QkPE+1T + Qe 1Pk+1Y = SPk+1, (19)

and then subtract (19) from (18) which gives

(PQk+1 — qkPR+1)T = Tqt1 — SPh+41-
By Lemma 2.10, we see that
2= (=1)"(rge+1 — sprt1)- (20)
We will show that any value of z and y leads to a contradiction. First, if x = 0, then by (20), $prt+1 = rqrt1-
Since pr41 and gx41 are relatively prime by Corollary 2.12, gi+1 < s. But this contradicts our assumption,
so x # 0. Next, if y = 0, then from (13) and (14), we see that r = pyx and s = g, which implies
[sa —r| = |gpro — pra| = [z]|lgea — pr| = |gra — pi
since |x| > 1. But this contradicts the statement of this theorem, so y # 0. The remaining case is where z,y
are nonzero. We will first show that y < 0 implies > 0, and y > 0 implies = < 0. From (14), we know that
5 — Gk+1Y

r=—"
gk

so if y < 0, since s, qr,qx+1 > 0, then =z > 0. If y > 0, then gr4+1y > gr+1 > s, which implies gpx =
s — qr+1y < 0, so z < 0. Next, based on (13) and (14),
|sa —r| = [(arz + qe1y)o — (Pe® + Prt1y)|
= |(gka — pr)™ + (qr+10 — Prr1)yl-
9



Note that by Theorem 2.13, either
P/ e < & < pry1/qrs (21)

or

Pri1/arv1 < o < Pr/q- (22)
If (21) is true, then 0 < gqra — pr and g1 — pry1 < 0, and if (22) is true, then gy — pr > 0 and
0 < gr41® — pr+1. This implies (qra — pr)x and (gry10 — pry1)y are either both positive or negative.
Therefore, we get
lsa — 7| = |2|lgra — pi| + [yllgr+10 — prta]
> |z|lgra — pr
> |qro — prl,

which contradicts the statement of the theorem. Hence, s > qp41. O
Now we can prove Theorem 3.5.

Proof of Theorem 3.5. Assume, for the sake of contradiction, that s < ¢;. Multiplying this inequality by
la —r/s| < |a — pr/qk|, we obtain
T

a‘<qk
S

Pk
s a——|,

which is equivalent to

|sa —r| < |gra — prl.
But by Lemma 3.6, this inequality only holds for s > ¢x11, so our original assumption must be incorrect.
Therefore s > gy. O

We will show that the convergents of the infinite simple continued fraction of o are the only best approx-
imations of a.

Theorem 3.7. Let o be an irrational number and let py/qr be the kth convergent of the infinite simple
continued fraction representing « for any nonnegative integer k. If v, s are integers with ged (r,s) = 1 and

s > 0 such that

r
o — —
S

< 1
252

then r/s = pr/qi for some nonnegative integer k.

Proof. Assume, for the sake of contradiction, that r/s is not a convergent of the infinite simple continued
fraction representing «. Then there exists convergents pr/qx and pr+1/qgr+1 such that g < s < gxy1. By
Lemma 3.6, |gra — pi| < |sa — r|. Since |sa — 1| = sl — r/s| < 1/2s, we see that
1
lgra — pi| < 5%
If we divide the inequality by ¢, we get
1

2sqy

Pk
a— ==

dk
Since r/s # pr/qk, then spr — rqr # 0, so 1 < |spx, — rqx|. This implies that

1 < |spk — Tqx|
S5qk 54k
Pe T

e
|
I



Hence,
1 < 1
2sq, 252’

so qx > s which contradicts our assumption that g < s. Therefore /s must be a convergent of the infinite
simple continued fraction of a. O

4. PERIODIC CONTINUED FRACTIONS

Let’s find the infinite simple continued fraction of V3. We can see that

SR O —
—1 1 - 1
2 1+ 1+V3 1+ 2+1+21+1

1
V3=1+(V3-1)=1+ NG :H1+

&H

There appears to be a repeating pattern in the coefficients of this infinite simple continued fraction giving
V3 = [1;1,2,1,2,...]. A continued fraction with this property is called a periodic continued fraction. We
now give the precise definition.

Definition 4.1 (Periodic Continued Fractions). Let o = [ag;a1,az,...] be an infinite simple continued
fraction. If there exists nonnegative integers k, N such that whenever n > N, a,, = an4k, then o is a
periodic simple continued fraction. We write

o = [ao; s A1yt 7aN717aN7aN+17‘ .- 7aN+k71]7
where an,an+1,-..,aN+5—1 are the repeating coefficients and k is the period.

Periodic simple continued fractions are special types of infinite simple continued fractions, so they only
represent irrational numbers. We can express the irrational number /3 as a periodic simple continued
fraction, but can we do the same for 3 — /2, e, or n? Later in this section, we will state and prove a
very important result, proved by Euler and Lagrange, that the infinite simple continued fraction of every
irrational number is periodic if and only if that irrational number is a quadratic irrational. Let us start by
defining a quadratic irrational.

Definition 4.2. A quadratic irrational « is an irrational number that is a root of a quadratic equation
aa? 4+ ba + ¢ = 0 for some integers a, b, ¢ where a # 0 (i.e., o is an irrational number of the form (z + v/d)/y
for some integers x,y,d with d > 0, where d is not a perfect square, and y # 0).

Definition 4.3. Let o be a quadratic irrational equal to (a 4+ v/b)/c. Then the conjugate of a is o/, which
is equal to o’ = (a — V) /c.

If « is a root of the polynomial az? + bz + ¢ = 0 where « is equal to (—b + /b2 — 4ac)/(2a), then based
on the definition above, the conjugate of « is o/ = (—=b—v/b? — 4ac)/(2a). The following lemma is necessary
for finding conjugates of larger expressions.

Lemma 4.4. If a and f are rational or quadratic irrationals with o = (a + bV/d)/c and B = (z +yV/d)/z,
then

(i) (a+B8) =o'+
(i) (a—B) =a - 8
(i) (aB) = o'f/

(i) (3) =5

11



Proof. Note that o/ = (a — bV/d)/c and ' = (z — y/d)/ 2.
(i) We see that

(a+bxf x+yf>

(az+bzf+xc+ycf>

< (az + xe) + bz—i—yc)\/g)/

(az + zc) — (bz + ye)Vd

cz
a—b\/a_i_x—y\/(j

C z
:a/_'_ﬁ/.

(ii) Similarly,

a+bVd x+yf>

Eaz#—bzfxcyci)/
(azxc (b2 — ye) d)

(az — xzc) — (bz — yc)Vd
a—bvd _ z—yVd

205/7/8/.

(iii) Notice that

(o B)f

& z

(a+b\/3_x+y\/g)'

(az + byd) + (ay + bx)Vd\'
cz
(az + byd) — (ay + bx)Vd

cz
_ar— ayVd — bxzv/d + byd

cz

(=22)(=25)

— O/ﬂ/.

12



(iv) Observe that

(07

<a+b\f 2 )’
+b\fm;iﬁy[f)

< (z + yVd) xyf))

(amz—byzd (bxz—ayz)\/é>’

cr? — cdy?

VRS

™|

N———
I

(azz — byzd) — (bxz — ayz)Vd

c(x? —dy?)
 z(az + ayVd — bzv/d — byd)
N c(x? — dy?)

z(a —bVd)(z +yVd
c(x + yvd)(z — yVd

-(=) (=)

OL
E.
(|

In the previous section, we showed an algorithm for writing any irrational number as an infinite simple
continued fraction. Using the definition of quadratic irrationals and the following lemma, we can define an
algorithm for writing any quadratic irrational as an infinite simple continued fraction.

Lemma 4.5. Let a be a quadratic irrational. Then there exists integers P, Q,d with Q@ # 0 and d > 0 where
d is not a perfect square such that

_P+Vd

and Ql|(d — P?).

Proof. We can write « as

for some integers a, b, ¢ with b > 0, ¢ # 0. Multiplying this equation by |¢| in the numerator and denominator
gives

_ale| + |c[v/b _alc] 4+ Vbc?

el ce]
Let P = alc|, @ = c|c|, and d = bc®. Then P, Q,d satisfy the conditions of this lemma since Q # 0, d > 0, d
is not a perfect square, and Q|(d — P?) as d — P? = bc® — ac® = 2(b—a) = £Q(b — a). O

We now state and prove the algorithm.

Theorem 4.6. Let o be a quadratic irrational. We can write o as

_P+Vd
Q

13



for some integers Py, Qo,d with Qo # 0 and d > 0 where d is not a perfect square and Qo|(d — Pg). For all
nonnegative integers k, define

ap = P, ++d
Qr
ar = o],
Pyy1 = arQr — Py,
2
Qr+1 = dQPkHv (23)
k

Then o = [ag; a1, as .. .].

Proof. We will use induction on k to prove that Py, and Qj are integers with Q # 0 and Qg|(d — P?2). For
k = 0, we know that Py, Qo are integers with Qg # 0 and Qo|(d— P#). Assume for k that Py, Q) are integers
with Qx # 0 and Qo|(d — P?). By induction, for k + 1, since ag, Py, Q. are integers, Py is an integer. Also

2
Qi =
_d—(arQp — Py)?
B Qk
d — (axQr)* + 2a1,.Q Py, — P?
B Qk
_d-P

+ 2akPk — (LiQk.
k

Since @y, divides d — P2 and 2a P — a2 Qy, is an integer, Qg1 is an integer. Next, we know that Qx # 0 and
d is not a perfect square, so d # P? which implies that (d — P,?H)/Qk and Qr+1 # 0. Finally, multiplying
(23) on both sides by Q/Qr+1, we get

d— P}
Qp = — L
Qr+1
and hence Qp41/(d— P2, ;). Now we need to check that [ag; a1, az, . . ] is the infinite simple continued fraction
representing . We know that by Theorem 3.3, if
1 1

o = — =
kel {ak} Qp — A
14



for all nonnegative integers k, then [ag; a1, as,...] is the infinite simple continued fraction representing .
Since

P + Vd B
Qk
~ Vd—aQy + P
B Qk
Vd — (arQr — Py)
B Qk
_ Vd— P
B Qk
(Vd — Poy1)(Vd + Pyyr)
Qr(Vd + Piyy)
d— PI?—&-l
Qr(Vd + Prey)
_ Qpq1
-~ Vd+ P
1

A1

Qg — A = ar

Therefore ay1 = 1/(ag — ag), S0 [ag; a1, az, . ..] is the infinite simple continued fraction representing a. [

This algorithm will help us prove that the infinite simple continued fraction of a quadratic irrational is
periodic, which is one direction of the following important result.

Theorem 4.7 (Euler, Lagrange). The infinite simple continued fraction representing an irrational number
« 1s periodic if and only if a is a quadratic irrational.

Proof. We will first prove that if the infinite simple continued fraction representing « is periodic, then « is
a quadratic irrational. Since « is periodic, we can write « as

a = [ao;a17a27"-7a/N71)a/N7-"aaN+k]'

Let

ﬂ = [G,N, ey a/N+k].
This implies

ﬁ:[aN7"'7aN+kaﬁ] (24)
and

a = [ap;a,az,...,an—1,B]. (25)

Let pi/qr and prp—_1/qr—1 be convergents of the simple continued fraction [ay, ..., an+k] where po/qo = [an].
By (24),

8= Bpr + pr—1
Bak + qr-1’
SO
2 _
@ B” + (k-1 — pr)B — pr—1 = 0.
and hence f is a quadratic irrational. Similarly, let zx_1/yn—1 and 2 y_2/yn—2 be convergents of the simple
continued fraction [ag; a1, ag,...,an—1] where xq/yo = [ao]. By (25),
_ Brn-_1+TN_2
BYnN-1+Yn—2
Rationalizing the denominator, we find that « is a quadratic irrational.
‘We now prove the other direction of the theorem. We will give the motivation behind the proof that if « is
a quadratic irrational, then the infinite simple continued fraction representing « is periodic. We need to show
15



that there exists nonnegative integers ¢, 7 with ¢ < j such that for all nonnegative integers m, @itm = ajtrm.
If this holds, then by Theorem 4.6, qjym = jtm. Alternatively, we can show that Piy,, = Pji, and
Qi+m = Qj+m since oy, can be written as

B+ Vd
Qr
where Py, Q) are as defined in Theorem 4.6. This can be proved by showing that there exists an integer NV

such that for all £k > N, P, and @ are bounded above and below.
Since a is a quadratic irrational, by Lemma 4.5, we can write « as

&93

oo Dot Vd
Qo '
for some Qo # 0, d > 0 where d is not a perfect square, and Qu|(d — Pk + 1?). Using the algorithm in
Theorem 4.6, we see that o = [ag;a1,as...]. Since a = [ap; a1, a2,...,a5_1, @], then

_ QkPk-1 + Pr—2

QkQr—1+ Q-2

From Lemma 4.4, the conjugate of « is

o — (akpk—l +pk_z)/ _ OGPro D2
QkQr—1 + qr—2 QpQr—1 + qr—2

To solve for o, note that
o (g qr—1 + qr—2) — (pr—1 + pr—2) =0,

o), — Pk=2 — &' qr—2 _ ( _ Qk2> <O/ - (ka/Qk2))
P i1 — pe1 Q-1) \ & — (Pr-1/qr-1)
From Theorem 3.1, we know that py_o/qr—2 and pr_1/qr—1 converges to « as k approaches infinity, and
(0/ - (pk—2/(1k—2))
o — (Pr—1/qr—1)

converges to 1. Therefore, there must exist a nonnegative integer N such that whenever k > N, then a, is
negative. By Theorem 3.3, for all k > 1, «y is positive, so for all k > N,

,_Pe+vVd P—Vd_ 2V

o — oy, = = > 0,

o o o
and hence @y, must be positive. From (23) of Theorem 4.6, we see that QrQr+1 = dkaQH, so for all k < N,
Qr < QrQry1 =d— P, <d
and Plf_H =d — QrQr+1 < d. This implies
—Vd < Py < Vd

which implies that

and
0<Qr<d

for all K > N.

Since there are finitely many integers Py, Qi satisfying the inequalities above and infinitely many integers
k such that k£ > N, there must exist integers ¢, j with ¢ < j such that P, = P; and Q; = ;. Hence o;; = ¢
which implies @;4m = aj4m for all nonnegative integers m. Therefore, we see that a is represented by the
periodic simple continued fraction

a = [a03a1>a27~-~7ai717ai;ai+1>~-'7aj717~-~] = [a03a17a27~-~7ai717ai;ai+17~--7aj71]
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There are also quadratic irrationals that are represented by periodic simple continued fractions of the

form [ag; a1, ag, ..., a,] where n is the period and there are no terms before the repeating part. For example,
L+ V5 =1+ ! =1+ ! =1+ !
e N
(14++5)/2 1+...

so the periodic simple continued fraction of (1 + v/5)/2 is [1;1,1,1,...] or [1]. We called such continued
fractions purely periodic.

Definition 4.8. Let a = [ag; a1, as,...] be a periodic simple continued fraction. Then « is purely periodic if
there exists an integer n such that ay = ag, for all nonnegative integers k. In that case, we can write « as

[ao; a1, az,...] = lag;ar,az, ..., an—1]
We call the quadratic irrational a reduced if « > 1 and —1 < o/ < 0. As an example, if « is equal to
1+ \/3, then o’ is equal to 1 — V3. We can see that a is reduced since 1++v3>1and -1 <1—+3<0.

Theorem 4.9. Let o be a quadratic irrational. Then the periodic simple continued fraction of « is purely
periodic if and only if « is reduced. If o is reduced and o = [ag;aq,as,...,an—1], then the periodic simple
continued fraction of —1/a’ is [an—1;an—2,...,a0).

Proof. Assume that « is reduced. We will prove that the periodic simple continued fraction of « is purely
periodic. By Theorem 3.3, we know that ay = «, ap = |ak], and a1 = 1/ap = 1/(a — ag) for all
nonnegative integers k. This implies that

1/oy1 = (g — ax) (26)
and by Lemma 4.4,

1/og 1y = (o — ax).
We will prove by induction on k, that

1<) <0. (27)

If £ = 0, then by the definition of reduced, —1 < oy = @’ < 0. Assume for k that —1 < o} < 0. Note that
aj, > 1 for all nonnegative integers k since o > 1 and ay, for all positive integers k is positive by definition.
By induction,
1
W1
which implies that —1 < 1/a;,; < 0 as desired. We know that

=g —ap < —1,

/
Q. = Qg + 7 ’
Qpt1

so by (27), we see that
<0.

o
71<akfak+ 7

QX1
This implies that

1
—1 -~ < ak < — 7 5
X1 Xkt
so ar = |—1/aj,|. Since a is a quadratic irrational, o can be represented by a periodic simple continued
fraction. By the proof of Theorem 4.7, there exists nonnegative integers 4, j with ¢ < j such that for all non-
negative integers m, @;ym = @j1m. This implies that a;ym = ajym, so 1/, = 1/o¢;+m and —1/aj,,, =
—1/aj,,. Since agiymy—1 = [—1/aj;,, ] and agjymy—1 = =1/, |, then a(ipm)—1 = a(j1m)—1. Similarly,
we can see that a(j;m)—2 = a(j4m)—2. If we continue this process, we will find that ag = a;_;. Therefore we
can write « as the purely periodic simple continued fraction

o = [ao;al, .. .,a]‘_i_l].

We refer to [1] for a proof of the other direction that if the periodic simple continued fraction of « is purely
periodic, then « is reduced. O
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The following theorem is useful for finding the solutions to the Pell Equation.

Theorem 4.10. Let d be a positive integer that is not a perfect square. For all nonnegative integers k,
define oy = V/d and

o — P +Vd
k Qk )
ai = I_ak:Ja
Py = apQp — P,
d— P13+1
Qr+1 = o

Let pi./qx be the kth convergent of the periodic simple continued fraction of Vd. Then,
pi — dgi = (=1)""' Qrp1-
Proof. Since vd = ag = [ag; a1, az, . .., ag, gy 1], we see that

a _
Vi = k+1Pk + Prk—1 _
Ok+1qk + Qk—1

As defined in the statement of the theorem, agi1 = (Ppy1 + vd)/Qri1, 50

Vi = (Pes1 + Vd)pi + Qrs1Pp—1
(Pes1 + VA)gr + Qri1qe—1

which implies

((Pry1 + Vg + Quyrqe—1)Vd = (Pusr + Vd)pr + Qrrapr1,
and therefore

dge + (Prs1dr + Qu1ak-1)Vd = (Pegapr + Qus1pi—1) + puVa.

Note that if 7, s, t, u are rational numbers and r + sv/d = t +u\/d, then r = t and s = u. Since qx, pr, Qk, Py
are rational numbers,

dqr = Pr+1pk + Qr+1Pk—1 (28)
and
Pk = Prr1qr + Qrt+1qk—1- (29)
If we multiply (28) by ¢x and (29) by px, we get
dqy, = Prr1Prdr + Qr+1Pr—1ax (30)
and
P = Pey1arpr + Qri1qr—1Dk- (31)
Subtracting (30) from (31) gives

P — dqi; = (Prs1arpr + Qrs1ar—10k) — (Prt1Pre + Qrt1Pk—14k)
= Qk+19k—1Pk — Qr+1Pk—1qk
= (qk—1Pk — PE—1qk)Qr+1
= (1) ' Qr11

as desired. 0
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5. PELL EQUATIONS

The solutions to the Pell Equation 2 — dy? = £1 can be found using properties of the periodic simple
continued fraction of v/d. We will show that any positive solution to the Pell Equation must be a convergent
the periodic simple continued fraction of v/d.

Theorem 5.1. Let d,n be integers such that n <0, d > 0 where d is not a perfect square, and |n| < V. If

x? — dy? = n for positive integers x,y, then x/y is a convergent of the periodic simple continued fraction of

V.
Before we prove this theorem, we need the following lemma.

Lemma 5.2. Let d be a positive integer that is not a perfect square such that v/d > 1. The kth convergent
of the periodic simple continued fraction of 1/v/d is the reciprocal of the (k — 1)th convergent of the periodic
simple continued fraction of \/d.

Now we can prove Theorem 5.1.
Proof of Theorem 5.1. By Theorem 3.7, we need to show that
x 1
- —Vd| < —.
y f‘ 2y?
We will check the following two cases for n. The first case is where n > 0. Since n = (z + yv/d)(z — y/d)
and x,y are positive, then z — yv/d > 0, so > yv/d and (x/y) — Vd > 0. Since 0 < n < V/d, it follows that

Ei\/g:xfy\/&: % — dy? n Vd 1

— < = —,
y Y (z+yVd)y (z+yVd)y 22Vd  2y°
and hence z/y is a convergent of the periodic simple continued fraction of Vd. The other case is where

n < 0. We can divide both sides of the equation 22 — dy? = n by —d to get
1, n

2 _t,2_ M
Y d

- )0 )

This implies that y — (1/v/d)z > 0, so yv/d > 2 and (y/z) — (1/v/d) > 0. By Lemma 5.2, it is sufficient to
show that

ISH

Therefore

Y 1 1

s v S22

Since 0 < —n < V/d, it follows that
1 y\/;i -
Vd o xVd
(yVd —z)(yvVd + x)
(yVd + z)zVd
dy? —

< e
222v/d
n

T 222+/d
Vd
222/d
1
oyl
Therefore, y/z is a convergent of the periodic simple continued fraction of 1/+v/d, and by Lemma 5.2, z/y is
a convergent of the periodic simple continued fraction of v/d. O
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We will prove Theorem 1.1. Here we also include the exact solutions. This theorem uses the period of
the periodic simple continued fraction of v/d and other properties of v/d to find all the solutions to the Pell
Equation 22 — dy? = £1.

Theorem 5.3. Let d be a positive integer that is not a perfect square. We can write the periodic simple
continued fraction of V/d as C = [ag; a1, az,...] where the nonnegative integer n is the period. Let py/q. be
the kth convergent of C for any nonnegative integer k. If n is even, then the solutions to x> — dy*> =1 are
x = Epjn—1 and y = £qjn—1 for all positive integers j, and 2?2 — dy? = —1 has no solutions. If n is odd,
then the solutions to > —dy? =1 are x = Epojm—1 and y = £qojm—1, and the solutions to 22 —dy? = -1
are T = £p;j_1)n—1 and y = £q2j_1)yn—1 for all positive integers j.
Proof. Since the quadratic irrational |v/d] + V/d is equal to
\Vd| +Vd =[|Vd];ai,as,...] +Vd = [2|Vd];a1,a2,.. ],

then it is reduced because [Vd| ++vd > 1 and —1 < |[Vd] — Vd < 0. We will let Sy = [Vd] + V/d and
by = QL\/gJ By Theorem 4.9, the periodic simple continued fraction representing L\/Ej +V/d is purely
periodic. Since the period of the periodic simple continued fraction of v/d is n, we see that

Vd=[2|Vd|;a1,a,...,a,-1] — [Vd]| = [[Vd];a1,02,...,a,_1,2|Vd]].

This implies @;, = Qo = 1 for all positive integers j. From Theorem 4.10, we get
p?n—l - dq_?n—l = (_1)anj7l = (_1)jn'

Therefore we have two cases. If n is even, then (z,y) = (pjn—1,¢jn—1) is a solution of 2% — dy? = 1
for all positive integers j. If n is odd, then (z,y) = (pajn—1,92jn—1) is a solution to 2% — dy? = 1 and
(7,y) = (P2j—1)n—1>q(2j—1)n—1) is a solution to % — dy? = —1 for all positive integers j. We need to check

that these are the only solutions to the Pell Equation. Since
Pk —dg® = (=1)" ' Qpy1,
for (pk,qx) to be a solution to 2% — dy* = +1, Q41 must be equal to Qg1 = Qj, = 1. Therefore we can
show that if Qx+1 =1, then n|(k+ 1) and Q; # —1. If Q41 =1, then
a1 = Pop1 + V.

Since k41 = [agt1;akt2,...] and Vd = [L\/&J;al,ag, ey Oy 1, QLﬂj], then the periodic simple continued
fraction representing ay1 is purely periodic. By Theorem 4.9, ajyq = Pir1 +Vd > 1 and —1 < Ay =
P.y1 —V/d < 0. This implies Pyy1 = |Vd]. Since apiq = [Vd] +Vd = Bo, then apy1 = by, so n|k + 1.
Next, assume for the sake of contradiction, that @; = —1. Then o; = —P; — V/d. We know that the periodic
simple continued fraction of a; is purely periodic, so o; = —P; — Vd>1and -1 < oz;- = —P; + Vd < 0.
This implies that P; < —(1 4+ +/d) and P; > v/d which is a contradiction. Hence Q; # —1. Therefore, the
solutions we found earlier are the only solutions to the Pell Equation 22 — dy? = +1. O

Using this theorem, we can find solutions to the Pell Equation for any value of d.

Example 5.4. We will find a few solutions to the Pell Equation 22 — 3y? = +1 using Theorem 5.3. Since
the periodic continued fraction of v/3 is [1;1,2] with period 2, the positive solutions to 2% — 3y? = 1 are
(x,y) = (p2j — 1,q27 — 1) for all positive integers j and there are no solutions to 2% — 3y? = —1. Note that
po=1,p1 =2,q0 =1, and q; = 1, so the first few convergents are Cy = 1,C; = 2,Cy =5/3,C3 = 7/4. This
implies that (z,y) = (7,4) and (2,1) are two of the solutions to x? — 3y? = 1.
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