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Abstract
In this paper, we walk through a proof of the Quadratic Reciprocity Theorem which utilizes

Gauss’s Lemma.

To begin, I give a recap on the Quadratic Reciprocity Theorem:

Theorem 1 (Quadratic Reciprocity). Let p and q be distinct odd primes. Then(
p

q

)
= (−1)(p−1)(q−1)/4

(
q

p

)
,

where
(

p
q

)
and

(
q
p

)
are Legendre symbols.

For the proof, we need Gauss’s Lemma [1, 2], stated here:

Lemma 1.1 (Gauss’s Lemma). Let p be an odd prime and gcd(m, p) = 1 for some m ∈ Z. Consider
the integers m, 2m, 3m, . . . , p−1

2 m and their least positive residues module p. If the number of these
residues that are greater than p

2 is n, then
(

m
p

)
= (−1)n.

Here, the least positive residue modulo p for an integer a is the integer k such that a ≡ k (mod p).

Proof of Gauss’s Lemma. [2] We begin by constructing two sets A = {m, 2m, 3m, . . . , p−1
2 m} and B

containing reduced-by-p elements of A. However, instead of having the elements of B be in the interval
(0, p), we reduce them to be in the interval (−p

2 , p
2 ).

There are three properties of set B to note, for any elements s and t of B reduced from different
elements in A:

1. s 6= t

2. s, t 6= 0

3. s 6= −t.

Proof of properties 1, 2, and 3. 1. Since A has all distinct elements, B does as well.

2. Recalling that the gcd(m, p) = 1, reducing the multiples of m in mod p will never leave 0.

3. Suppose the contrary is true and there are some s, t ∈ B such that s = −t. Then s + t = 0. Both
s and t came from elements in the set A, say k and l, respectively. The difference between k and
s is a multiple of p and the difference between l and t is a multiple of p. Therefore, we can create
another equation: k + l = hp for some h. But k, l ≤ p−1

2 m, so k + l ≤ (p − 1)m and p - (k + l).
This is a contradiction.
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Now, suppose that all the elements in B were positive. So the elements are in the interval (0, p
2 ) or,

because B is a set of integers, in the interval (0, p−1
2 ). Since there are p−1

2 integers in B, a possible
instance for B would be B = {1, 2, 3, . . . , p−1

2 }. Considering the conditions, the only variants of B there
could be are if some of the elements were negated instead. Therefore, the possible instances for B are
all of the form B = {±1,±2,±3, . . . ,±p−1

2 } (not violating property 3).
Since every element of A is congruent to an element of B (mod p), the product of the elements in A

is congruent to the product of the elements in B (mod p). This is equivalent to the following:∏
ai ≡

∏
bi (mod p)

(m)(2m)(3m) · · ·
(

p− 1
2 m

)
≡ (±1)(±2)(±3) · · ·

(
±p− 1

2

)
(mod p)

m
p−1

2 ≡ (−1)v (mod p),

where ai and bi are the ith elements of A and B, respectively and v is the number of negative elements
in B. Using Euler’s Criterion, we may see that the last equivalence can be altered to

(
m
p

)
≡ (−1)v

(mod p). Both sides of this equivalence are going to be either equal to 1 or -1, so they cannot differ by
a multiple of p except when that multiple is 0. Therefore, we can change the equivalence operation to
an equals sign, and the proof is complete.

Proof of Theorem 1. [3] Suppose we have the Legendre symbol
(

m
p

)
where p = 4mj + r is a prime and

0 < r < 4m. As in the proof of Gauss’s Lemma, we construct two sets: A = {m, 2m, 3m, . . . , p−1
2 m}

and B, the reduced-(mod p) version of A where the elements of B are in the range (−p
2 , p

2 ). In creating
the actual elements of set B, we have to see what intervals the elements of A start in. Firstly, for all
x ∈ A, if x ∈ (kp, (k + 1

2 )p) for some k ∈ W, reducing x (mod p) will give a number between 0 and p
2 .

Similarly, reducing a number in range ((k − 1
2 )p, kp) will give a number between −p

2 and 0. To figure
out the upper bound for kp, we note that the smallest next integer not in A is p+1

2 m. So kp < p+1
2 .

We also need to ensure that p−1
2 < (k + 1

2 )p (in case p−1
2 m reduced is positive). When m is odd, we

may set k = m−1
2 to fulfill the bounds, and when m is even, we may set k = m

2 to fulfill the bounds.
Returning to our inequality for reduction of A’s elements to negative integers ((k − 1

2 )p < x < kp), we
may rewrite x as my where y is the integer coefficient for m in A: (k − 1

2 )p < my < kp. We next divide
by m: (k − 1

2 ) p
m < y < k p

m . Recall that p = 4mj + r so we substitute p in this inequality:(
k − 1

2

)
4mj + r

m
< y < k

4mj + r

m
=⇒

(
k − 1

2

)
4j +

(
k − 1

2

)
r

m
< y < k(4j) + k

r

m
.

Now, in order for Gauss’s Lemma to be useful here, we only need to know whether the number of x’s in
this negative range is even or odd (whether the exponent on the (-1) is even or odd). Adding an even
number like (k− 1

2 )4j would not affect the parity of the cardinality of the set of x’s. Therefore, we may
dissolve both even terms on the LHS and the RHS of the above inequality:

(
k − 1

2
)

r
m < y < k r

m .

Lemma 1.2. Suppose we have p, q primes such that p ≡ q (mod 4m). Then
(

m
p

)
=
(

m
q

)
.

We have, of course, just proved the above lemma using Gauss’s Lemma. Now, let’s take the last inequality
we used but instead of the remainder of our prime p being r, we may use a remainder of 4m − r. We
substitute and simplify:(

k − 1
2

)
4m− r

m
< y < k

4m− r

m(
k − 1

2

)
−r

m
< y < 2− k

r

m
(remove multiples of 4)

−2 + k
r

m
< y <

(
k − 1

2

)
r

m
, (multiply by -1)

where the third line leaves y unchanged because it is simply an integer with no positive/negative sign
specified. Let’s look at the original inequality from before our substitution and see how it relates to the
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most recent one. We see that −2+k r
m <

(
k − 1

2
)

r
m < k r

m . The length of the interval (−2+k r
m , k r

m ) is 2.
We may see that the number of solutions in this interval is then 2. Both the intervals (−2+k r

m ,
(
k − 1

2
)

r
m )

and (
(
k − 1

2
)

r
m , k r

m ) therefore have same parity number of solutions. So,(
m

p4m−r

)
=
(

m

p

)
.

Let’s set p4m−r = q = (4m)j + 4m− r. We see that p ≡ −q (mod 4m). So this brings us to our second
lemma:

Lemma 1.3. Suppose we have p, q primes such that p ≡ −q (mod 4m). Then
(

m
p

)
=
(

m
q

)
.

Since we just proved this lemma, we can move on to looking at the Legendre symbol product
(

p
q

)(
q
p

)
for some distinct prime numbers p, q where p ≡ q (mod 4). This means that p = 4d + q for some d ∈ Z
and so (

p

q

)
=
(

4d + q

q

)
=
(

4d

q

)
=
(

4
q

)(
d

q

)
=
(

d

q

)
,

where the last expression equality is true because 4 is always a quadratic residue. The same thing can
be done for

(
q
p

)
so that(

q

p

)
=
(

p− 4d

p

)
=
(
−4d

p

)
=
(
−1
p

)(
4
p

)(
d

p

)
=
(
−1
p

)(
d

p

)
.

Since p = 4d + q, we also see that p ≡ q (mod 4d) and by Lemma 1.2, we have
(

d
p

)
=
(

d
q

)
. Thus,

multiplying our two original Legendre symbols together gives us(
p

q

)(
q

p

)
=
(

d

p

)2(−1
p

)
=
(
−1
p

)
≡ (−1)

p−1
2 (mod p)

= (−1)
p−1

2 . (congruence mod p is guaranteed equality)

Now, the only case that is left after accounting for p ≡ q (mod 4d) is p ≡ −q (mod 4d), so p = 4d − q

for some d ∈ Z. So
(

p
q

)
=
(

4d−q
q

)
=
(

4
q

)(
d
q

)
=
(

d
q

)
and

(
q
p

)
=
(

d
p

)
. As before, p ≡ q (mod 4d) so

we may apply Lemma 1.3: (
d

p

)
=
(

d

q

)
→

(
p

q

)(
q

p

)
= 1.

Thus we have (
p

q

)(
q

p

)
=
{

(−1)
p−1

2 p ≡ q (mod 4)
1 p 6≡ q (mod 4).

It is verifiable that this is equivalent to the Theorem 1, and thus Quadratic Reciprocity is shown.
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