
PSEUDORANDOM NUMBER GENERATION MODULO m

ANAY AGGARWAL

1. Introduction

Pseudorandom number generation involves the creation of sequences of numbers that ex-
hibit properties similar to those of truly random numbers. However, these sequences are
generated deterministically by algorithms. These algorithms use a starting point called a
seed and employ mathematical formulas to produce sequences of numbers that, while not
truly random, appear random in their distribution and properties. The generated sequences
must pass various statistical tests to ensure their randomness qualities.

Pseudorandom number generation holds major practical importance. For example, pseu-
dorandom sequences are instrumental in Monte Carlo simulations, aiding in approximating
complex integrals and solving various problems in physics, finance, and engineering. Addi-
tionally, in cryptography, pseudorandom number generators are crucial for generating cryp-
tographic keys and in the creation of unpredictable sequences for encryption algorithms,
ensuring the security and confidentiality of sensitive data and communication.

In this paper, I will begin in section 2 by introducing preliminary results that we will need for
the following sections. In sections 3 and 4 of this paper, I shall present two PRNGs hinging
on computation modulo m: The Linear Congruence Generator, and the Blum-Blum-Shub
Generator. In section 5, I shall analyze the generators based on statistical tests from the
German Federal Office for Information Security and the National Institute of Standards and
Technology, and compare the results.

2. Preliminaries

First, we need to mathematically define a Pseudorandom Number Generator (PRNG). We
will use the definition from [1].

Definition 2.1. (Pseudorandom Number Generator) Let S be a finite set, called the state
space. Let f : S → S be a function. Let g : S → [0, 1] be a function, called the output
function. With an initial value S0 ∈ S, called the seed, we will generate a sequence of random
numbers U0, U1, · · · by defining

Sn = f(Sn−1)

Un = g(Sn)

We call ⟨f, g, S⟩ a Pseudorandom Number Generator.

Essentially, a Pseudorandom Number Sequence is a sequence generated by iteratively ap-
plying some function to an initial value, and then mapping each element to some real number
in the interval [0, 1].

Date: December 8, 2023.
1

2 ANAY AGGARWAL

To analyze the LCG and BBS generators, we will need some number-theoretic definitions.
For the BBS generator, we will need to pick two primes that are roughly the same size (this
will be used as a modulus). To do this, we need to strictly define what “roughly the same
size” means. We can do this with the following:

Definition 2.2. Define the length of a natural number N to be ⌊1+ log2N⌋, or the number
of digits in the binary representation of N .

It turns out that in order to calculate the period of these generators, we will need to
calculate the period of sequences of the form a, a2, a3, · · · modulo some number m. This is
because, by construction, the LCG and BBS generators produce terms that can be explicitly
calculated in terms of powers of a modulo m. The Carmichael function is a useful tool for
this.

Definition 2.3. Let the Carmichael function λ : N → N be defined by setting λ(n) as the
smallest positive integer m such that am ≡ 1 (mod n) holds for every integer a coprime to
n.

It turns out that we may explicitly calculate this function! By [2], it is true that

λ(n) =

{
φ(n) if n is 1, 2, 4, or an odd prime power,
1
2
φ(n) if n = 2r, r ≥ 3

,

and that λ(n) = lcm(λ(n1), λ(n2), · · · , λ(nk)) if n = n1n2 · · ·nk, where the ni are powers of
distinct primes. A key corollary of this fact is that λ(a) | λ(b) if a | b. This follows by setting
a1, a2, · · · , ak as the prime powers dividing a, and a1, a2, · · · , ak, b1, b2, · · · , bℓ as the prime
powers dividing b. Then

λ(a) = lcm(λ(a1), λ(a2), · · ·λ(an)) | lcm(λ(a1), λ(a2), · · · , λ(an), λ(b1), λ(b2), · · · , λ(bℓ)) = λ(b),

as proposed. This fact will come in handy in our analysis.

Equipped with the Carmichael function, we may prove a central lemma in our upcoming
period analysis.

Lemma 2.4. For any positive integers a and m, the sequence a, a2, a3, · · · is periodic modulo
m. Furthermore, this period is a divisor of λ(m).

Proof. Let d = gcd(a,m), so that a = da′ and m = dm′ with a′,m′ relatively prime. We
also have that gcd(a,m′) = 1. Clearly, all terms in the sequence are zero modulo d, so it
suffices to show that the sequence is periodic modulo m′. This follows because aλ(m

′)+1 ≡ a
(mod m′). This period is thus a divisor of λ(m′). Because m′ | m, λ(m′) | λ(m), and our
lemma is proven. ■

3. The LCG Generator

The Linear Congruence Generator (LCG), is a generator that iteratively applies a linear
function (taken modulo m). This is one of the first natural generators to be thought of after
Definition 2.1. In particular, we would like to take the generator modulo m so that the terms
don’t become too large to store in memory, and linear functions are good examples of basic
functions modulo m. To mathematically define the LCG, we will use the definition from [3].

PSEUDORANDOM NUMBER GENERATION MODULO m 3

Definition 3.1. (LCG Generator) Let Xm be the set of residues modulo m. Define our
state space S to be

S =
⋃
m∈N

Xm.

We let f : S → S be defined by f(x) = (ax + c) (mod m) for some integer constants
0 ≤ a, c < m, when x ∈ Xm. We let g : S → [0, 1] be defined by g(x) = x

m
, when x ∈ Xm.

Then ⟨f, g, S⟩ is our LCG generator.

Essentially, the LCG takes inputm, a, c and a seed x0, and outputs the sequence u0, u1, u2, · · ·
obtained by setting xi+1 = (axi + c) (mod m) and ui =

xi

m
.

Example. When m = 10 and x0 = a = c = 7, the sequence obtained is

u0, u1, u2, · · · = 0.7, 0.6, 0.9, 0, 0.7, 0.6, 0.9, 0, · · ·

As the example shows, the sequence isn’t always “random”. It turns out the sequence is
always periodic.

Theorem 3.2. No matter the choice of (m, a, c, x0), the sequence (un)n≥1 is always periodic.

Proof. We may quickly reject the case a = 1. For other a, we claim that

xn =

(
anx0 +

an − 1

a− 1
c

)
(mod m)

for all n > 0. This claim may be verified by a simple induction. The base case n = 1 is
trivial. For the inductive step, note that

a

(
anx0 +

an − 1

a− 1
c

)
+ c = an+1x0 +

an+1 − a

a− 1
c+ c = an+1x0 +

an+1 − 1

a− 1
c.

Now, it is enough to prove that (an)n≥1 is periodic modulom, which is true by lemma 2.6. ■

To generate an unpredictable sequence, we would like to choose the four-tuple (m, a, c, x0)
so that this period is as large as possible. The periodic length is at most m, as there are
only m possible values that the sequence can cycle through. The following theorem from [3]
addresses when this maximal length is possible:

Theorem 3.3. The linear congruential sequence defined by (m, a, c, x0) has period length m
if and only if:

(i) gcd(c,m) = 1
(ii) a ≡ 1 (mod p) for all primes p dividing m
(iii) If m is a multiple of 4, then a− 1 is a multiple of 4.

To run tests, we may have to convert the LCG sequence to a binary sequence. To do this,
we may map ui to a bit by setting bi = mui (mod 2).

4. The BBS Generator

The Blum-Blum-Shub (BBS) PRNG is quite similar to the LCG. It still does all cal-
culations modulo some m, but instead of a linear function, it is a quadratic function. In
particular, it is the function f(x) = x2. We will use the mathematical definition from the
original paper by Blum, Blum, and Shub: [4].

4 ANAY AGGARWAL

Definition 4.1. (BBS Generator) Let N be the set of N ∈ N such that there exist two
primes p, q ≡ 3 (mod 4) of equal length with N = pq. For N ∈ N , we denote XN as the set
of non-zero quadratic residues modulo N . Define

S =
⋃

N∈N

XN .

This will be our state space. Let f : S → S be defined by f(x) = x2 (mod N) for x ∈ XN .
Let g : S → [0, 1] be such that g(x) is the parity of x. The BBS generator is then ⟨f, g, S⟩.

In other words, the BBS takes input N and a seed x0, and outputs the sequence of bits
b0, b1, b2, · · · obtained by setting xi+1 = x2

i (mod N) and extracting the bit bi as the parity
of xi.

Example. Take N = 7 · 19 = 133 and x0 = 4. Then (xn)n≥0 is periodic with period 6, and
x0, x1, x2, x3, x4, x5 = 4, 16, 123, 100, 25, 93, so that b0, b1, b2, b3, b4, b5 = 0, 0, 1, 0, 1, 1.

Analogous to the LCG generator, the BBS also generates a periodic sequence.

Theorem 4.2. No matter the choice of (N, x0), the sequence (xn)n≥1 is always periodic (and
hence (bn)n≥1 is also always periodic). Furthermore, this period is a divisor of λ(λ(N)).

Proof. Notice that xn = x2n

0 (mod N), for all n ≥ 0. By Lemma 2.6, (2n)n≥1 is periodic
modulo λ(N), with period d | λ(N). Because xa

0 ≡ xb
0 (mod N) when a ≡ b (mod λ(N)),

the sequence is periodic. The period is then a divisor of λ(d). Since d | λ(N), λ(d) | λ(λ(N)),
and the result follows. ■

Like the LCG, it is imperative that we choose the pair (N, x0) so that the generator has a
large period so that the generator is as unpredictable as possible. However, it is significantly
more difficult to find such pairs, and there is no (as of yet) nice analog to Theorem 3.3. On the
other hand, the BBS happens to be extremely unpredictable cryptographically. In [4], it is
shown that predicting the BBS generator is equivalent to factoring N , which is a well-known
computationally difficult problem for large N .

5. Comparison and Analysis

The guiding question for this section is as follows.

Question 5.1. How do we tell if a PRNG is “good”?

The German Federal Office for Information Security has answered this question in the
article [5]. In summary, there are four main criteria:

(1) The probability that generated sequences of random numbers are different from each
other should be high.

(2) The randomly generated sequence is indistinguishable from “truly random” numbers.
In particular, there are specific statistical tests to tell if a sequence experiences true
randomness.

(3) An attacker cannot practically guess the future terms in the sequence given any
subsequence.

(4) An attacker cannot practically guess previous terms in the sequence given a particular
term.

PSEUDORANDOM NUMBER GENERATION MODULO m 5

For all cryptographic applications, only the third and fourth criteria are important.

The first and second criteria are quite similar, and the third and fourth criteria are quite
similar. In this paper, we shall put particular emphasis on the second criterion.

The main statistical tests given in [5] are the following:

• The Monobit Test
• The Runs Test
• The Autocorrelation Test

These tests essentially test if a bit sequence has a roughly equal number of zeroes and ones,
and if any subsequence can be used to predict the rest of the sequence. Note that these tests
only work for binary sequences, so we must take the binary version of the LCG sequence.
I will be using the definitions of the tests given by the National Institute of Standards and
Technology (NIST) at [6].

The Monobit Test: For a bit string b1b2b3 · · · bn, we let Xi = 2bi − 1. We let

s =
|X1 +X2 + · · ·+Xn|√

n
.

With the complementary error function

erfc(z) =
2√
π

∫ ∞

z

e−t2dt,

we finally compute the P -value

P = erfc

(
s√
2

)
.

If P < 0.01, the bit sequence is considered non-random. Otherwise, the sequence is accept-
able as random. This test is considered valid if n ≥ 100.

The point is that Xi = ±1, depending on if bi = 0 or 1. Then |X1 + X2 + · · · + Xn| is
really measuring the proportion of the number of zeroes to the number of ones. A large
difference between the number of zeroes and ones will produce a large s value, and a small
difference will produce a small s value. As for the erfc function, see the below plot of erfc(x):

6 ANAY AGGARWAL

Since s > 0, this value quickly decreases to 0, so we require s to be small if we want P < 0.01.

The Runs Test: For a bit string b1b2b3 · · · bn, we compute

π =

∑
i bi
n

.

If π is reasonable, i.e.

|π − 1/2| < 2√
n
,

we may apply this test. Let rk be the indicator variable that is 1 if bk = bk+1 and 0 otherwise.
We set

V = 1 +
n−1∑
k=1

rk.

Finally, we compute the P -value

P = erfc

(
|V − 2nπ(1− π)|
2π(1− π)

√
2n

)
.

Again, P < 0.01 concludes that the bit sequence is non-random, and we run this test if
n ≥ 100. The point of this test is to make sure there are no lengthy runs of zeroes or ones.
First, we check if the proportion of zeroes and ones is reasonable with π. Then, V denotes the
total length of all the runs. The P -value is a function of V that is low if V is (relatively) high.

The Autocorrelation Test: For a binary sequence b1, b2, · · · , bn, we convert it to a se-
quence a1, a2, · · · , an with ai = 2bi − 1. The autocorrelations of the sequence are then

ck =
n−k∑
j=1

ajaj+k

for 0 ≤ k ≤ n−1. Essentially, ck measures how strongly the bit sequence resembles a version

of itself that has been acyclically shifted by k positions. We would like for s =
∑n−1

k=0 ck
n3 to be

PSEUDORANDOM NUMBER GENERATION MODULO m 7

(relatively) small.

Now, we may test the LCG and BBS programmatically with these statistical tests. First, we
shall implement the LCG and BBS generators (with the variable n representing the number
of iterations of the generator that we would like to run), as well as our three tests:

1 import numpy as np

2 from scipy import special

3

4 def LCG(m,a,c,x,n):

5 arr = [x]

6 for i in range(n):

7 arr.append (((a*x+c) % m) % 2)

8 x = (a*x+c) % m

9 return arr

10

11 def BBS(N,x,n):

12 arr = [x]

13 for i in range(n):

14 arr.append (((x*x) % N) % 2)

15 x = (x*x) % N

16 return arr

17

18 def Monobit(arr):

19 s = 0

20 for i in arr:

21 s += 2*i-1

22 s = abs(s)/np.sqrt(len(arr))

23 return special.erfc(s/np.sqrt (2))

24

25 def Runs(arr):

26 n = len(arr)

27 pi = 0

28 for i in arr:

29 pi += i

30 pi = pi/n

31 if(abs(pi -0.5) >=2/np.sqrt(n)):

32 return -1

33 V = 1

34 for k in range(1,n):

35 if(arr[k-1] == arr[k]):

36 V += 1

37 numerator = abs(V-2*n*pi*(1-pi))

38 denominator = 2*pi*(1-pi)*np.sqrt (2*n)

39 return special.erfc(numerator/denominator)

40

41 def Autocorrelation(arr):

42 s = 0

8 ANAY AGGARWAL

43 arr2 = []

44 n = len(arr)

45 for i in arr:

46 arr2.append (2*i-1)

47 for k in range(n):

48 ck = 0

49 for j in range(1, n-k+1):

50 ck += arr2[j-1] * arr2[j+k-1]

51 s += ck

52 return s/(n*n*n)

Now, we must figure out how to accurately compare the LCG and the BBS. To do this, we
will choose m = N = pq so that the calculations for each algorithm are roughly of the same
difficulty. We will choose the original state to be 1 in both cases. For the LCG, we will
satisfy theorem 3.3 by taking c as some number such that gcd(c,m) = 1. We cannot quite
satisfy theorem 3.3 in terms of a, as m is squarefree so we would have to choose a = 1, which
is quite predictable. Thus we will choose a arbitrarily. Finally, we will run 200 iterations
for each generator. We will generate random m = N by taking two random primes pk for
10 ≤ k ≤ 100 and multiplying them together. For each test, we will create 100 values of N ,
and plot the difference in the LCG and BBS results. The results are as follows (with the
Autocorrelation results scaled appropriately).

PSEUDORANDOM NUMBER GENERATION MODULO m 9

As seen by the data, the BBS generally had a better performance on the Monobit and Runs
test, whereas the LCG had a better performance on the Autocorrelation test. This was be-
cause the LCG’s P-value was generally larger than the BBS’s P-value for the first two tests,
but not the third. The reader may also notice that random spikes seem to appear in the

10 ANAY AGGARWAL

above graphs. This may be because the tests produce extremely large values for sequences
that don’t perform well: the functions used to calculate the P-values blow underperforming
sequences way out of proportion.

As a final note, the third and fourth criteria have to do with the realm of predictability.
This is out of the scope of this paper, but the reader should note that the BBS generator is
considered unpredictable (as mentioned at the end of section 4), and the LCG generator is
considered predictable, for some definition of predictability. In summary, the BBS generator
is considered a “better” PRNG than the LCG generator by most metrics.

References

[1] Art B. Owen. Monte Carlo theory, methods and examples. https://artowen.su.domains/mc/, 2013.
[2] Robert D. Carmichael. Theory of numbers. J.Wiley & Sons, Inc., 1914.
[3] Donald E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algorithms. Addison-

Wesley, Boston, third edition, 1997.
[4] L. Blum, M. Blum, and M. Shub. A simple unpredictable pseudo-random number generator. SIAM

Journal on Computing, 15(2):364–383, 1986.
[5] Werner Schindler. A proposal for: Functionality classes for random number generators - version 2.35 -

draft. Federal Office for Information Security, Jun 2023.
[6] Andrew Rukhin, Juan Sota, James Nechvatal, Miles Smid, Elaine Barker, Stefan Leigh, Mark Levenson,

Mark Vangel, David Banks, Alan Heckert, and et al. A statistical test suite for random and pseudorandom
number generators for cryptographic applications, 2000.

Email address: anay.aggarwal.2007@gmail.com

https://artowen.su.domains/mc/

	1. Introduction
	2. Preliminaries
	3. The LCG Generator
	4. The BBS Generator
	5. Comparison and Analysis
	References

