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1 Introduction

This expository paper concerns Farey sequences and the closely-related Stern–Brocot tree. These two objects
describe rational numbers with bounded denominators in increasing order. From the Farey sequence ordering
and the Stern–Brocot tree, we discover a slew of elegant properties relating to continued fractions and
mediants. We will begin by describing Farey sequences and proving key properties about them. We will
then introduce the Stern–Brocot tree and discuss how it relates to Farey sequences. Finally, we will apply
these methods to rational approximation.

2 Farey Sequences

In this section, we will define Farey sequences, prove their key properties, and show how to construct them.

Definition 2.1. Given an integer m, the mth Farey sequence Fm is the increasing sequence of reduced
fractions with numerator and denominator less than or equal to m, with the numerator less than or equal
to the denominator.

For example, the 5th Farey sequence is
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Farey sequences can be visualized by drawing their sunburst (see Figure 1).
This geometric object represents the various fractions as points of the form (d, n). Such a geometric

interpretation leads to our first proposition regarding Farey sequences.

Proposition 2.2. If n1

d1
and n2

d2
are two consecutive elements of a Farey sequence, n2d1 − n1d2 = 1.

Proof. As shown in Figure 1, consider the triangle formed by (0, 0), (d1, n1), and (d2, n2). Then, linear
algebra tells us that A = 1

2 (d1, n1)× (d2, n2) =
1
2 (n2d1 − n1d2). Now, consider the geometric interpretation

of n1

d1
and n2

d2
being consecutive. Note that n1

d1
(resp., n2

d2
) is the slope of the line connection (0, 0) to (d1, n1)

(resp., (d2, n2)). Thus, no line with slope between n1

d1
and n2

d2
passing through (0, 0) passes through any other

lattice point in the square 0 ≤ x, y ≤ m. Hence, our triangle contains no interior lattice points. Thus, by
Pick’s theorem, the area of the triangle is 1

2 , so n2d1 − n1d2 = 1.

For example, in F5, the element 1
3 is immediately followed by 2

5 , and 3× 2− 1× 5 = 1.
Applying this proposition allows us to relate an entry of a Farey sequence to the two adjacent entries.

Proposition 2.3. If n1

d1
, n2

d2
, n3

d3
are consecutive entries of a Farey sequence in reduced form, n2

d2
= n1+n3

d1+d3
.

In other words, n2

d2
is the mediant of n1

d1
and n3

d3
.

Proof. By Proposition 2.2, n2d1−d2n1 = n3d2−n2d3 = 1. Working with just the first equality, we find that
n2(d1 + d3) = d2(n1 + n3), and so n2

d2
= n1+n3

d1+d3
as claimed.

For example, if we consider the three adjacent elements 3
5 ,

2
3 ,

3
4 in F5, we may note that 3+3

5+4 = 6
9 = 2

3 .
Expressing Farey sequences in terms of the mediant allows us to find a formula for the next element of

a Farey sequence.
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Figure 1: A geometric visualization of F5 and a parallelogram representing (4, 1)× (3, 1).

Proposition 2.4. Considering Fm, if two consecutive values are n1

d1
, n2

d2
, the next value is

n3

d3
=

⌊
m+d1

d2

⌋
n2 − n1⌊

m+d1

d2

⌋
d2 − d1

.

Proof. We have n2

d2
= n1+n3

d1+d3
, or, equivalently, kn2 = n1 + n3, kd2 = d1 + d3. Then, n3 = kn2 − n1, d3 =

kd2 − d1, and so

n3

d3
=

kn2 − n1

kd2 − d1

=
n2

d2
+

d2(kn2 − n1)− n2(kd2 − d1)

d2(kd2 − d1)

=
n2

d2
+

1

d2(kd2 − d1)

This makes it clear that n3

d3
decreases as k increases. Hence, the next element of the Farey sequence can be

found by making k as large as possible while maintaining that kd2−d1 ≤ m (we do not have to worry about

the numerator since it is less than or equal to the denominator). Hence, we should choose k =
⌊
m+d1

d2

⌋
,

leading to, as claimed,

n3

d3
=

⌊
m+d1

d2

⌋
n2 − n1⌊

m+d1

d2

⌋
d2 − d1

.

For example, if we let n1

d1
= 2

5 ,
n2

d2
= 1

2 , we find that
⌊
m+d1

d2

⌋
=

⌊
5+5
2

⌋
= 5. Then, n3

d3
= 5×1−2

5×2−5 = 3
5 , which

is correct.
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3 The Stern–Brocot Tree

In this section, we will define the Stern–Brocot tree, prove its key properties, and relate it to Farey sequences.

Definition 3.1. The Stern–Brocot Tree is an infinite binary tree consisting of rational numbers. It is rooted
at a node with value 1

1 , and each descendant is determined as follows. Let a node s have parent of value n1

d1
.

Then,

• if s is a left-child, let n2

d2
be the value of the deepest ancestor of s such that s is in the right subtree of

that ancestor (if there is no such node, let n2

d2
= 0

1 ).

• If s is a right-child, let n2

d2
be the value of the deepest ancestor of s such that s is in the left subtree of

that ancestor (if there is no such node, let n2

d2
= 1

0 ).

We will assign to node s a value of n1+n2

d1+d2
. Then, we will let the value of node s be denoted as vs, the left

and right children be denoted as ls, rs respectively, and the parent as ps.

For example, consider computing the value of the right child of the node with value 2
3 . Then, node s has

parent value n1

d1
= 2

3 . The deepest ancestor value such that s is in that ancestor’s left subtree is n2

d2
= 1

1 .

Thus, vs =
2+1
3+1 = 3

4 . For a visualization of the tree, see Figure 2. The Stern–Brocot Tree can also be defined
in terms of continued fractions.

Definition 3.2. Given a sequence a = [a0; a1, a2, . . . , ak] where a0 is a nonnegative integer and the rest are
positive integers, let ν(a) = a0 +

1
a1+

1
a2+...

. Then, we say that a is a continued fraction representation of

ν(a). There turns out to be a unique sequence a satisfying ν(a) = v and ak > 1 (except in the degenerate
case where v is an integer). In this case, we use µ(v) to denote this sequence.

Proposition 3.3. Let µ(vi) = [a0; a1, a2, . . . , ak]. Then, vpi = ν([a0; a1, a2, . . . , ak − 1]) (recall that pi
denotes the parent of i in the Stern–Brocot tree).

Proof. We will prove this indirectly, by constructing a tree with the property described above and recovering
Definition 3.1 from it. More specifically, consider the tree formed by assigning to each node i the parent
node with value ν([a0; a1, a2, . . . , ak−1]) (and rearranging the children of each node to be in increasing order
from left to right). Let µ(vi) = [a0; a1, . . . , ak]. Then, if k is even, decreasing ak decreases the value, while
decreasing ak increases the value for odd k. Hence, i is a right child if k is even, while i is a left child if
k is odd. In either case, the value of the parent of i is ν([a0; a1, . . . , ak − 1]) while the value of the deepest
ancestor j satisfying either vpi

< vi < vj or vpi
> vi > vj is ν([a0; a1, . . . , ak−1]). It is not difficult to show

that ν([a0; a1, a2, . . . , ak−1]) =
w+xak−1

y+zak−1
for integers w, x, y, z depending only on a0, a1, . . . , ak−2. Then,

ν([a0; a1, a2, . . . , ak − 1]) =
w + x

(
ak−1 +

1
ak−1

)
y + z

(
ak−1 +

1
ak−1

) =
w(ak − 1) + x (ak−1(ak − 1) + 1)

y(ak − 1) + z (ak−1(ak − 1) + 1)
.

We will take it for granted that this fraction does not reduce. Then, the mediant of these two values is

wak + x (ak−1ak + 1)

yak + z (ak−1ak + 1)
,

which is equal to ν([a0; a1, . . . , ak]) as claimed.

From Definition 3.1, we see a potential connection between the Stern–Brocot Tree and Farey sequences.
Namely, Farey sequences are generated by starting with a sequence consisting of 0

1 ,
1
1 and repeatedly inserting

the mediant of two adjacent elements into our sequence, while the Stern–Brocot tree does the same thing
but in tree form. This leads to the following theorem.

Theorem 3.4. The Farey sequence Fn can be obtained by an inorder traversal of the Stern–Brocot tree
where we backtrack whenever a denominator is greater than n.
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Figure 2: The Stern–Brocot Tree shown to depth 3 (taken from Wikipedia).

Proof. Let node i have value vi =
ni

di
and left and right children li, ri. Then, Theorem 3.4 is equivalent to

saying that we can find Fn using the recursive formula

fn(i) =

{
() vi > 1 or di > ni

fn(li)⊕ (vi)⊕ fn(ri) otherwise,

where ⊕ represents the concatenation operator. Then, if we let the node with value 1
1 be 1, Fn =

(
0
1

)
⊕fn(1).

Since all values in the left subtree of i have values that are the mediant of fractions ≤ vi and all values in
the right subtree of i have values that are the mediant of fractions ≥ vi, fn(i) will definitely be in increasing
order. To show that Fn = (0)⊕ fn(1), we need to show that all proper fractions with denominator ≤ n are
present in our tree and that for any node i, di ≥ dpi . Both of these follow as corollaries from Proposition
3.3, so we are finished.

4 Rational Approximations

The Stern–Brocot tree, being a binary search tree, can be used to find good rational approximations to
irrational numbers. Specifically, if we wish to obtain an approximation of x, we may start at 1

1 , and
whenever the current value is greater than x, we go left, and whenever the current value is less than x, we
go right. Let us examine the power of such an approximation through the following proposition.

Proposition 4.1. For any irrational number x (where we assume 0 < x < 1 for convenience) and any
positive integer N , there exists a rational number n

d with 0 ≤ n ≤ d ≤ N such that
∣∣x− n

d

∣∣ < 1
Nd .

Proof. Consider n1

d1
, n2

d2
∈ FN such that n1

d1
< x < n2

d2
. Further, consider the element n1+n2

d1+d2
, and, WLOG, let
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n1

d1
< x < n1+n2

d1+d2
. Then,

x− n1

d1
<

n1 + n2

d1 + d2
− n1

d1

=
1

d1(d1 + d2)

<
1

d1N
.

Not only can we use this to find very good approximations of irrational numbers, but we can use it to
find infinitely many good approximations of irrational numbers.

Proposition 4.2. For any irrational number x (which we once again assume satisfies 0 < x < 1), there are
infinitely many rationals n

d with
∣∣x− n

d

∣∣ < 1
d2 .

Proof. Note that by Proposition 4.1, there must exist at least one such rational. Now, assume toward
contradiction that there are only finitely many such rationals (which we will denote n1

d1
, n2

d2
, . . . , nk

dk
). Then,

let N > maxi
di

|dix−ni| . By Proposition 4.1, we can find a new rational, nk+1

dk+1
, which approximates x to

within 1
dk+1N

≤ 1
N , which is better than all previous approximations. This approximation will also yield∣∣∣x− nk+1

dk+1

∣∣∣ < 1
d2
k+1

, and since this is closer to x than other approximations, it must be a new approximation,

leading to the desired contradiction.

However, by using the same ideas, and just working a little bit harder, we may do better.

Theorem 4.3 (Hurwitz’s Theorem). For any irrational number x (which we tacitly assume satisfies 0 <
x < 1), there are infinitely many rationals n

d satisfying
∣∣x− n

d

∣∣ < 1√
5d2

.

Proof. Our proof will be based off the Farey sequence FN (for an arbitrarily chosen N). Thus, we may simply
use this Farey sequence to show the existence of such a rational, and as we scale N to be larger, we may
attain infinitely many rationals. A more formal proof of a similar idea is given in the proof of Proposition
4.2.

Let n1

d1
< x < n2

d2
for n1

d1
, n2

d2
∈ FN , and further let n3

d3
= n1+n2

d1+d2
. Assume WLOG that x < n3

d3
. Then,

assume towards contradiction that none of these fractions serve as suitable approximations. This gives us

x− n1

d1
≥ 1√

5d21
n3

d3
− x ≥ 1√

5d23
n2

d2
− x ≥ 1√

5d22
.

Algebraic manipulation gives,

n2

d2
− n1

d1
=

1

d1d2

≥ 1√
5

(
1

d22
+

1

d21

)
n3

d3
− n1

d1
=

1

d1d3

≥ 1√
5

(
1

d23
+

1

d21

)
.
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Clearing denominators gives us

√
5d1d2 ≥ d21 + d22√

5d1d3 =
√
5d1(d1 + d2) ≥ d21 + d23 = 2d21 + d22 + 2d1d2.

Adding, we get √
5d1(d1 + 2d2) ≥ 3d21 + 2d22 + 2d1d2.

Rearranging,

0 ≥ (3−
√
5)d21 + 2(1−

√
5)d1d2 + 2d22

=
1

2

(
(
√
5− 1)d1 − 2d2

)2

.

Thus, (
√
5− 1)d1 = 2d2 and so

√
5−1
2 = d2

d1
, which is impossible, because

√
5−1
2 is irrational. Thus, we have

our desired contradiction.
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