
THE LLL ALGORITHM

ADVAITH MOPURI

1. Introduction

A common problem in mathematics and computer science is to find the shortest nonzero
vector in a given lattice. In fact, we will see many cases where this is required in a later
section. The Lenstra-Lenstra-Lovàsz (LLL) algorithm gives an approximation (up to an
exponential factor of the actual solution) of the shortest vector in a lattice by reducing a
basis of the lattice into a shorter and almost orthogonal basis.

2. Short Vectors and Lattice Reduction

Before we begin with the actual algorithm, we first define what lattices are in the context
of LLL.

Definition 2.1 (Lattice). A lattice L is a subgroup of Rn generated by all integer linear
combinations of the vectors in some basis B.

In other words, given a basis B = (b0, b1, . . . , bn), the lattice L consists of all vectors which
can be expressed as

∑n
i=0 cibi for constant integers ci.

As we will be discussing LLL in the context of the shortest vector problem (SVP), it is
important to note that there does exist a single shortest distance between any 2 points in
the lattice.

One of the earliest results regarding SVP is Minkowski’s theorem, which proves an upper
bound on the length of the shortest nonzero vector in a given lattice. The theorem requires
the determinant of a lattice, which is given by the determinant of the matrix formed by that
lattice’s basis vectors.

Theorem 2.2 (Minkowski’s Theorem). We call a subset S of Rn convex if for any 2 vectors
x, y ∈ S, x− y ∈ S.

Consider a lattice L with determinant det(L) in Rn that is symmetric about the origin
(v ∈ L ⇐⇒ −v ∈ L). For a convex subset S of Rn with a volume greater than 2n det(L),
there exists a nonzero lattice point in S.

Though Minkowski’s theorem gives a nice upper bound on the size of the smallest vector in
a lattice, it does not provide any information on how exactly to find such a vector. Currently,
there has been no algorithm that can find such a vector which also runs in polynomial time
– in fact, it has been conjectured that the problem is NP hard.

However, as mentioned previously, LLL gives a polynomial time algorithm to find close

Date: October 2023.
1

2 ADVAITH MOPURI

to the shortest vector in a lattice. The algorithm’s key component is basis reduction, which
is done via the Gram-Schmidt method.

3. Basis Reduction

Basis reduction is the procedure of reducing the size of a basis (the lengths of the vectors
that make up the basis) while keeping the lattice generated by the basis the same. Two
obvious methods for doing this are turning a vector bi in the lattice into −bi and swapping
2 vectors in the basis. However, note that these adjustments do not shorten the vectors in
the basis.

To do so, another common method is to subtract out linear combinations of all other vectors
in the basis from the vector bi. Clearly, this keeps the generated lattice the same while also
(possibly) having the effect of shortening bi. In fact, this observation is at the core of the
Gram-Schmidt method which will be covered shortly.

Before we cover the more general basis reduction methods of Gram-Schmidt and LLL, we
first solve the two dimensional case in order to gain a better understanding of what is hap-
pening in the more general n dimensional case.

It turns out that Gauss solved this case of the SVP. His algorithm is as follows:

(1) Start with a basis of vectors (b0, b1) in R2.
(2) If |b0| > |b1|, then swap the 2 vectors
(3) Compute the coefficient u = b0·b1

|b0|2

(4) If u > 1
2
, let m = ⌊u⌉, and let b1 = b1 −mb0.

(5) If |b0| > |b1|, then swap the 2 vectors and go back to step 3. Otherwise, output b0.

As an example, consider the basis consisting of the vectors b0 = (10, 0) and b1 = (3, 4). Since
|b0| = 10 > 5 = |b1|, we swap the 2 vectors to turn the basis into b0 = (3, 4) and b1 = (10, 0).
Then,

u =
3 · 10 + 4 · 0

52
=

6

5
,

so b1 gets shortened to

b1 −
⌊
6

5

⌉
· b0 =

(
32

5
,
−24

5

)
.

The length of this shortened vector is 8, which is greater than the length of b0, so we are
done. We output b0 = (3, 4), which is the shortest vector in the lattice generated by the
original basis, according to Gauss’ algorithm.

Note that the coefficient u is called the orthogonal projection coefficient, and as the name
suggests, is used to compute orthogonal projections of 2 vectors. It is crucial in the Gram-
Schmidt process, as we will see shortly.

To understand why this algorithm works, we must define and prove a few more things.
We begin by considering a 2D basis of vectors (b0, b1). It is clear that we only need 2 vectors
for the basis as the space since it is only 2 dimensional. Such a basis is considered to be
reduced if the following conditions hold:

THE LLL ALGORITHM 3

Definition 3.1 (2D reduced basis). A basis (b0, b1) in R2 is called reduced if

|b0| ≤ |b1|
and

u =
b0 · b1
|b0|2

≤ 1

2
.

It turns out that in the 2D case, if (b0, b1) is a reduced basis for a lattice L, then b0
itself is the shortest vector in the lattice. This observation is what Gauss used to create
his algorithm – he simply starts from some random basis for lattice L, and utilizes swaps
(in order to ensure that the smallest vector is at the ”front” of the basis) and subtractions
to shorten the basis. The subtractions serve a similar purpose to the subtractions in the
Euclidean algorithm. By subtracting out a well-chosen number of copies of b0 from b1, the
algorithm effectively finds b1 mod b0, and the process continues as in the Euclidean algorithm.

Additionally, it is possible to bound the shortest vector in a 2D lattice. We prove the
following theorem:

Theorem 3.2 (2D shortest vector). In a lattice L which is 2D (and cannot be expressed in
1D), the length of the shortest vector λ ∈ L satisfies

λ ≤

√
2√
3
det(L).

Here, the condition about the dimension of L is equivalent to saying that the basis rank
(number of independent vectors in a basis) of L is 2.

Proof. Consider a reduced basis (b0, b1). Let b∗1 be such that b0 and b∗1 are orthogonal, and
also such that b1 = b∗1 + ub0. Once again, the orthogonal projection coefficient u makes an
appearance. Since the basis is reduced, we know that u ≤ 1

2
.

Figure 1 provides a more pictorial representation of what is going on. We now have
the following:

b1 = b∗1 + ub0

⇐⇒ |b1|2 = |b∗1 + ub0|
⇐⇒ |b1|2 = |b∗1|2 + u2|b0|2 (since b0 and b1 are orthogonal)

≥ |b0|2 −
(
1

2

)2

|b0|2 =
3

4
|b0|2

⇐⇒ |b∗1| ≥
√
3

2
|b1|.

Next, note that the determinant of the lattice L may be expressed in terms of the orthogonal
vectors as

|b∗1||b0| ≥
√
3

2
|b0|2.

Rearranging,

|b0| ≤

√
2√
3
det(L).

4 ADVAITH MOPURI

Figure 1. A 1-indexed version of the current scenario [1].

Since the smallest vector in the lattice is b0 itself, we have λ = b0, and we are done. ■

4. Gram-Schmidt

In the 2 dimensional case, Gauss’s algorithm implements a basic version of the Gram-
Schmidt method. In his algorithm, the generated basis was not always orthogonal, but via
Gram-Schmidt, we can turn a basis B into a possibly different basis B∗ that spans the same
subspace as B while being comprised of pairwise orthogonal vectors. The algorithm requires
the use of vector projection. We define projv(w) as the orthogonal projection of w onto the
line spanned by v.

Definition 4.1 (Gram-Schmidt Algorithm). Given the basis B = (b0, . . . , bn), we define its
Gram-Schmidt orthogonalized basis B∗ = (b∗0, . . . , b

∗
n) as

b∗k = bk −
k−1∑
i=0

projb∗i (bk).

In other words,

b∗0 = b0

b∗1 = b1 − projb∗0(b1)

b∗2 = b2 − projb∗0(b2)− projb∗1(b2)

...

b∗n = bn − projb∗0(bn)− . . . projb∗n−1
(bn).

5. The LLL Algorithm

The LLL algorithm makes use of the Gram-Schmidt algorithm and some of the ideas that
have been mentioned throughout the paper in order to generate an almost-orthogonal basis
of small vectors.

THE LLL ALGORITHM 5

We begin by defining the basis B = (b0, b1, . . . , bn), and its Gram-Schmidt basis as B∗ =
b∗0, b

∗
1, . . . , b

∗
n obtained by applying the Gram-Schmidt process to B.

Our goal is to find a basis B that satisfies the following properties:

Definition 5.1 (LLL reduced basis). We call a basis LLL-reduced if the following definition
holds.

• (Size condition) For 1 ≤ j < i ≤ n, the Gram-Schmidt coefficient µi,j satisfies
|µi,j| ≤ 0.5.

• (Lovàsz condition) For k = 1, 3, . . . , n, δ|b∗k−1|2 ≤ |b∗k|2 + µ2
k,k−1|b∗k−1|2. The value of δ

is taken to be 3
4
by convention, though the algorithm will work for any δ ∈

(
1
4
, 1
)
.

An algorithm to find such a reduced basis is the LLL algorithm, shown below [2]:

k = 1
while k ≤ n:

for j from 0 to k − 1:
if µj,k > 0.5:

bk = bk − ⌊µj,k⌉ · bj
update Gram -Schmidt basis B∗

if Lovasz condition met by bk:
k = k + 1

else:

swap bk, bk−1

update Gram -Schmidt basis B∗

k = max(k − 1, 1)
return B.

Just like in the 2D case, the shortest vector of an LLL reduced basis is the first one, b0.
We have that b0 differs by an exponential factor from the actual shortest vector in a lattice,
which is good enough for most applications. In fact, if λ is the true shortest vector in the
lattice, then |b0| ≤ 2n/2λ.

6. Use Cases

The algorithm has various applications in breaking cryptographic systems, factoring poly-
nomials over the integers/rationals, and more. My favorite application of LLL is in integer
relation algorithms.

For example, consider the number r = 1.6180. If r is a root of some unknown quadratic,
then LLL can be used to determine a relatively ”small” quadratic that contains a root ap-
proximating r.

More advanced uses of this technique, along with many of the previous applications of LLL,
make this algorithm a powerful lattice reduction and shortest vector finding tool. Improve-
ments continue to be made to this algorithm in order to tailor it for more specific situations,
and as such, LLL continues to have a place in the scientific ecosystem of today.

6 ADVAITH MOPURI

References

[1] Xinyue Deng.
[2] Steven Schaefer. LLL Algorithm. YouTube, Dec 2020.

	1. Introduction
	2. Short Vectors and Lattice Reduction
	3. Basis Reduction
	4. Gram-Schmidt
	5. The LLL Algorithm
	6. Use Cases
	References

