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Abstract. This paper will explore the Perron-Frobenius Theorem and its applications
to Markov Chains and stationary distributions. It starts with some background and then
proves the theorem. The paper concludes with some other applications of the theorem in
other fields.

1. Introduction and History

The Perron-Frobenius Theorem is a very important theorem in linear algebra and helps
show that irreducible aperiodic Markov chains have unique stationary distributions among
many other applications. It was proved by Oskar Perron in 1908 for positive matrices and
Georg Frobenius generalized the theorem for nonegatve matrices in 1912.

2. Background

Definition 2.1 (Positive Matrix). A positive matrix is a matrix whose entries are all positive
real numbers.

Definition 2.2 (Spectral Radius). The spectral radius, r of a n×n square matrix, A, is the
maximum of the absolute values of the eigenvalues (λ) of the matrix (|λ| ≤ r).

The concept of the spectral radius is central to our proof of the Perron-Frobenius Theorem
as the Perron-Frobenius eigenvalue of a matrix is also the spectral radius of the matrix.

Definition 2.3 (Primitive Matrix). A primitive matrix is a n×n square nonegative matrix
(A = (aij)) which to some power is positive. It is said to be primitive if there exists k such
that Ak ≥ 0.

Primitive matrices are important for our proof of the Perron-Frobenius Theorem for non-
negative matrices.

Definition 2.4 (Irreducible Markov Chain). A Markov chain on a state space Ω is irre-
ducible, if for any states i, j ∈ Ω there is some positive integer t such that p(t)ij>0. An
irreducible Markov Chain is where every state can be reached from every other state.

3. Proof of the Perron-Frobenius Theorem

Theorem 3.1. Let A be an n× n irreducible square matrix.

• There is a positive number r, called the Perron–Frobenius eigenvalue of A, such that
r is an eigenvalue of A, and is the spectral radius of A.
• The eigenspace corresponding to r is 1-dimensional.
• There exists an eigenvector v, called the Perron–Frobenius eigenvector, corresponding

to r such that all the entries of v are positive.
• The only nonnegative eigenvectors of A are multiples of v.
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Lemma 3.2. Let A be a positive n× n matrix. Then A has a positive eigenvalue, r with a
positive corresponding eigenvector, v.

Proof. Let A be positive matrix in Mn(R). Let S denote the set of vectors x in Rn that have
all entries non-negative and satisfy ‖x‖ = 1. If x ∈ S, then all entries of Ax are positive.
Let us define a function L : S → R>0 as follows. For x ∈ S,

L(x) = min
1≤i≤n

{
(Ax)i
xi

: xi 6= 0

}
.

To better understand what the function L does, we can start with x ∈ S. Compare the
vectors x and Ax entry by entry. Look at these positions i in which x has a positive entry
xi. For each of these i, the ith entry of Ax is also positive, so it is xi multiplied by some
positive scaling factor αi. The least of these αi is what we are calling L(x). It is a positive
real number.

That is how L(x) is defined for a particular x ∈ S, and L is a continuous function from S
to the set of positive real numbers. Since S is compact, this means that L has a maximum
value on S. Call this r, and let v ∈ S be a vector for which L(v) = r.

We will show that r is an eigenvalue of A with v being the corresponding eigenvector, and
that v is positive. There are two steps.

1. We show that Av = rv. We know that Av ≥ rv since L(v) = r,this means that
(Av)i ≥ rvi for all i. Thus Av − rv ≥ 0. this means that A(Av − rv) is a positive vector
and so we can choose ε > 0 small enough that A(Av − rv) > εAv. The vector Av may not
belongs to S, but there is a positive real number c for which cAv ∈ S.

A(Av) > (r + ε)Av =⇒ A(cAv) ≥ (r + ε)cAv =⇒ L(cAv) ≥ (r + ε).

This contradict the choice of r as the maximum value of L on S, and we conclude that
Av = rv.

2. We also know that v ≥ 0 since v ∈ S. It follows that Av > 0 - no entry of Av can be
equal to zero since v is a non-negative non-zero vector and A is positive. Hence rv and v
are both strictly positive. �

Lemma 3.3. The spectral radius of A is r.

Proof. If we have λ be any eigenvalue of A, and if we have y be the corresponsing eigenvector
with ‖y‖ = 1. For every entry, i , of Ay and λ, we have the following:

y = Ay

=⇒ λyi ≤
n∑
j=1

Aijyj

=⇒ |λyi| ≤
n∑
j=1

Aijyj

=⇒ |λ||yi| ≤
n∑
j=1

Aij|yj|.
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Lemma 3.4. r has geometric multiplicity 1.

Proof. We know that v is a positive eigenvector of A corresponding to r. Now suppose that
u is an eigenvector of A corresponding to r, and that u is independent of v over C.
We assume that the u as entries that are real as r is real. If u has entries that are non-real
complex numbers, then the real and imaginary part of u would separately be eigenvectors of
A and at least one of them would be independent of v.
As per our assumption, ever element of the 2-dimensional space spanned by u and v (over C
or R) is an eigenvector of A corresponding to r. Since v > 0, there is a real number ε with
the property that u′ = v + εu is a non-negative vector with at least one entry equal to zero.
However u′ 6= 0 since u and v are independent.
This is the required contradiction, since Au′ would be positive in this case and would not be
a scalar multiple of u′. �

Lemma 3.5. The algebraic multiplicity of r is 1.

Proof. We must show that A is similar to a (real) matrix A′ that has the entry r in the (1, 1)
position and zeros throughout the rest of Row 1 and Column 1.

Since A and its transpose have the same characteristic polynomial and hence the same
spectrum, the spectral radius of AT is r. Now, there is a positive column vector w that is
an eigenvector of AT corresponding to r (by the Lemma 3.2). Thus ATw = rw and the row
vector wT satisfies

wTA = rwT .

Now let U be the (n − 1)- dimensional orthogonal complement of w with respect to the
ordinary scalar product on Rn:

U = {u ∈ Rn : wTu = 0}.

Let u ∈ U , and consider the vector Au ∈ Rn. Note that

wTAu = rwTu = 0,

so Au ∈ U whenever u ∈ U . this means that the subspace U of Rn is A-invariant. This
is because U is the orthogonal complement in Rn of a left eigenvector of A, it has nothing
to do with the positivity of A or the special properties of r and w. However these special
properties give us an important extra piece of information.

As v is the corresponding eigenvector of r. Then v /∈ U since w · v = wTv > 0, because
w and v are both positive. Let {b1, ..., bn−1} be a basis of U. Then B = {v, b1, ..., bn−1} is a
basis of Rn.

Now the matrix A’ that describes the linear transformation of Rn determined by left mul-
tiplication by A, with respect to the basis B, has the following form:

A′ = r0...00..B(n−1)×(n−1).0

Here B is n × n matrix with real entries. Since A and A’ are similar , r occurs as an
eigenvalue of both, with the same algebraic multiplicity and with geometric multiplicity
1 in each case. The characteristics polynomial of A’ is (x − r)rB(x), where rB(x) is the
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characteristic polynomial of B. If the algebraic multiplicity of r as an eigenvalue of A’ exceeds
1, then r is an eigenvalue of B with a corresponding eigenvector vB ∈ Rn−1. This means
that the vector in Rn obtained by preceding v with a zero entry is an eigenvector of A’
corresponding to r. Since e1 is also an eigenvector of A′ corresponding to r, this means
that r has geometric multiplicity at least 2 as an eigenvector of A′, and hence also as an
eigenvector of A. The contradiction leads us to conclude that r occurs once as a root of the
characteristic polynomial of A.

�

Lemma 3.6. Let u be a positive eigenvector of A. then u is a real positive scalar multiple of
v.

Proof. Let µ be the eigenvalue of A to which u corresponds. Then, µ is real and µ > 0, since
A and u are positive and Au = µu. Thus 0 < µ ≤ r. Choose ε small enough that u′ = v− εu
is positive. For which i we have

(Au′)i = rvi − µεui ≥ r(vi − εui) = ru′i.

Thus Au′ ≥ ru′, which means that Au′ = ru′ by the maximality of r as a value of the
function L. This means that u’ is a r-eigenvector of A, which means that u’, hence u, is a
scalar multiple of v and µ = r.

�

Lemma 3.7. Suppose that µ is an eigenvalue of A, µ 6= r. Then |µ| < p.

Proof. Suppose, anticipating contradiction, that |µ| = r, and let y be an eigenvector of A
corresponding to µ, with ||y|| = 1. Let |y| denote the vector in Cn whose entries are the
moduli of the entries of y. Then |y| ∈ S and for each i we have

(A|y|)i =
∑

j Aij|yj| =
∑
|Aijyj| ≥ |

∑
j Aijyj| = |µyi| = r|yi|.

Thus A|y| ≥ r|y| , which means that |y| is a r-eigenvector of A and |y| = v. Then equality
holds in the triangle inequality above and we have for each i that

∑
j |Aijyj| = |

∑
j Aijyj|.

So Ai1y1, Ai2y2, ..., Ainyn are complex numbers with the property that the sum of their mod-
uli is the modulus of their sum. This means that they lie on the same ray in the complex
plane (a ray is a half-line with its endpoint at 0). Since the numbers Aij are all real and
positive, this means that y1, ..., yn all lie on the same ray. Hence there is some θ for which
eiθy is a positive vector. Thus y is a (complex) scalar multiple of a positive vector, and
since r is the only eigenvalue of A to have a positive corresponding eigenvector, it follows
that µ = r. Thus the only eigenvalue of A to have modulus r is r itself, and every other
eigenvalue has modulus strictly less than the spectral radius.

�
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4. Application of Perron-Frobenius Theorem to Markov Chains

One of the most useful applications of Perron-Frobenius theorem is its use for Markov
chains.

If we have a Markov Chain X0, X1, ..., with states in 1, ..., n, with transition matrix P and
let pt be the distribution of Xt, then pt+1 = Ppt = P tP0. We know that λTP =T , where λ is
a left eigenvector with eigenvalue 1 (Perron-Frobenius eigenvalue of P). For a irreducible and
aperiodic Markov chain, the right Perron-Frobenius eigenvector is the stationary distribution,
Pπ = π. There exists an integer k such that P k has strictly positive enries iff the Markov
chain is aperiodic and irreducible. The stationary distribution of the Markov chain is the
unique Perron-Frobenius eigenvector of P k.

Theorem 4.1. If we have an irreducible and aperiodic Markov Chain, then it has a unique
stationary distribution, π.

Proof. See [6] for a complete and rigorous proof. �

Lemma 4.2. Let A be an n × n matrix, where A is diagonizable iff A has n linearly inde-
pendent eigenvectors.

Proof. Let P be a n×n matrix with xolumns z1, ..., zn and let D be a n×n diagonal matrix
with diagonal entries λ1, ...,n. Then,

AP = A[z1z2...zn] = [Az1Az2...Azn],

and

PD = P =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 = [λ1z1λ2z2...λnzn].

Now if we assume that A is diagonizable and A = PDP−1, then AP = PD, which gives,

[Az1Az2...Azn] = [λ1z1λ2z2...λnzn].

or

Az1 = λ1z1, Az2 = λ2z2, ..., Azn = λnzn.

Since P is invertible its columns have to be linearly independent, and also be nonzero.
The above equation shows that (i,zi) are eigenpairs for i = 1, ..., n. Therefore a diagonizable
matrix has n linearly independent eigenvectors, where the columns of P are the eigenvectors
and the diagonal of D are the eigenvalues.

Now if we have A have n linearly independent eigenvectors zi, ...zn with eigenvalues
λi, ..., λn, and we also have a matrix P = [ziz2...zn] and a diagonal matrixD = diag(λ1, ..., λn).
Then from above we have AP = PD, which can still be trues without having linearly inde-
pendent eigenvectors. Since the eigenvectors are linearly independent P is invertible and so
A = PDP−1. �
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Lemma 4.3. If A has n linearly independent eigenvectors, then so does AT .

Proof. Since A hs n linearly independent eigenvectors, A may be diagonalized as A =
PDP−1, where the columns of P are the eigenvectors that are linearly independent of A and
the eigenvalues of A are the diagonal entries of D. Then, we also have AT = (P−1)TDP T .
By the previous lemma, we have the columns of (P−1)T be the n linearly independent eigen-
vectors of AT . �

5. Google PageRank Example

Non-negative matrixes and graphs are very connected to each other. For example, if we
have a non-negative n×n matrix, B, and the graph Γ(B) that is associated with this matrix
have the vertices v1, ..., vn. The graph has an arc from vi to vj, iff the entry Aij of A is
positive .

Definition 5.1. If we let Γ be a directed graph, with vertices u and v, then a walk from u to
v is a sequence of arcs, where the terminal vertex of each arc is the initial vertex of the next
one. The length of a walk is the number of arcs that it contains. The zero-nonzero pattern
of B is said to be symmetric when Bji is positive whenever Bij is positive. In a symmetric
pattern, the graph association with A may be undirected as it has an the arc from vi to vj
iff it has an arc from vj to vi. The adjacency matrix, A(Γ) of a directed graph with Γ with
vertices v1, ..., vn is the matrix whose (i, j) entry is 1 if there is an arc from vitovj in Γ, and
0 otherwise.

Lemma 5.2. If we let Γ be a directed graph with adjacency matrix A, and let k be a positive
integer, then the entry in the (i, j) position of Ak is the number of walks from vitovj in Γ.

Proof. If k = 1, then the (i, j) entry is 1 or 0 as there either is an arc from vi to vj or there
is not. Now if this lemma is try for Ak−1:

(Ak)ij =
n∑

m=1

(Ak−1im Amj.

Then, Ak−1im is the number of walks of length k− 1 from vi to vm. Therefore, Ak−1im Amj is the
number of walks of length k in Γ from vi to vj that have vm as their second last vertex. The
sum of these numbers over m is the total number of walks of length k from vi to v − j.

�

If we have B be any non-negative matrix and let A be the (0,1)-matrix with the same
zero-nonzero pattern as B, then A = A(Γ(B)). For every positive integer k, Bk and Ak have
the same zero-nonzero pattern. The entry in the (i,j) entry of Bk is positive iff there is a
walk of length k from vi to vj in Γ(B). The matrix B is primitive iff Bk is positive form k,
in other words there must be a walk of length k in Γ(B) from every vertex u to every vertex
v.

The Perron-Frobenius Theorem uses this definition and interpretation of matrices in terms
of graphs in the application of the PageRank algorithm which Google uses to assign rankings
for webpage searches.We assign vertices to webpages where there is an arc from vertex vi
to vertex vj if there is a link from Page i to Page j and let n be the number of webpages
involved. Now, let A be the transpose of the adjacency matrix of this graph, so that Aij = 1
if there is a link from Page j to Page i, 0 otherwise. Also, suppose that the number of links
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from Page j is dj. Now if we assign the probability of a surfer on Page j leaving it through
a randomly chosen link as 0.85, and the probability that a surfer will move to a randomly
chosen page as 0.15. Here the probability that a surfer at Page j will go to Page i is given
by: 0.85

dj
+ 0.15

n
, if there is a link from Page j to Page i and 0.15

n
, if there is not.

Theorem 5.3. If we let A be a positive n×n matrix where the entries in every column sum
to the same number k, then k is the Perron eigenvalue of A.

Proof. Let v be the vector that has length of n and whose entries are all 1. Then, vTA = kvT .
Thus vT is a left eigenvector of A and since v is a positive vector, it follows that k is the
Perron eigenvalue of A by the Perron-Frobenius Theorem. �

Theorem 5.4. Let A be a positive n × n matrix with spectral radius 1 and let v be any
positive vector is Rn. Then the sequence v, Av,A2v, ... converges to the Perron eigenvector
of A or to the zero vector.

Proof. Let 1, λ2, ..., λn be the eigenvalues of, so |λi| < 1 by the Perron-Frobenius Theorem.
Assume that A is diagonalizable and let v1, ..., vn be a basis of Rn consisting of eigenvectors
of A, where Av1 = v1 and Avi = λivi. Now, v = a1v1 + a2v2 + ... + anvn, and for a positive
integer k,

Akv = a1A
Kv1 + a2A

Kv2 + ...+ anA
Kvn = a1v1 + a2A

Kv2 + ...+ anA
Kvn.

Since |λi| < 1, λki → 0 as k →∞.
�

For the PageRank matrix, if we let x be the vector whose jth entry xj is the proportion
of surfers who are on Page j. The ith entry of Bx is

(Ax)i =
n∑
j=1

Bijxj =
n∑
j=1

P (j → i)xj,

Thus
∑n

j=1 P (j → i)xj is the proportion of the whole population that will be at Page i
one step after the step whose population distribution is described by x, so the vector Bx
converges to y for which

∑
yi = 1. Thus y describes the steady state of the system. The

pages are ranked in terms of importance according to the entries of this Perron eigenvector.

6. Other Applications of the theorem

The Perron-Frobenius Theorem has many other applications in mathematics like on com-
pact operators as well as non-negative matrices. It also has applications in other fields like
modeling population growth, modeling price changes in economics, and power control.
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