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Abstract. In this paper, we discuss two types of queues: M/M/1 and M/M/∞ queues. We first introduce
stochastic processes and continuous-time Markov chains before finding the steady-state solutions of the two

queues.

1. Introduction to Queues

Definition 1.1. A queue consists of a queueing node with one or more “servers”. A customer arrives to the
queue, may or may not wait a period of time before being served, then spends some time in the queueing
node being “served” by a server, after which they leave the queue.

A queue arises when there are limited resources for a service. The actual queue consists of customers or
tasks waiting to be completed and a queueing node with server(s) who complete the tasks. Customers enter
and leave the queue in a random fashion, according to some stochastic process.

A queue can be used as a mathematical model for a variety of situations, such as waiting for a cashier
at a grocery store or handling customer service calls. There are several defining characteristics of a queue.

Definition 1.2 (Characteristics of Queues). A queue possesses the following characteristics: arrival rate,
service pattern/rate, queue discipline, queue capacity, and number of servers.

Queues are well-suited to being represented using a continuous-time Markov chain. Before we can actually
define queues mathematically, we must give some background on stochastic processes and continuous-time
Markov chains.

This paper contains a mixture of results from [1], [4], [5], and [6].

2. Stochastic Processes and the Poisson Process

Definition 2.1. A stochastic process is a collection of random variables indexed by a set, with elements
{X(θ)} for θ ∈ Θ. Most commonly, Θ, the index set, is time.

For example, in the context of queueing theory, a stochastic process could denote the number of arrivals
or departures (the random variable X) over a certain interval of time (the set which these variables are
indexed over). It would make sense for the state space of X, then, to be positive integers, since the number
of customers in a queue must be a positive integer.

If the index set Θ is a countable set, the process is known as a discrete-time process, and if it is not,
such as the case of the real line, it is known as a continuous-time process. Similarly, if the random variable
X has a discrete state space, our stochastic process is a discrete space process, and if not, it is a continuous
space process. We therefore have four types of stochastic processes based on these classifications; the one
that it makes the most sense for us to deal with is a discrete space continuous-time process, because the
number of customers must be discrete and time is generally continuous.

The first stochastic process we will define is a Poisson process, which is the most common stochastic process
for arrival/departure rate in queueing theory.
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Definition 2.2. A Poisson process is a continuous-time stochastic process in which a function N(t) with
t ∈ [0,∞) represents the number of times a certain event (such as customers or tasks arriving to a queue)
occurs at different points in time.

We refer to the stochastic process {N(t), t ≥ 0}, as the counting process which counts the number of occur-
rences of this event up to time t.

Note that in this case, the index set Θ is the subset of the real line [0,∞), representing time, and the
random variable Nt represents the number of arrivals by time t.

Definition 2.3 (Poisson distribution). We first define a Poisson distribution; the Poisson distribution takes
one parameter, λ, representing the mean number of occurrences. Then, we have the probability mass function

f(k, λ) = P(X = k) =
λke−λ

k!
.

This means that the probability of k arrivals occurring at a given time is equal to f(k, λ). The expected
value and variance of this distribution is λ.

If we are given the rate r rather than the mean number of occurrences, we have λ = rt and thus the
probability of k occurrences in time interval t is

(rt)ke−rt

k!
.

Remark 2.4. The following 3 conditions must be met for N(t) to be a Poisson process with a rate parameter
of λ:

(1) N(0) = 0.
(2) N(t) has independent increments, meaning that the number of arrivals in disjoint intervals are statis-

tically independent. This means that for r > s > t > u > 0, N(r)−N(s) and N(t)−N(u) are independent
events, or random variables.

(3) The number of occurrences in an interval of length t follows a Poisson distribution, with a mean value
of λt.

In addition to these three conditions, a Poisson process has stationary increments; this means that for
t1 > t2 > 0 and u > 0, the random variable N(t1)−N(t2) has the same distribution as N(t1 +u)−N(t2 +u).

Furthermore, if we choose the quantity δ = t1 − t2 to be very small, almost a point in time, the proba-
bility of there being an occurrence there is the same for any values of t2 and t1, essentially stating that the
probability of having an event at any point in time is equally likely.

Remark 2.5. The Poisson process is what we refer to as memoryless and orderly.

A memoryless stochastic process is just a process in which the future does not depend on the past’s events.
The Poisson process being memoryless is a fact which follows from its independent, stationary increments;
the independence from the past follows from the independent increments, and the identical distribution of
future events is explained by the stationary increments.

An orderly process is one which satisfies the condition

lim
∆t→0

P(N(t+ ∆t)−N(t) > 1 |N(t+ ∆t)−N(t) ≥ 1) = 0.

This is important, because it means that there is a negligible probability of two or more arrivals occurring
at the same point in time.

Another important distribution in queueing theory is the exponential distribution.

Definition 2.6 (Exponential Distribution). An exponential distribution has probability density function{
δe−δx x ≥ 0

0 x < 0
.
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Note the distinction between probability mass functions, such as that of the Poisson distribution, which
are for discrete random variables, and probability density functions, which are used for continuous random
variables.

So, we use an exponential distribution for the length of time between arrivals or events, which is a continuous
random variable, and a Poisson distribution for the number of occurrences in a certain interval, which is a
discrete random variable.

Lemma 2.7. The expected value of the time between occurrences is 1
δ .

Proof. To find the expected value of a continuous random variable X, we take the integral over all possible
values x that X takes multiplied by the probability of x taking that value. Since the exponential distribution
takes values in [0,∞), the bounds of our integral will be 0 and ∞. We evaluate the integral∫ ∞

0

x(δe−δx)dx.

We can factor out a 1
δ and substitute y = δx to get the integral

1

δ

∫ ∞
0

ye−ydy.

Using integration by parts, we can simplify to

1

δ

[
−ye−y − e−y

]∣∣∣∣∞
0

=
1

δ
,

so the expected value of the time between occurrences is 1
δ . �

3. Continuous-Time Markov Chains

3.1. Introduction.

Definition 3.1. A continuous-time Markov chain is one in which the set of possible times is T = {t : 0 ≤
t <∞}.

This differs from the Markov chains we’ve seen so far in which T is the nonnegative integers. In this paper,
we will deal with continuous-time Markov chains in which the state space is discrete.

Similarly to discrete-time Markov chains, continuous-time Markov chains, or CTMCs, are governed by the
following principle:

Given real numbers t ≥ 0 and s ≥ 0, a continuous-time Markov chain has the property that

P(Xt+s = j |Xt = i,Xv = kv, 0 ≤ v ≤ t) = P(Xt+s = i |Xt = i),

with i, j ∈ Ω, most commonly for our purposes the positive integers.

We can define continuous-time Markov chains in the language of stochastic processes as well, as discrete-space
continuous-time stochastic processes. We have the following two facts, then:

(1) When the chain enters a state i, it stays at that state for an amount of time that is exponentially
distributed with parameter δi (so, according to the state i) before transitioning again.

(2) When the process leaves a state i, its probability of transitioning to state j is Pij ; we have Pii = 0
and

∑
j∈Ω Pij = 1.

where the second part of the second property is true for all Markov chains.

We also have the related notion of a transition probability function Pij(t), which is the probability that
if the Markov chain is at state i at time t0, then it will be at state j at time t0 + t for all t0. We can thus
write

Pij(t) = P(Xt0+t = j |Xt0 = i).

We denote the matrix of all probabilities Pij(t) as P (t), or the transition function.
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3.2. Steady-State Probabilities. We define a continuous-time Markov chain to be stable if all of its states
are positive recurrent. For irreducible, aperiodic, and stable Markov chains, we define the steady-state or
stationary probability of a state j to be

πj = lim
t→∞

Pij(t),

and this limit exists because of the three conditions we placed on the chain.

In order to determine the stationary distribution π, we need to define the infinitesimal generator of a CTMC,
Q = P ′(0). Q is the matrix of infinitesimal rates Qij , where

Qij = δiPij

for i 6= j and

Qii = −
∑
i6=j

Qij .

As defined earlier, δi is the rate of leaving state i, so Qij is the product of the rate of leaving state i and the
probability of transitioning to state j, or the rate of transitions from i to j.

Remark 3.2 (Transition-rate matrix). The transition-rate matrix Q with entries qij of a CTMC also satisfies
the following properties:

(1) 0 ≤ −qii <∞
(2) 0 ≤ −qij for i 6= j
(3)

∑
j∈Ω qij = 0 for all i ∈ Ω.

And, as we defined earlier, since qii = −
∑
i 6=j qij , condition (3) is automatically satisfied.

In order to find the steady-state solution, we solve for π such that
∑
i∈Ω πiQij = 0 for all j or πQ = 0.

We can obtain this result through the Chapman-Kolmogorov equations, which say that

P (t+ h) = P (h)P (t),

the continuous-time equivalent to saying that P (t) = P t for discrete-time chains. Thus we have

P (t+ h)− P (t) = P (t)(P (h)− I) = P (t)(P (h)− P (0)).

We divide by h and take the limit as h→ 0:

lim
x→0

P (t)(P (h)− P (0))

h
,

which yields that
dP

dt
= P (t)P ′(0) = P (t)Q.

If we set dP
dt = 0 for a given transition function Pπ, we can say that the probability of transitioning to a

certain state does not change over time, and thus, we have achieved stationarity [3]. When we solve for
Pπ such that PπQ = 0, all of the rows of P must be the same in order to be independent of time, as
with stationarity for discrete-time Markov chains; if we denote each row as π, we have πQ = 0, where π
represents stationarity or the steady-state solution of the continuous-time Markov chain. Also, we must have∑
i∈Ω πi = 1.

4. Birth-and-Death Processes

Definition 4.1. A birth-and-death process is a type of continuous-time Markov chain in which the change
at any occurrence from any state i is either +1, or a “birth”, or −1, or a “death” (so, to either i+ 1 or i− 1,
akin to a customer entering or leaving a queue).

If the probability of a birth at state i is vi, the probability of a death at state i is then 1−vi. Because the
amount of time between occurrences follows an exponential distribution, the mean amount of time between
occurrences is 1

δi
. We can calculate the birth rate at state i by saying

bi = δivi,
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then, and similarly, the death rate by saying

di = δi(1− vi),

which, after adding the two equations, yields the somewhat intuitive consequence that

δi = bi + di,

or that the total rate at a certain state is equal to the sum of the birth and death rates, or, more generally,
that the total rate of a state of a continuous-time Markov chain is equal to the sums of the rates of the
transition to each of the other accessible states.

5. Queueing Theory Notation

With all of the relevant background covered, we are finally ready to actually define and work with queues.

5.1. Standard Queue Notation. First, we define the different parameters and notation for queues.

A queue has 5 different parameters: arrival process, service pattern/rate, number of servers, queue ca-
pacity, and queue discipline. The arrival process denotes the manner in which customers arrive to the queue,
and the service pattern describes the customer service pattern time. The queue capacity is the number of
buffers available for customers, including the servers themselves, and lastly, queue discipline represents the
manner in which customers in the line waiting are served; some typical disciplines are First In First Out
(FIFO)/First Come First Served (FCFS), Last In First Out (LIFO), and random order. If the queue capacity
is unlimited and the discipline is FIFO/FCFS, as they are for the purposes of this paper, we generally drop
the last two parameters when referring to the queue. So, for example, we denote a FCFS, unlimited capacity
queue as A/S/c where A refers to the arrival process, S to the service process and c to the number of servers.

When referring to arrival rates and service patterns, there are a few different conventions to be aware
of. M , or Markovian, refers to a Poisson process for arrival or exponential service time distribution; D refers
to a deterministic model (which is not stochastic and not covered in this paper); G refers to general, or an
arbitrary distribution for both. In this paper, we deal with M/M queues.

Now that we have defined notation and parameters for a queue, we can determine the steady-state so-
lution for a few types queues. The steady-state solution is the state where the probability distribution of
the number of customers in the queueing system is independent of time (as opposed to the transient state,
where this distribution depends on time).

5.2. Important Metrics for Queues. Before moving on to our two types of queues, we’ll discuss two
important metrics for G/G/1 queues and the relations between them. They are the following:

• E[Q], the expected value of the queue size, including the customer in service.
• E[Nq], the expected value of the number of customers not in service.
• E[D], the expected value of the delay of each customer, or the total time from arrival in the queue

to completion of service.
• E[Wq], the expected value of the waiting time in a queue, or the total time form arrival to when a

customer’s service begins.

Theorem 5.1 (Little’s Theorem). Little’s theorem states that for all G/G/1 queues in steady-state, E[Q] =
λE[D], and similarly, that E[Nq] = λE[Wq].

The intuition for the first form of this formula is that a customer who leaves the queueing node after being
serves sees on average E[Q] customers, the expected value of the queue size in steady-state. This is equal
to λE[D], the customers who arrived and were waiting while they were in service. Similar intuition can be
applied for the second form of the equation. We will use Little’s formula to calculate E[Q] and E[D] for the
M/M/1 queue.

The proof is given in Little’s 1960 paper [2].
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5.3. M/M/1 Queues. We’ll begin with the M/M/1 queue, starting with some general results about queues.
For a G/G/c queue with an average service rate of µ and an average customer arrival rate of λ, we can mea-
sure the traffic congestion by having ρ = λ

cµ . It follows that if ρ > 1, there is no steady state solution, since

the number of people waiting to be served in the queue grows without bound, and if ρ = 1, there is no
steady-state solution unless the arrival and service rate are deterministic, since the queue is always behind.
Therefore, we can only find a steady-state solution if ρ < 1.

In the case of an M/M/1 queue, we have c = 1, so we must have ρ = λ
µ < 1 or λ < µ.

Theorem 5.2. The steady-state solution for the M/M/1 queue is πi = ρi(1− ρ) for i ≥ 0.

We will use the techniques described in Section 3 to solve for the steady-state solution (or stationary distri-
bution) π. First, we will define Q using the transition functions Pij(t) and the transition rates δi. Next, we
will solve for π such that πQ = 0.

Proof. We will begin by showing a state-transition diagram for the M/M/1 queue, which will help us deter-
mine Q.

We’re given the rates of transition in and out of the queue to be λ and µ respectively. We know then
that the rates of transition qi,i+1 = λ for i ≥ 0 and qi,i−1 = µ for i > 0. There is also a rate of transition
for qii, but all other rates are 0 since an M/M/1 queue follows a birth-and-death process. Therefore, since
qii = −

∑
i 6=j qij , we have q00 = −λ and qii = −(λ+ µ) for all i > 0. Therefore we have our transition rate

matrix Q as follows:

Q =


−λ λ 0 0 0 . . .
µ −(λ+ µ) λ 0 0 . . .
0 µ −(λ+ µ) λ 0 . . .
0 0 µ −(λ+ µ) λ . . .
...

...
...

...
...

. . .


and we must solve for π such that πQ = 0, or really the infinite-dimensional vector of all 0s. We can obtain
the following sequence of equations:

−π0λ+ π1µ = 0(5.1)

π0λ− π1(λ+ µ) + π2µ = 0(5.2)

π1λ− π2(λ+ µ) + π3µ = 0(5.3)

and more generally, following the pattern of columns of Q, we have that πi−1λ − πi(λ + µ) + πi+1µ = 0.

Rearranging these equations, we see from equation 5.1 that π1 =
(
λ
µ

)
π0 = ρπ0 and using the two-term

recurrence relation described, we see that from equation 5.2 that since π1(λ+ µ) = π2µ+ π0λ, we have(
λ(λ+ µ)

µ

)
π0 = π2µ+ π0λ(

λ(λ+ µ)

µ
− λ
)
π0 = π2µ(

λ2 + µλ− µλ
µ

)
π0 = π2µ(

λ

µ

)2

π0 = π2

ρ2π0 = π2

and continuing this recursive process, in general, we have

πi = ρiπ0.

Furthermore, because π is a probability distribution, we have
∑∞
i=0 πi = 1, and we can rewrite this as∑∞

i=0 ρ
iπ0. After we factor out the constant term π0, we obtain the sum π0

∑∞
i=0 ρ

i, which is just a geometric
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series. Therefore, we have π0

(
1

1−ρ

)
= 1, and solving for π0, see that π0 = 1 − ρ. Plugging this in to our

explicit formula in terms of i and π0, we see that

πi = ρi(1− ρ).

�

We can also calculate E[Q] and E[D] using Little’s formula.

We can calculate E[Q] by saying that

E[Q] =

∞∑
i=0

iπi =
ρ

1− ρ
,

and using Little’s theorem, we have E[D] = λρ
1−ρ .

So, the expected number of customers in the queue when it reaches steady-state is ρ
1−ρ and the average

delay faced by a customer who enters the queue in steady-state is λρ
1−ρ

5.4. M/M/∞ Queues. Using a similar method, we can find the steady-state solution for an M/M/∞
queue. This queue model, like an M/M/1 queue, has a Poisson process for arrival rate and an exponential
distribution for service rate; however, it differs from our first queue in that since there are an infinite number
of servers, all customers are served immediately. Note that if we define A = λ

µ once again (we use A rather

than ρ because we use ρ for single-server queues and A for multiserver queues), the queue will be stable (ie.
not grow infinitely) for any nonnegative A, since all customers are served immediately.

The transition rates for the various states also differ slightly from an M/M/1 queue; while the proba-
bility for births, or qi,i+1 for i ≥ 0, remains to be λ, the probability of a death, or qi,i−1 for i > 0, is now
equal to iµ, because at that time there are i customers being served at the queueing node.

q00 is thus once again −λ, but qii = −(λ+ iµ), because of our definition and because we essentially have a
competition between i+ 1 random variables for the next transition, 1 for the next arrival and i for the next
departure. Therefore, our transition-rate matrix Q is

−λ λ 0 0 0 . . .
µ −(λ+ µ) λ 0 0 . . .
0 2µ −(λ+ 2µ) λ 0 . . .
0 0 3µ −(λ+ 3µ) λ . . .
...

...
...

...
...

. . .


for the M/M/∞ queue, and we once again set up the system of equations from

πQ = 0.

We get the following relations:

−π0λ+ π1µ = 0(5.4)

π0λ− π1(λ+ µ) + 2π2µ = 0(5.5)

π1λ− π2(λ+ 2µ) + 3π3µ = 0(5.6)

and in general, πi(λ + iµ) = πi−1λ + (n + 1)πn+1µ. Because of the reversibility property of the birth and
death process, we have π0λ = π1µ, π1λ = 2π2µ and in general, πiλ = (n+ 1)πn+1µ.

With this fact we see that π1 = Aπ0, π2 = A2π0

2 , and in general that πn = Anπ0

n! . Again using the fact
that the πn’s sum to 1, we see that

1 =

∞∑
i=0

Anπ0

n!
= π0

∞∑
i=0

An

n!
,
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which is the expansion of the Maclaurin series for ex. Therefore we have

1 = π0e
A =⇒ π0 = e−A

and thus πn = e−AAn

n! , meaning that the stationary distribution for an M/M/∞ queue is a Poisson distri-
bution.
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