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1. Introduction

The law of the iterated logarithm can be seen as a refinement of the law of large numbers
and central limit theorem. Consider the number of successes in a coin-tossing game, modeled
by the sum Sn of independently, identically distributed random variables X1, X2, . . . , Xn

where Xi = +1 with probability p and Xi = 0 with probability q = 1− p. The mean for Xi

is µ = p and the standard deviation is σ2 = p(1− p).

Theorem 1.1 (Strong Law of Large Numbers). The strong law of large numbers says that

lim
n→∞

Sn − np
n

= 0

with probability 1.

Theorem 1.2 (Central Limit Theorem). The central limit theorem applied to Sn says that

lim
n→∞

Sn − np√
np(1− p)

= Z

where Z is a random variable following the standard normal distribution N(0, 1).

In both theorems, we compare the limiting size of the deviation Sn − np to a function of
n: n for LLN and c1

√
n for CLT. LLN tells us that n grows too quickly relative to Sn − np

to retain any useful information about the deviation as n → ∞. CLT does a better job,
since Sn−np

c1
√
n

converges to a non-trivial probability distribution. However, CLT doesn’t tells

us what happens for any particular sequence of coin flips, only the distribution of Sn for
large n. In fact, using the Kolmogorov zero-one law and the central limit theorem, almost
surely

lim inf
n→∞

Sn − np√
np(1− p)

= −∞

and almost surely

lim sup
n→∞

Sn − np√
np(1− p)

= +∞.

In particular, the sequence Sn√
np(1−p)

diverges with probability 1. We hope to find a function

f(n) that grows more quickly than c1
√
n but more slowly than n such that we can say

something stronger about the convergence of Sn−np
f(n)

.
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Theorem 1.3 (Hausdorff Estimate). Hausdorff’s estimate says that for all values of ε > 0,

lim
n→∞

∣∣∣∣Sn − npn1/2+ε

∣∣∣∣ = 0

with probability 1.

Therefore, n1/2 grows too slowly but any n1/2+ε grows too quickly compared to the limiting
deviation Sn − np to perfectly capture the convergence and variation in the sequence Sn.
The “right” function of n is something only slightly bigger than

√
n. Thus, we may try the

function
√
n log n, which grows slower than n1/2+ε for any ε > 0.

Theorem 1.4 (Hardy, Littlewood). Hardy and Littlewood’s estimate tells us that

lim
n→∞

∣∣∣∣ Sn − np√
n log n

∣∣∣∣ ≤ constant

with probability 1. Note that log is base e.

This is a better estimate, since the information about Sn − np does not condense to a
single value or trail off to infinity. But still, we lose a lot of information since the limit may
end up being very close to 0. Thus,

√
n log n is still a bit too strong.

Theorem 1.5 (Law of the Iterated Logarithm). Khinchin’s law of the iterated logarithm
states that with probability 1,

lim sup
n→∞

Sn − np√
2np(1− p) log log n

= 1

and symmetrically with probability 1,

lim inf
n→∞

Sn − np√
2np(1− p) log log n

= −1.

Now the law of the iterated logarithm tell us that
√

2np(1− p) log log n is the “right”

function to compare Sn − np to. With probability 1, the ratio Sn−np√
2np(1−p) log logn

gets close to

±1 infinitely many times, illustrating a form of recurrence. A corollary is that the random
walk on Z hits every integer with probability 1.

2. Preliminary Definitions and Lemmas

In this section, we cover basic probability notions of limsup/limsup, state the Borel-
Cantelli lemmas, and illustrate their connections to the law of the iterated logarithm.

Definition 2.1. The limit superior and limit inferior of a sequence (xn) are refined notions
of the limit, defined as follows:

lim inf
n→∞

xn = lim
n→∞

(
inf
m≥n

xm

)
and

lim sup
n→∞

xn = lim
n→∞

(
sup
m≥n

xm

)
.
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Example. Let (An) be the sequence 0, 1, 0, 2, 0, 3, 0, 4, 0, 5, . . .. Clearly, the standard limit of
the sequence limn→∞An does not exist because the terms oscillate between 0 and a large
positive value. However, the lim inf exists and equals 0 because the infimum of the tail of
the sequence is always 0. The lim sup does not exist since the supremum of the tail of the
sequence is always ∞.

Definition 2.2. Let (An)n≥1 be a sequence of events in a probability space. Define the event
{An i.o.} to be where An occurs infinitely often in the sequence of events.

When discussing the probability P[{An i.o.}], we may drop the braces and write P[An i.o.]
to simplify notation.

Example. Let ω = {H,T} be the space of coin flips where H and T come up with equal
probability 0.5, and let An be event we get H on the nth flip. Then P[An i.o.] = 1 since the
probability that only a finite number of heads or a finite number of tails come up is 0.

The Borel-Cantelli lemmas are two important theorems that tells us when P[An i.o.] ∈
{0, 1}.

Theorem 2.3 (First Borel-Cantelli Lemma). If
∞∑
n=1

P[An] <∞,

then
P[An i.o.] = 0.

Proof. See [Dun17, Theorem 2]. �

Lemma 2.4 (Second Borel-Cantelli Lemma). If (An)n≥1 is a sequence of independent events
and if

∞∑
n=1

P[An] =∞,

then
P[An i.o.] = 1.

Proof. See [Dun17, Theorem 3]. �

Example. In the previous example, with the sequence of fair coin flips, we had P[An] = 0.5
for all n ≥ 1, so the second Borel-Cantelli lemma tells us that P[An i.o] = 1, as we predicted
before. Suppose we had another sequence of coin flips but where the nth flip is with an
unfair coin so that if An is the event that the nth flip comes up H, then P[An] = 2−n. Then,
the first Borel-Cantelli lemma tells us that P[An i.o] = 0 since

∑∞
n=1 P[An] = 1 <∞.

The following equivalent formulation of the Law of the Iterated Logarithm illustrates how
the Borel-Cantelli lemmas will be used in the proof of the theorem. To simplify notation,
define the function

α(n) =
√

2np(1− p) log log n.

Theorem 2.5 (Khinchin). For any ε > 0, let An be the event that on the nth flip,

(2.1)
Sn − np
α(n)

> 1− ε.
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Then, P[An i.o.] = 1. That is, with probability 1, there exist infinitely many n such that
(2.1) holds. Furthermore, if Bn is the event such that

(2.2)
Sn − np
α(n)

> 1 + ε,

then P[Bn i.o.] = 0. That is, with probability 1, there will only be finitely many n such that
(2.2) holds.

The two conditions are equivalent to a lower bound by 1− ε and an upper bound by 1 + ε
on the lim sup in Theorem 1.5, respectively.

3. Proving the Law of the Iterated Logarithm

We first state and prove some helpful lemmas. The first lemma gives an upper and lower
bound on the probability that Sn deviates a significant amount from the mean np, relative
to α(n).

Lemma 3.1. For all positive a and δ and large enough n,

(log n)−a
2(1+δ) < P[Sn − np > aα(n)] < (log n)−a

2(1−δ).

Proof. The proof uses the Large and Moderate Deviations theorems, which is too large of a
digression for this paper, so we omit it. For the proof, see [Dun18, Lemma 5]. �

The next theorem relates the maximum deviation (or fluctuation) from step 1 to n to the
deviation at step n. Thus, to get decent bounds for all steps from 1 to n, we just have to
get good enough bounds on the nth step.

Lemma 3.2 (Kolmogorov Maximal Inequality). Let (Yn)n≥1 be a sequence of independent
random variables with E[Yn] = 0 and Var(Yn) = σ2. Define Tn = Y1 + · · ·+ Yn. Then,

P
[

max
1≤k≤n

Tk ≥ b

]
≤ 4

3
P
[
Tn ≥ b− 2σ

√
n
]
.

Remark 3.3. Lemma 3.2 is an example of a class of lemmas called maximal inequalities. An
example of a maximal equality from the Euler Circle Markov chains class is Problem 7 of
Week 5: if Xt is the random walk on Z, then

P
[

max
1≤k≤n

Xk ≥ b

]
≤ 2P[Xn ≥ b].

The proof of Lemma 3.2 is not hard if we assume Chebyshev’s inequality, which states a
general relationship between variance and the deviation |X − µ|:
Lemma 3.4 (Chebyshev’s Inequality). Let X be a random variable with finite mean µ and
finite, non-zero variance σ2. Then for all c > 0,

P[|X − µ| ≥ cσ] ≤ 1

c2
.

Proof of Lemma 3.2. Since the Yk’s are independent,

Var(Tn − Tk) = Var(Yk+1 + Yk+2 + · · ·+ Yn) = (n− k) Var(Y1) = (n− k)σ2

for all 1 ≤ k ≤ n. Using Lemma 3.4 with X = Tn − Tk and c = 2
√
n√

n−k gives

P[|Tn − Tk| ≤ 2σ
√
n] ≥ 1− n− k

4n
≥ 3

4
.
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Note that

P
[

max
0≤k≤n

Tk ≥ b

]
=

n∑
k=1

P[T1 < b, . . . , Tk−1 < b, Tk ≥ b]

≤
n∑
k=1

P[T1 < b, . . . , Tk−1 < b, Tk ≥ b] · 4

3
P[|Tn − Tk| ≤ 2σ

√
n]

=
4

3

n∑
k=1

P[T1 < b, . . . , Tk−1 < b, Tk ≥ b, |Tn − Tk| ≤ 2σ
√
n]

≤ 4

3

n∑
k=1

P[T1 < b, . . . , Tk−1 < b, Tk ≥ b, Tn ≥ b− 2σ
√
n]

≤ 4

3
P[Tn ≥ b− 2σ

√
n].

�

3.1. Pseudo-proof of Theorem 1.5. In this subsection, we give simplified proof that
partially proves and motivates the actual proof of Theorem 1.5. Recall the two conditions
(2.1) and (2.2) equivalent to the theorem. Proving the lower bound (2.1) only requires finding
an appropriate subsequence with a sufficiently large limit, but in fact, this is hard because
second Borel-Cantelli lemma requires independence.

We may partially address the upper bound (2.2) with the following argument. Fix some
γ > 1 and let nk = bγkc. Lemma 3.1 tells us that for any positive δ,

P[Snk − pnk ≥ (1 + ε)α(nk)] < (log nk)
−(1+ε)2(1−δ)

= O
(
k−(1+ε)

2(1−δ)
)

for sufficiently large n. The big-O notation means that the probability grows less than a
fixed multiple of the inside function. Choose δ so that c = −(1 + ε)2(1− δ) < −1. This gives

∞∑
k=1

P[Snk − pnk ≥ (1 + ε)α(nk)] <
∞∑
k=1

O(kc) <∞.

Now, the first Borel-Cantelli lemma tells us that

P[Snk − pnk ≥ (1 + ε)α(nk) i.o.] = 0,

so

P
[
lim sup
n→∞

Snk − pnk
α(nk)

< 1 + ε

]
= 1.

3.2. Proof of Theorem 1.5. In this subsection, we will fully prove Theorem 1.5. First,
let’s show that the result from the previous section holds if we replace {nk} with {n ≥ 1}.

Proof of (2.1). Fix ε > 0 and let γ > 1 be a constant chosen later. Like before, let nk = bγkc.
Our goal is to show that

∞∑
k=1

P
[

max
n≤nk+1

(Sn − np) ≥ (1 + ε)α(nk)

]
<∞.
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To simplify notation, let Rn = Sn − np be the deviation. From Lemma 3.2,

(3.1) P
[

max
n≤nk+1

Rn ≥ (1 + ε)α(nk)

]
≤ 4

3
P
[
Rnk+1

≥ (1 + ε)α(nk)− 2
√
nk+1p(1− p)

]
.

Note that
√
nk+1 = o(α(nk)) since

√
nk+1 ∼

√
γk+1

and
α(nk) =

√
2p(1− p)nk log log nk ∼ c1γ

k/2
√

log k + log log γ.

Dividing both terms by γk/2, we see that γ1/2 is constant while c1
√

log k + log log γ goes

to infinity. Thus, we conclude that
√
nk+1

α(nk)
→ 0. The limit remains 0 when each term is

multiplied by a non-zero constant, so 2
√
nk+1p(1− p) < 1

2
εα(nk) for sufficiently large n.

Using this inequality on the right side of (3.1) gives

P
[

max
n≤nk+1

Rn ≥ (1 + ε)α(nk)

]
≤ 4

3
P
[
Rnk+1

≥ (1 + ε)α(nk)−
1

2
εα(nk)

]
=

4

3
P
[
Rnk+1

≥ (1 + ε/2)α(nk)
]
.

To turn α(nk) into α(nk+1), note that α(nk+1) ∼ α(nk) i.e., their ratio goes to 1 as k →∞.
Choose γ so that 1 + ε/2 > (1 + ε/4)

√
γ. Then for large enough k,

(1 + ε/2)α(nk) > (1 + ε/4)α(nk+1).

Now, we’re almost done. Using Lemma 3.1 with a = (1− δ)−1 = (1 + ε/4) gives

P
[

max
n≤nk+1

Rn ≥ (1 + ε)α(nk)

]
≤ 4

3
(log nk+1)

−(1+ε/4)

for all large k. The right side approximates as follows:

(log nk+1)
−(1+ε/4) ∼ (log γ)−(1+ε/4)k−(1+ε/4).

Since these terms converge when summed over k ≥ 1, we have
∞∑
k=1

P
[

max
n≤nk+1

(Sn − np) ≥ (1 + ε)α(nk)

]
<∞

as desired.
To finish the proof, we use the Borel-Cantelli lemma to get

max
n≤nk+1

Rn ≥ (1 + ε)α(nk) i.o. with probability 0,

or equivalently

max
n≤nk+1

Rn < (1 + ε)α(nk) for all large k with probability 1.

In particular,

max
nk≤n<nk+1

Rn < (1 + ε)α(nk) for all large k with probability 1.

Since (1 + ε)α(nk) ≤ (1 + ε)α(n), we find that with probability 1, there exists some n0 such
that for all n > n0,

Rn = Sn − np < (1 + ε)α(n),
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which proves that

lim sup
n→∞

Sn − np
α(n)

< 1 + ε.

�

Proof of (2.2). It suffices to find a set {nk} so that with probability 1, Rnk ≥ (1 − ε)α(nk)
infinitely often. Let nk = γk for some sufficiently large γ ∈ Z chosen later. The proof will
show

(3.2)
∞∑
k=1

P
[
Rγk −Rγk−1 ≥

(
1− ε

2

)
α(γn)

]
=∞

and

(3.3) Rγk−1 ≥ −ε
2
α(γk) for all large enough k, with probability 1.

Note that since Rn is a sum of independent random variables, Rγk − Rγk−1 has the same
probability distribution as Rγk−γk−1 . Thus, it suffices to consider

P
[
Rγk−γk−1 ≥

(
1− ε

2

)
α(γk)

]
.

Note that

α(γk − γk−1)
α(γk)

=

√
γk − γk−1

γn
log(log(γk − γk−1))

log(log(γk))

=

√√√√(
1− 1

γ

) log
(
k log γ + log

(
1− 1

γ

))
log(k log γ)

→
√

1− 1

γ
.

Choose γ so that
1− ε

2

1− ε
4

<

√
1− 1

γ
.

Then for all large enough k,
1− ε

2

1− ε
4

<
α(γk − γk−1)

α(γk)
,

or equivalently (
1− ε

2

)
α(γk) <

(
1− ε

4

)
α(γk − γk−1).

This gives the inequality

P
[
Rγk −Rγk−1 ≥

(
1− ε

2

)
α(γk)

]
≥ P

[
Rγk−γk−1 ≥

(
1− ε

4

)
α(γk − γk−1)

]
.

Now we may use Lemma 3.1 with a = (1 + δ)−1 = (1− ε
4
) to get

P
[
Rγk −Rγk−1 ≥

(
1− ε

2

)
α(γk)

]
≥ log(γk − γk−1)(1−

ε
4)

=

(
k log γ + log

(
1− 1

γ

))−(1− ε4)
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The sum of these terms over all k ≥ 1 diverge, thereby proving (3.2).
It isn’t hard to show that α(γk) ∼ √γα(γk−1); we leave this as an exercise to the reader.

Choose γ so that ε
√
γ > 4, then ε

2
α(γk) ∼ ε

2

√
γα(γk−1) > 2α(γk−1) for large enough k.

Thus, for large enough k,[
Rγk−1 >

−ε
2
α(γk)

]
⊇
[
Rγk−1 > −2α(γk−1)

]
.

By the first part of the law of the iterated logarithm i.e., (2.1), we see that Rγk−1 > −2α(γk−1)
for all large enough k, with probability 1. Thus, the event Rγk−1 > −ε

2
α(γk) occurs for all

large k with probability 1, thus proving (3.3).
Now since Rγk − Rγk−1 is a sequence of independent random variables, the second Borel-

Cantelli lemma on (3.2) says that almost surely

Rγk −Rγk−1 ≥
(

1− ε

2

)
α(γk) i.o.

Combining this with (3.3) we get that

Rγk > (1− ε)α(γk) i.o.

almost surely. This is enough to prove that

lim sup
n→∞

Sn − np
α(n)

≥ 1− ε

almost surely, finishing the proof of the Law of the Iterated Logarithm. �

4. Further Generalizations

One obvious extension of Theorem 1.5 is letting (Xn) be a sequence of i.i.d. random
variables with µ = E[Xn] and σ2 = Var[Xn]. The same proof shows that almost surely,

lim sup
n→∞

Sn − nµ√
2nσ2 log log n

= 1

where Sn =
∑

i≤nXi.
In 1929, Kolmogorov proved a version of the LIL for independent, but not necessarily

identically distributedXn with E[Xn] = 0. With notation as Sn =
∑

i≤nXi and s2n = Var[Sn],

he assumed that s2n →∞ and

|Xn| ≤
εnsn√

log(log(s2n))

for some sequence of constants εn → 0. He showed that almost surely,

lim sup
n→∞

Sn√
2s2n log(log(s2n))

.

Exercise. Show that Kolmogorov’s LIL reduces to Khinchin’s LIL when Xn are i.i.d.

In 1964, Strassen [Str64] obtained a more precise version of Khinchin’s LIL:

Theorem 4.1. Let Sn be the sum of the first n of a sequence of i.i.d. random variables
having mean 0 and variance 1. Let 0 ≤ c ≤ 1 and

ci =

{
1 if Si > c

√
2i log log i

0 otherwise
.
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Then,

P

[
lim sup
n→∞

1

n

n∑
i=3

ci = 1− exp

{
−4

(
1

c2
− 1

)}]
= 1.

Example. For c = 1
2
, 1− exp

{
−4
(

1
c2
− 1
)}
≈ 0.99999385, so we obtain the surprising result

that almost surely, for infinitely many of n the percentage of times i ≤ n when

Si >
1

2

√
2i log log i

exceeds 99.999, but only for finitely many n exceeds 99.9999.

Exercise. Deduce Khinchin’s LIL from Strassen’s generalization.

Mathematicians have also considered LIL for Brownian motion, a continuous version of
the random walk. The following result is analogous to Theorem 1.5 for Brownian motion.

Theorem 4.2. Let (B(t))t∈R+ be a real-valued Brownian motion with continuous sample
paths. Then,

P
[
lim sup
t→∞

B(t)√
2t log log t

= 1

]
= 1.

In fact, a slightly stronger result is that

Theorem 4.3. Let (B(t))t∈R+ be a real-valued Brownian motion with continuous sample
paths. The set of cluster points of the family of random variables

B(t)√
2t log log t

as t→∞

is almost surely [−1,+1].

In other words, with probability 1, for any x ∈ [−1,+1], there is an infinite subsequence

of B(t)√
2t log log t

with the t-values tending to infinity such that the subsequence converges to x.

For generalizations of LIL on Brownian motion in finite and infinite dimensional vector
spaces and differentiable manifolds, see [Dun75]. For LIL in other contexts, see [Bin86].
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