LAW OF THE ITERATED LOGARITHM

TAE KYU KIM

1. Introduction

The law of the iterated logarithm can be seen as a refinement of the law of large numbers and central limit theorem. Consider the number of successes in a coin-tossing game, modeled by the sum S_n of independently, identically distributed random variables X_1, X_2, \ldots, X_n where $X_i = +1$ with probability p and $X_i = 0$ with probability $q = 1 - p$. The mean for X_i is $\mu = p$ and the standard deviation is $\sigma^2 = p(1-p)$.

Theorem 1.1 (Strong Law of Large Numbers). The strong law of large numbers says that

$$
\lim_{n \to \infty} \frac{S_n - np}{n} = 0
$$

with probability 1.

Theorem 1.2 (Central Limit Theorem). The central limit theorem applied to S_n says that

$$
\lim_{n \to \infty} \frac{S_n - np}{\sqrt{np(1-p)}} = Z
$$

where Z is a random variable following the standard normal distribution $N(0, 1)$.

In both theorems, we compare the limiting size of the deviation $S_n - np$ to a function of n: n for LLN and $c_1\sqrt{n}$ for CLT. LLN tells us that n grows too quickly relative to $S_n - np$ to retain any useful information about the deviation as $n \to \infty$. CLT does a better job, since $\frac{S_n - np}{c_1 \sqrt{n}}$ converges to a non-trivial probability distribution. However, CLT doesn't tells us what happens for any particular sequence of coin flips, only the distribution of S_n for large n. In fact, using the Kolmogorov zero-one law and the central limit theorem, almost surely

$$
\liminf_{n \to \infty} \frac{S_n - np}{\sqrt{np(1-p)}} = -\infty
$$

and almost surely

$$
\limsup_{n \to \infty} \frac{S_n - np}{\sqrt{np(1-p)}} = +\infty.
$$

In particular, the sequence $\frac{S_n}{\sqrt{S_n}}$ $\frac{S_n}{np(1-p)}$ diverges with probability 1. We hope to find a function $f(n)$ that grows more quickly than $c_1\sqrt{n}$ but more slowly than n such that we can say √ something stronger about the convergence of $\frac{S_n - np}{f(n)}$.

Date: November 20, 2020.

Theorem 1.3 (Hausdorff Estimate). Hausdorff's estimate says that for all values of $\epsilon > 0$,

$$
\lim_{n \to \infty} \left| \frac{S_n - np}{n^{1/2 + \epsilon}} \right| = 0
$$

with probability 1.

Therefore, $n^{1/2}$ grows too slowly but any $n^{1/2+\epsilon}$ grows too quickly compared to the limiting deviation $S_n - np$ to perfectly capture the convergence and variation in the sequence S_n . deviation $S_n - np$ to perfectly capture the convergence and variation in the sequence S_n .
The "right" function of n is something only slightly bigger than \sqrt{n} . Thus, we may try the The right function of *n* is something only slightly bigger than
function $\sqrt{n \log n}$, which grows slower than $n^{1/2+\epsilon}$ for any $\epsilon > 0$.

Theorem 1.4 (Hardy, Littlewood). Hardy and Littlewood's estimate tells us that

$$
\lim_{n \to \infty} \left| \frac{S_n - np}{\sqrt{n \log n}} \right| \leq constant
$$

with probability 1. Note that log is base e.

This is a better estimate, since the information about $S_n - np$ does not condense to a single value or trail off to infinity. But still, we lose a lot of information since the limit may single value or trail on to minity. But still, we lose a lot of informat
end up being very close to 0. Thus, $\sqrt{n \log n}$ is still a bit too strong.

Theorem 1.5 (Law of the Iterated Logarithm). Khinchin's law of the iterated logarithm states that with probability 1,

$$
\limsup_{n \to \infty} \frac{S_n - np}{\sqrt{2np(1-p)\log\log n}} = 1
$$

and symmetrically with probability 1,

$$
\liminf_{n \to \infty} \frac{S_n - np}{\sqrt{2np(1-p)\log\log n}} = -1.
$$

Now the law of the iterated logarithm tell us that $\sqrt{2np(1-p)\log\log n}$ is the "right" function to compare $S_n - np$ to. With probability 1, the ratio $\frac{S_n - np}{\sqrt{2m(1-n+1)}}$ $\frac{S_n - np}{2np(1-p)\log\log n}$ gets close to ± 1 infinitely many times, illustrating a form of recurrence. A corollary is that the random walk on $\mathbb Z$ hits every integer with probability 1.

2. Preliminary Definitions and Lemmas

In this section, we cover basic probability notions of limsup/limsup, state the Borel-Cantelli lemmas, and illustrate their connections to the law of the iterated logarithm.

Definition 2.1. The *limit superior* and *limit inferior* of a sequence (x_n) are refined notions of the limit, defined as follows:

$$
\liminf_{n \to \infty} x_n = \lim_{n \to \infty} \left(\inf_{m \ge n} x_m \right)
$$

and

$$
\limsup_{n \to \infty} x_n = \lim_{n \to \infty} \left(\sup_{m \ge n} x_m \right).
$$

Example. Let (A_n) be the sequence $0, 1, 0, 2, 0, 3, 0, 4, 0, 5, \ldots$ Clearly, the standard limit of the sequence $\lim_{n\to\infty} A_n$ does not exist because the terms oscillate between 0 and a large positive value. However, the lim inf exists and equals 0 because the infimum of the tail of the sequence is always 0. The lim sup does not exist since the supremum of the tail of the sequence is always ∞ .

Definition 2.2. Let $(A_n)_{n\geq 1}$ be a sequence of events in a probability space. Define the event ${A_n i.o.}$ to be where A_n occurs infinitely often in the sequence of events.

When discussing the probability $\mathbb{P}[\{A_n \ i.o.\}]$, we may drop the braces and write $\mathbb{P}[A_n \ i.o.]$ to simplify notation.

Example. Let $\omega = \{H, T\}$ be the space of coin flips where H and T come up with equal probability 0.5, and let A_n be event we get H on the nth flip. Then $\mathbb{P}[A_n \ i.o.]=1$ since the probability that only a finite number of heads or a finite number of tails come up is 0.

The Borel-Cantelli lemmas are two important theorems that tells us when $\mathbb{P}[A_n \ i.o.]\in$ $\{0,1\}.$

Theorem 2.3 (First Borel-Cantelli Lemma). If

$$
\sum_{n=1}^{\infty} \mathbb{P}[A_n] < \infty,
$$

then

$$
\mathbb{P}[A_n \ i.o.]=0.
$$

Proof. See [\[Dun17,](#page-8-0) Theorem 2].

Lemma 2.4 (Second Borel-Cantelli Lemma). If $(A_n)_{n\geq 1}$ is a sequence of independent events and if

$$
\sum_{n=1}^{\infty} \mathbb{P}[A_n] = \infty,
$$

 $\mathbb{P}[A_n \ i.o.]=1.$

then

Proof. See [\[Dun17,](#page-8-0) Theorem 3].

Example. In the previous example, with the sequence of fair coin flips, we had $\mathbb{P}[A_n] = 0.5$ for all $n \geq 1$, so the second Borel-Cantelli lemma tells us that $\mathbb{P}[A_n : o] = 1$, as we predicted before. Suppose we had another sequence of coin flips but where the nth flip is with an unfair coin so that if A_n is the event that the *n*th flip comes up H, then $\mathbb{P}[A_n] = 2^{-n}$. Then, the first Borel-Cantelli lemma tells us that $\mathbb{P}[A_n \ i.o] = 0$ since $\sum_{n=1}^{\infty} \mathbb{P}[A_n] = 1 < \infty$.

The following equivalent formulation of the Law of the Iterated Logarithm illustrates how the Borel-Cantelli lemmas will be used in the proof of the theorem. To simplify notation, define the function

$$
\alpha(n) = \sqrt{2np(1-p)\log\log n}.
$$

Theorem 2.5 (Khinchin). For any $\epsilon > 0$, let A_n be the event that on the nth flip,

$$
\frac{S_n - np}{\alpha(n)} > 1 - \epsilon.
$$

Then, $\mathbb{P}[A_n \text{ i.o.}] = 1$. That is, with probability 1, there exist infinitely many n such that (2.1) holds. Furthermore, if B_n is the event such that

$$
\frac{S_n - np}{\alpha(n)} > 1 + \epsilon,
$$

then $\mathbb{P}[B_n \text{ i.o.}]=0$. That is, with probability 1, there will only be finitely many n such that [\(2.2\)](#page-3-0) holds.

The two conditions are equivalent to a lower bound by $1 - \epsilon$ and an upper bound by $1 + \epsilon$ on the lim sup in Theorem [1.5,](#page-1-0) respectively.

3. Proving the Law of the Iterated Logarithm

We first state and prove some helpful lemmas. The first lemma gives an upper and lower bound on the probability that S_n deviates a significant amount from the mean np , relative to $\alpha(n)$.

Lemma 3.1. For all positive a and δ and large enough n,

$$
(\log n)^{-a^2(1+\delta)} < \mathbb{P}[S_n - np > a\alpha(n)] < (\log n)^{-a^2(1-\delta)}.
$$

Proof. The proof uses the Large and Moderate Deviations theorems, which is too large of a digression for this paper, so we omit it. For the proof, see [\[Dun18,](#page-8-1) Lemma 5].

The next theorem relates the maximum deviation (or fluctuation) from step 1 to n to the deviation at step n. Thus, to get decent bounds for all steps from 1 to n, we just have to get good enough bounds on the nth step.

Lemma 3.2 (Kolmogorov Maximal Inequality). Let $(Y_n)_{n>1}$ be a sequence of independent random variables with $\mathbb{E}[Y_n] = 0$ and $\text{Var}(Y_n) = \sigma^2$. Define $T_n = Y_1 + \cdots + Y_n$. Then,

$$
\mathbb{P}\left[\max_{1\leq k\leq n}T_k\geq b\right]\leq \frac{4}{3}\mathbb{P}\left[T_n\geq b-2\sigma\sqrt{n}\right].
$$

Remark 3.3. Lemma [3.2](#page-3-1) is an example of a class of lemmas called maximal inequalities. An example of a maximal equality from the Euler Circle Markov chains class is Problem 7 of Week 5: if X_t is the random walk on \mathbb{Z} , then

$$
\mathbb{P}\left[\max_{1\leq k\leq n} X_k \geq b\right] \leq 2\mathbb{P}[X_n \geq b].
$$

The proof of Lemma [3.2](#page-3-1) is not hard if we assume Chebyshev's inequality, which states a general relationship between variance and the deviation $|X - \mu|$:

Lemma 3.4 (Chebyshev's Inequality). Let X be a random variable with finite mean μ and finite, non-zero variance σ^2 . Then for all $c > 0$,

$$
\mathbb{P}[|X - \mu| \ge c\sigma] \le \frac{1}{c^2}.
$$

Proof of Lemma [3.2.](#page-3-1) Since the Y_k 's are independent,

$$
Var(T_n - T_k) = Var(Y_{k+1} + Y_{k+2} + \dots + Y_n) = (n - k)Var(Y_1) = (n - k)\sigma^2
$$

for all $1 \leq k \leq n$. Using Lemma [3.4](#page-3-2) with $X = T_n - T_k$ and $c = \frac{2\sqrt{n}}{\sqrt{n-k}}$ gives

$$
\mathbb{P}[|T_n - T_k| \le 2\sigma\sqrt{n}] \ge 1 - \frac{n-k}{4n} \ge \frac{3}{4}.
$$

Note that

$$
\mathbb{P}\left[\max_{0\leq k\leq n} T_k \geq b\right] = \sum_{k=1}^n \mathbb{P}[T_1 < b, \dots, T_{k-1} < b, T_k \geq b] \\
\leq \sum_{k=1}^n \mathbb{P}[T_1 < b, \dots, T_{k-1} < b, T_k \geq b] \cdot \frac{4}{3} \mathbb{P}[|T_n - T_k| \leq 2\sigma\sqrt{n}] \\
= \frac{4}{3} \sum_{k=1}^n \mathbb{P}[T_1 < b, \dots, T_{k-1} < b, T_k \geq b, |T_n - T_k| \leq 2\sigma\sqrt{n}] \\
\leq \frac{4}{3} \sum_{k=1}^n \mathbb{P}[T_1 < b, \dots, T_{k-1} < b, T_k \geq b, T_n \geq b - 2\sigma\sqrt{n}] \\
\leq \frac{4}{3} \mathbb{P}[T_n \geq b - 2\sigma\sqrt{n}].
$$

3.1. Pseudo-proof of Theorem [1.5.](#page-1-0) In this subsection, we give simplified proof that partially proves and motivates the actual proof of Theorem [1.5.](#page-1-0) Recall the two conditions [\(2.1\)](#page-2-0) and [\(2.2\)](#page-3-0) equivalent to the theorem. Proving the lower bound [\(2.1\)](#page-2-0) only requires finding an appropriate subsequence with a sufficiently large limit, but in fact, this is hard because second Borel-Cantelli lemma requires independence.

We may partially address the upper bound [\(2.2\)](#page-3-0) with the following argument. Fix some $\gamma > 1$ and let $n_k = \lfloor \gamma^k \rfloor$. Lemma [3.1](#page-3-3) tells us that for any positive δ ,

$$
\mathbb{P}[S_{n_k} - pn_k \ge (1 + \epsilon)\alpha(n_k)] < (\log n_k)^{-(1+\epsilon)^2(1-\delta)} \\
= O\left(k^{-(1+\epsilon)^2(1-\delta)}\right)
$$

for sufficiently large n . The big-O notation means that the probability grows less than a fixed multiple of the inside function. Choose δ so that $c = -(1+\epsilon)^2(1-\delta) < -1$. This gives

$$
\sum_{k=1}^{\infty} \mathbb{P}[S_{n_k} - pn_k \ge (1 + \epsilon)\alpha(n_k)] < \sum_{k=1}^{\infty} O(k^c) < \infty.
$$

Now, the first Borel-Cantelli lemma tells us that

$$
\mathbb{P}[S_{n_k} - pn_k \ge (1 + \epsilon)\alpha(n_k) \ i.o.] = 0,
$$

so

$$
\mathbb{P}\left[\limsup_{n\to\infty}\frac{S_{n_k}-pn_k}{\alpha(n_k)} < 1+\epsilon\right] = 1.
$$

3.2. Proof of Theorem [1.5.](#page-1-0) In this subsection, we will fully prove Theorem [1.5.](#page-1-0) First, let's show that the result from the previous section holds if we replace $\{n_k\}$ with $\{n \geq 1\}$.

Proof of [\(2.1\)](#page-2-0). Fix $\epsilon > 0$ and let $\gamma > 1$ be a constant chosen later. Like before, let $n_k = \lfloor \gamma^k \rfloor$. Our goal is to show that

$$
\sum_{k=1}^{\infty} \mathbb{P}\left[\max_{n \le n_{k+1}} (S_n - np) \ge (1 + \epsilon)\alpha(n_k)\right] < \infty.
$$

 \blacksquare

To simplify notation, let $R_n = S_n - np$ be the deviation. From Lemma [3.2,](#page-3-1)

$$
(3.1) \qquad \mathbb{P}\left[\max_{n\leq n_{k+1}} R_n \geq (1+\epsilon)\alpha(n_k)\right] \leq \frac{4}{3} \mathbb{P}\left[R_{n_{k+1}} \geq (1+\epsilon)\alpha(n_k) - 2\sqrt{n_{k+1}p(1-p)}\right].
$$

Note that $\sqrt{n_{k+1}} = o(\alpha(n_k))$ since

$$
\sqrt{n_{k+1}} \sim \sqrt{\gamma^{k+1}}
$$

and

$$
\alpha(n_k) = \sqrt{2p(1-p)n_k \log \log n_k} \sim c_1 \gamma^{k/2} \sqrt{\log k + \log \log \gamma}.
$$

Dividing both terms by $\gamma^{k/2}$, we see that $\gamma^{1/2}$ is constant while c_1 $\log k + \log \log \gamma$ goes Eightharmorphic infinity. Thus, we conclude that $\frac{\sqrt{n_k+1}}{\sqrt{n_k+1}}$ $\frac{\sqrt{n_{k+1}}}{\alpha(n_k)} \to 0$. The limit remains 0 when each term is multiplied by a non-zero constant, so $2\sqrt{n_{k+1}p(1-p)} < \frac{1}{2}$ $\frac{1}{2} \epsilon \alpha(n_k)$ for sufficiently large *n*. Using this inequality on the right side of [\(3.1\)](#page-5-0) gives

$$
\mathbb{P}\left[\max_{n\leq n_{k+1}} R_n \geq (1+\epsilon)\alpha(n_k)\right] \leq \frac{4}{3} \mathbb{P}\left[R_{n_{k+1}} \geq (1+\epsilon)\alpha(n_k) - \frac{1}{2}\epsilon\alpha(n_k)\right]
$$

$$
= \frac{4}{3} \mathbb{P}\left[R_{n_{k+1}} \geq (1+\epsilon/2)\alpha(n_k)\right].
$$

To turn $\alpha(n_k)$ into $\alpha(n_{k+1})$, note that $\alpha(n_{k+1}) \sim \alpha(n_k)$ i.e., their ratio goes to 1 as $k \to \infty$. Choose γ so that $1 + \epsilon/2 > (1 + \epsilon/4)\sqrt{\gamma}$. Then for large enough k,

$$
(1+\epsilon/2)\alpha(n_k) > (1+\epsilon/4)\alpha(n_{k+1}).
$$

Now, we're almost done. Using Lemma [3.1](#page-3-3) with $a = (1 - \delta)^{-1} = (1 + \epsilon/4)$ gives

$$
\mathbb{P}\left[\max_{n\leq n_{k+1}} R_n \geq (1+\epsilon)\alpha(n_k)\right] \leq \frac{4}{3}(\log n_{k+1})^{-(1+\epsilon/4)}
$$

for all large k . The right side approximates as follows:

$$
(\log n_{k+1})^{-(1+\epsilon/4)} \sim (\log \gamma)^{-(1+\epsilon/4)} k^{-(1+\epsilon/4)}.
$$

Since these terms converge when summed over $k \geq 1$, we have

$$
\sum_{k=1}^{\infty} \mathbb{P}\left[\max_{n \le n_{k+1}} (S_n - np) \ge (1 + \epsilon)\alpha(n_k)\right] < \infty
$$

as desired.

To finish the proof, we use the Borel-Cantelli lemma to get

$$
\max_{n \le n_{k+1}} R_n \ge (1 + \epsilon)\alpha(n_k)
$$
 i.o. with probability 0,

or equivalently

$$
\max_{n \le n_{k+1}} R_n < (1+\epsilon)\alpha(n_k) \text{ for all large } k \text{ with probability 1.}
$$

In particular,

$$
\max_{n_k \le n < n_{k+1}} R_n < (1 + \epsilon)\alpha(n_k) \text{ for all large } k \text{ with probability 1.}
$$

Since $(1 + \epsilon)\alpha(n_k) \leq (1 + \epsilon)\alpha(n)$, we find that with probability 1, there exists some n_0 such that for all $n > n_0$,

$$
R_n = S_n - np < (1 + \epsilon)\alpha(n),
$$

which proves that

$$
\limsup_{n \to \infty} \frac{S_n - np}{\alpha(n)} < 1 + \epsilon.
$$

Proof of [\(2.2\)](#page-3-0). It suffices to find a set $\{n_k\}$ so that with probability 1, $R_{n_k} \geq (1 - \epsilon)\alpha(n_k)$ infinitely often. Let $n_k = \gamma^k$ for some sufficiently large $\gamma \in \mathbb{Z}$ chosen later. The proof will show

(3.2)
$$
\sum_{k=1}^{\infty} \mathbb{P}\left[R_{\gamma^k} - R_{\gamma^{k-1}} \ge \left(1 - \frac{\epsilon}{2}\right) \alpha(\gamma^n)\right] = \infty
$$

and

(3.3)
$$
R_{\gamma^{k-1}} \ge \frac{-\epsilon}{2} \alpha(\gamma^k) \text{ for all large enough } k, \text{ with probability 1.}
$$

Note that since R_n is a sum of independent random variables, $R_{\gamma^k} - R_{\gamma^{k-1}}$ has the same probability distribution as $R_{\gamma^k-\gamma^{k-1}}$. Thus, it suffices to consider

$$
\mathbb{P}\left[R_{\gamma^k-\gamma^{k-1}}\geq \left(1-\frac{\epsilon}{2}\right)\alpha(\gamma^k)\right].
$$

Note that

$$
\frac{\alpha(\gamma^k - \gamma^{k-1})}{\alpha(\gamma^k)} = \sqrt{\frac{\gamma^k - \gamma^{k-1} \log(\log(\gamma^k - \gamma^{k-1}))}{\log(\log(\gamma^k))}}
$$

$$
= \sqrt{\left(1 - \frac{1}{\gamma}\right) \frac{\log\left(k \log \gamma + \log\left(1 - \frac{1}{\gamma}\right)\right)}{\log(k \log \gamma)}}
$$

$$
\to \sqrt{1 - \frac{1}{\gamma}}.
$$

Choose γ so that

$$
\frac{1-\frac{\epsilon}{2}}{1-\frac{\epsilon}{4}} < \sqrt{1-\frac{1}{\gamma}}.
$$

Then for all large enough k ,

$$
\frac{1-\frac{\epsilon}{2}}{1-\frac{\epsilon}{4}} < \frac{\alpha(\gamma^k-\gamma^{k-1})}{\alpha(\gamma^k)},
$$

or equivalently

$$
\left(1 - \frac{\epsilon}{2}\right)\alpha(\gamma^k) < \left(1 - \frac{\epsilon}{4}\right)\alpha(\gamma^k - \gamma^{k-1}).
$$

This gives the inequality

$$
\mathbb{P}\left[R_{\gamma^k} - R_{\gamma^{k-1}} \ge \left(1 - \frac{\epsilon}{2}\right)\alpha(\gamma^k)\right] \ge \mathbb{P}\left[R_{\gamma^k - \gamma^{k-1}} \ge \left(1 - \frac{\epsilon}{4}\right)\alpha(\gamma^k - \gamma^{k-1})\right]
$$
\nmay use Lemma 2.1 with a α , (1, 8) = 1, (1, 6), to get

Now we may use Lemma [3.1](#page-3-3) with $a = (1 + \delta)^{-1} = (1 - \frac{\epsilon}{4})$ $\frac{\epsilon}{4}$) to get

$$
\mathbb{P}\left[R_{\gamma^k} - R_{\gamma^{k-1}} \ge \left(1 - \frac{\epsilon}{2}\right)\alpha(\gamma^k)\right] \ge \log(\gamma^k - \gamma^{k-1})^{\left(1 - \frac{\epsilon}{4}\right)}
$$

$$
= \left(k \log \gamma + \log\left(1 - \frac{1}{\gamma}\right)\right)^{-\left(1 - \frac{\epsilon}{4}\right)}
$$

 \blacksquare

.

8 TAE KYU KIM

The sum of these terms over all $k > 1$ diverge, thereby proving [\(3.2\)](#page-6-0).

It isn't hard to show that $\alpha(\gamma^k) \sim \sqrt{\gamma} \alpha(\gamma^{k-1})$; we leave this as an exercise to the reader. Choose γ so that $\epsilon \sqrt{\gamma} > 4$, then $\frac{\epsilon}{2} \alpha (\gamma^k) \sim \frac{\epsilon}{2}$ $\frac{ε}{2}$ $\sqrt{γ}α(γ^{k-1}) > 2α(γ^{k-1})$ for large enough k. Thus, for large enough k ,

$$
\left[R_{\gamma^{k-1}} > \frac{-\epsilon}{2} \alpha(\gamma^k) \right] \supseteq \left[R_{\gamma^{k-1}} > -2 \alpha(\gamma^{k-1}) \right]
$$

.

By the first part of the law of the iterated logarithm i.e., (2.1) , we see that $R_{\gamma^{k-1}} > -2\alpha(\gamma^{k-1})$ for all large enough k, with probability 1. Thus, the event $R_{\gamma^{k-1}} > \frac{-\epsilon}{2}$ $\frac{-\epsilon}{2} \alpha(\gamma^k)$ occurs for all large k with probability 1, thus proving (3.3) .

Now since $R_{\gamma^k} - R_{\gamma^{k-1}}$ is a sequence of independent random variables, the second Borel-Cantelli lemma on [\(3.2\)](#page-6-0) says that almost surely

$$
R_{\gamma^k} - R_{\gamma^{k-1}} \ge \left(1 - \frac{\epsilon}{2}\right) \alpha(\gamma^k) \text{ i.o.}
$$

Combining this with [\(3.3\)](#page-6-1) we get that

$$
R_{\gamma^k} > (1 - \epsilon)\alpha(\gamma^k)
$$
 i.o.

almost surely. This is enough to prove that

$$
\limsup_{n \to \infty} \frac{S_n - np}{\alpha(n)} \ge 1 - \epsilon
$$

almost surely, finishing the proof of the Law of the Iterated Logarithm.

4. Further Generalizations

One obvious extension of Theorem [1.5](#page-1-0) is letting (X_n) be a sequence of i.i.d. random variables with $\mu = \mathbb{E}[X_n]$ and $\sigma^2 = \text{Var}[X_n]$. The same proof shows that almost surely,

$$
\limsup_{n \to \infty} \frac{S_n - n\mu}{\sqrt{2n\sigma^2 \log \log n}} = 1
$$

where $S_n = \sum_{i \leq n} X_i$.

In 1929, Kolmogorov proved a version of the LIL for independent, but not necessarily identically distributed X_n with $\mathbb{E}[X_n] = 0$. With notation as $S_n = \sum_{i \leq n} X_i$ and $s_n^2 = \text{Var}[S_n]$, he assumed that $s_n^2 \to \infty$ and

$$
|X_n| \le \frac{\epsilon_n s_n}{\sqrt{\log(\log(s_n^2))}}
$$

for some sequence of constants $\epsilon_n \to 0$. He showed that almost surely,

$$
\limsup_{n \to \infty} \frac{S_n}{\sqrt{2s_n^2 \log(\log(s_n^2))}}.
$$

Exercise. Show that Kolmogorov's LIL reduces to Khinchin's LIL when X_n are i.i.d.

In 1964, Strassen [\[Str64\]](#page-8-2) obtained a more precise version of Khinchin's LIL:

Theorem 4.1. Let S_n be the sum of the first n of a sequence of i.i.d. random variables having mean 0 and variance 1. Let $0 \leq c \leq 1$ and

$$
c_i = \begin{cases} 1 & \text{if } S_i > c\sqrt{2i \log \log i} \\ 0 & \text{otherwise} \end{cases}
$$

.

Then,

$$
\mathbb{P}\left[\limsup_{n\to\infty}\frac{1}{n}\sum_{i=3}^n c_i = 1 - \exp\left\{-4\left(\frac{1}{c^2} - 1\right)\right\}\right] = 1.
$$

Example. For $c = \frac{1}{2}$ $\frac{1}{2}$, 1 – exp $\{-4\left(\frac{1}{c^2}\right)$ $(\frac{1}{c^2} - 1)$ ≈ 0.99999385 , so we obtain the surprising result that almost surely, for infinitely many of n the percentage of times $i \leq n$ when

$$
S_i > \frac{1}{2} \sqrt{2i \log \log i}
$$

exceeds 99.999, but only for finitely many n exceeds 99.9999.

Exercise. Deduce Khinchin's LIL from Strassen's generalization.

Mathematicians have also considered LIL for Brownian motion, a continuous version of the random walk. The following result is analogous to Theorem [1.5](#page-1-0) for Brownian motion.

Theorem 4.2. Let $(B(t))_{t\in\mathbb{R}^+}$ be a real-valued Brownian motion with continuous sample paths. Then,

$$
\mathbb{P}\left[\limsup_{t \to \infty} \frac{B(t)}{\sqrt{2t \log \log t}} = 1\right] = 1.
$$

In fact, a slightly stronger result is that

Theorem 4.3. Let $(B(t))_{t\in\mathbb{R}^+}$ be a real-valued Brownian motion with continuous sample paths. The set of cluster points of the family of random variables

$$
\frac{B(t)}{\sqrt{2t \log \log t}} \text{ as } t \to \infty
$$

is almost surely $[-1, +1]$.

In other words, with probability 1, for any $x \in [-1, +1]$, there is an infinite subsequence of $\frac{B(t)}{\sqrt{2t \log \log t}}$ with the t-values tending to infinity such that the subsequence converges to x.

For generalizations of LIL on Brownian motion in finite and infinite dimensional vector spaces and differentiable manifolds, see [\[Dun75\]](#page-8-3). For LIL in other contexts, see [\[Bin86\]](#page-8-4).

REFERENCES

- [Bin86] NH Bingham. Variants on the law of the iterated logarithm. Bulletin of the London Mathematical Society, 18(5):433–467, 1986.
- [Dun75] TE Duncan. A note on some laws of the iterated logarithm. Journal of Multivariate Analysis, 5(4):425–433, 1975.
- [Dun17] Steven R. Dunbar. Borel-cantelli lemmas with examples. Course: Topics in Probability Theory and Stochastic Processes. University of Nebraska-Lincoln, October 2017.
- [Dun18] Steven R. Dunbar. Law of the iterated logarithm. Course: Topics in Probability Theory and Stochastic Processes. University of Nebraska-Lincoln, March 2018.
- [Str64] Volker Strassen. An invariance principle for the law of the iterated logarithm. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 3(3):211–226, 1964.