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1 Introduction

In a certain space, such as a fluid, there are many different particles that
move around randomly, such as the fluid molecules. This “randomness” is
known as Brownian motion, and can be modeled using certain equations and
definitions, and then those definitions can be used as applications in other
models to understand certain concepts.

Random walks on a number line often start from 0, and the current
position is incremented by +1 or -1. If we define X1, X2, X3... a state space
of {−1, 1}, then by summing up the Xt values, we get the value for the
random walk St. A similar approach can be taken to Brownian motion,
although there are a few more rules:

Definition 1.1. Brownian motion Bt is a type of motion defined to have the
following characteristics:

1. B0 = 0

2. If 0 < p < q, then Bq − Bp follows a normal distribution with mean 0
and variance q − p.

3. If 0 ≤ a ≤ b ≤ c ≤ d, then because [a, b] and [c, d] do not overlap,
Bb −Ba and Bd −Bc are independent variables.

4. t→ Bt is continuous.
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2 Properties

There are certain properties that Brownian motion has, such as being sta-
tionary, continuous, and being a Gaussian process (Ermogenous).

Definition 2.1. A stationary process means that even after any shifts in
time, the mean and variance of the process stays the same. Another way of
saying this is that the distribution of (B0, B1, . . . Bk) has the same distribu-
tion as (Bt, Bt+1 . . . Bt+k).

Theorem 2.1. Brownian motion is a stationary process.

We can see that for 1 ≤ n ≤ m,

Bm −Bn =
m∑

i=n+1

Xi.

However, just by changing the increment by subtracting the upper and lower
bound by n, we get the sum Bm−n − B0 = Bm−n. Because the values of
Xi are i.i.d., the distribution of (Bn . . . Bm) behaves the same way as the
distribution (B0 . . . Bm−n). Thus, Bt is a stationary process.

Definition 2.2. A Gaussian process in a type of process such that every
finite collection of those random variables follows a multivariate normal dis-
tribution. This means that for variables X1, X2 . . . Xk in a Gaussian process
Xn, for any constants an, a1X1 + a2X2 + . . . + akXk will follow a normal
distribution curve.

Theorem 2.2. Brownian motion is a Gaussian process.

In order for Bt to be a Gaussian process, a1B1 + a2B2 + . . . + akBk must
follow a normal distribution. However, knowing that Bn =

∑n
i Xi makes

this easy to see. The sum can be rewritten as a1(X1) + a2(X1 + X2) + . . . +
ak(X1 + X2 + . . . + Xk). Rearranging the terms, we see that the expression
becomes (a1 +a2 + . . .+ak)(X1)+(a2 +a3 + . . .+ak)(X2)+ . . .+akXk. Each
of the Xi variables follows a normal distribution, and even after multiplying
them by a constant, they still follow that distribution. In addition, adding
two normally distributed variables results in a normally distributed variable
again, but with added means and variances. Therefore, the sum results in a
Gaussian distribution, so Bn is a Gaussian process.
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Proposition 2.2.1. The expected value of Brownian motion at time n is 0,
or E[Bn] = 0.

We know that

E[Bn] = E[
n∑

i=1

Xi]

=
n∑

i=1

E[Xi].

Xi behaves the same way as N(0, 1), so it can be treated as the function
e−x

2
. To find the expected value of e−x

2
, we need to calculate∫ ∞

−∞
xe−x

2

dx

=

∫ ∞
−∞

odd · even dx

= 0.

Therefore, E[Xi] = 0. Incorporating this into our sum from before, we can
see that

n∑
i=1

E[Xi]

=
n∑

i=1

0

= 0.

Proposition 2.2.2. The variance of Brownian motion at time n is n, or
Var(Bn) = n.

Bn can be rewritten as the sum
∑n

i=1Xi, and because the sum of two
normal distributions results in their variances adding, know that adding the
variance 1 n times results in a variance of n, that is the variance of Bn.

Proposition 2.2.3. The covariance between Brownian motion at times s
and t is the minimum between the two times, or Cov(Bs, Bt) = min(s, t).
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To prove that Cov(Bt, Bs) = min(t, s), we must first assume 0 ≤ s ≤ t
WLOG. Furthermore, using the definitions before stating that B0 = 0, and
the values of Xt = Bt −Bt−1 are i.i.d., we see that:

Cov(Bt, Bs) = E[Bt ·Bs]

= E[(Bs + Bt −Bs)Bs]

= E[B2
s + (Bt −Bs)Bs]

= E[B2
s ] + E[(Bt −Bs)Bs]

= s + E[(Bt −Bs)(Bs)]

= s + E[Bt −Bs] · E[Bs]
1

= s + E[Bt −Bs](0)

= s + 0

= s.

Because the increments follow a normal distribution that is symmetric
along the y-axis, it results in some interesting properties.

Theorem 2.3. If we define a first passage time for a as Ta := inf{t : Bt = a},
then P(Bt > a) = 1

2
P(Ta < t).

First of all, we notice that

P(Bt > a) = P(Ta < t,Bt > a).

This is because Bt is continuous, so if Bt > a, then we have already passed
Ta, as it is defined to be the first hitting time. The second inequality is

P(Ta < t,Bt > a) =
1

2
P(Ta < t).

This is because BTa = a, so at time t > Ta, we know that P(Bt > a) = P(Bt <
a), seeing as Bt−Ta is normally distributed with its mean at 0. Furthermore,
Bt = a has probability 0 as the increments of t get smaller.

1We can do this because Bt −Bs and Bs are independent, as we have proven before.
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Theorem 2.4. Brownian motion exists.

We can start by constructing Bn on the dyadic rationals on [0,1], and
then extending the process to infinity. Firstly, let

Dn = {a2−n : 0 ≤ a ≤ 2n},

and then let

D =
∞⋃
n=0

Dn.

Next, we can define {Zt}t∈D to be a set of of i.i.d. normally distributed
variables, with Zi behaving similarly to N(0,1). Knowing that B0 = 0 and
B1 = Z1, we can construct the rest of the Bns recursively. Because B1 − B0

is Gaussian with a variance of 1, then for d ∈ Dn\Dn−1, we can define

Bd =
Bd−2−n + Bd+2−n

2
+

Zd

2(n+1)/2
.

What this is doing is finding the average of the two dyadic rationals that are
closest to it in the set Dn−1, averaging them, and then slightly offsetting the
result with a random normally distributed variable. The variable Bd does
not depend on Dn+k for k ≥ 1.
By looking at the neighboring increments, calculation shows that

• Bd −Bd−2−n =
Bd+2−n−Bd−2−n

2
+ Zd

2·2(n−1)/2

and

• Bd −Bd−2−n =
Bd+2−n−Bd−2−n

2
− Zd

2·2(n−1)/2 .

These intervals each are Gaussian, and their variance is 21−n.We can define
a specific function Fn(t), where

F0(t) =


Z1, t = 1

0, t = 0

linearly, all other cases

and

Fn(t) =


2−(n+1)/2Zt, t ∈ Dn\Dn−1

0, t ∈ Dn

linearly, all other cases

.
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By calculation, we can see that

Bd =
∞∑
i=0

Fi(d).

However, we must show that this infinite series is uniformly convergent on
[0, 1]. First of all, using calculus, we can see that

P[|Zd| ≥ c
√
n] ≤ e−c

2n/2.

It follows to show that

∞∑
n=0

P[∃d ∈ Dn, |Zd| ≥ c
√
n] ≤

∞∑
n=0

(2n + 1)e−c
2n/2 <∞

as well. In fact, for a random, large N , we have n > N , and |Zd| < c
√
n for

all d ∈ Dn. Finally, by multiplying 2−(n+1)/2 on both sides, we can see that
for most values of F ,

||Fn||∞ < c
√
n2−(n+1)/2.

We know that D is dense in [0,1] on R, so the continuity is finished. Fi-
nally, the process can be extended to all of the nonnegative real numbers by
concatenating individual copies of Bn.

3 Applications

Brownian motion has certain applications in real life, and can be used for
modeling in certain problems and scenarios. For example, it can be used for
modeling terrain. Mobile robots have been made which have predicted and
calculated possible shifts in the terrain it travels on according to random
Brownian motion. It was also able to make much bigger maps by splicing
together the smaller maps it had constructed, much like how the random
motion was extended to the whole number line in the proof of its existence.

In addition, Brownian motion behaves like a fractal. A fractal, or frac-
tional dimension, is a mathematical or visual object which displays certain
properties. For example, looking at a random two-dimensional motion, it
is self similar. This means that by “zooming in” on Brownian motion, the
smaller interval will look similar to the larger motion, or the path in travels
on in general.
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These sorts of fractals can be found in nature, and can also help with
understanding and predicting processes that behave in a similar way. For
example, patterns in medical images are similar to Brownian motion, as well
as changes and trends in the stock market. Therefore, because the pattern
is alike, certain properties of the trends might be akin to the properties of
Brownian motion. However, this does NOT mean that one should run a
Brownian simulation in order to predict how to spend their money, or to
study medical phenomena, as those results could be catastrophic.
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