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1. Introduction

Measure theory is a branch of mathematics that studies the concept
of a “measure.” A measure, informally, serves as a generalization of
lengths, areas, and volumes. Measure theory was laid out by Émile
Borel, Henri Lebesgue, Hans Rademacher, and many more. Developed
during the late 1800s and early 1900s, it contains numerous applications
in probability theory, real analysis, topology, and much more. So, we
will begin with the fundamentals.

2. Elementary and Jordan Measures

Intuitively speaking, a measure is the “size” of a given set. For
instance, the measure of a subset I ⊂ R1 would be the length of I and
the measure of a subset I ⊂ R2 would be the area of I. Before we head
into the rigorous definitions of the elementary and Jordan measures,
we begin with some axioms.

Suppose m(A) is the measure of a set A. Then, the following axioms
are satisfied:

(1) m(A) = m(A + b) = m(AC), where b is a constant and C is
a rotation matrix. In other words, the measure of a set A is
preserved under translations and rotations.

(2) m(A tB) = m(A) +m(B). In other words, if the set A can be
broken up into disjoint pieces, then the sum of the measures of
these pieces will be A.

Now, some basic definitions.

Definition 2.1. We define an interval as a subset of R which takes
the form [a, b] := {x ∈ R : a ≤ x ≤ b}, [a, b) := {x ∈ R : a ≤ x < b},
(a, b] := {x ∈ R : a < x ≤ b}, (a, b) := {x ∈ R : a < x < b}, with
a, b ∈ R.

Definition 2.2. A box in Rd is a Cartesian product B : I1× ...× Id of
d intervals I1, ..., Id.

Definition 2.3. Suppose we have a set X with power set S. Then,
A ⊆ S is a σ−algebra if:
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a) ∅, X ∈ A
b) If B ∈ A, then Bc ∈ A
c) For i ∈ N and Bi ∈ A,

∞⋃
i=1

Bi ∈ A.

Any element in a σ−algebra is called a measurable set.

The elements of a σ−algebra are measurable. Let’s think about
these conditions intuitively. Clearly, the empty set and the set X itself
are going to be measurable (these are the easiest cases). For the next
condition, it’s nice to think about the set X as some 2-dimensional
figure. An element B will naturally “take up” some of this space, and
since this space is measurable, it’s natural that Bc is measurable as
well because this is simply the difference between space of X and B.
For the final condition, we can think about each individual measurable
set as comprising our Ai for i ∈ N.

The σ−algebra’s usefulness will become apparent when we discuss
measurable spaces. For now, we have enough to define an elementary
set.

Definition 2.4. An elementary set is any subset of Rd that’s the union
of a finite number of boxes.

The elementary measure, naturally, is the notion that allows us to
measure these sets. This leads into the following lemma:

Lemma 2.5. Suppose E ⊂ Rd is an elementary set. Then:

a) E can be expressed as the finite union of disjoint boxes
b) If E is partitioned as the finite union B1 ∪ ... ∪ Bk of disjoint

boxes, then the quantity m(E) := |B1|+...+|Bk| is independent
of the partition. That is, given any other partition C1 ∪ ...∪Ci

in E, one has |B1|+ ...+ |Bk| = |C1|+ ...+ |Ci|.
Proof. We begin with the proof of part a). First, let’s show the case
where d = 1. We have a finite amount of intervals I1, ..., Im, and we can
place the 2m endpoints of these in increasing order. There also exists
a finite amount of disjoint intervals J1, ..., Jn arranged such that each
I1, ..., Im is the union of some subcollection of J1, ..., Jn. This suffices
to prove the one-dimensional case. To prove the case of arbitrary di-
mension, we express E as the union of boxes Bi = Ii,1×, ...,×Ii,d for
i = 1, ...,m. We can also express the intervals I1,k, ..., Im,j as the union
of subcollections of J1,j, ..., Jnj ,j (these are disjoint intervals). This is
true because we can apply our argument of the one-dimensional case.

Now, we can express B1, ..., Bk as finite unions of Ji1,1, ..., Jid,d, where
1 ≤ ij ≤ nj for all 1 ≤ j ≤ d. These boxes are disjoint, proving this
claim.
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For part b), we note that the length of any interval I can be found
through:

|I| = lim
N→∞

1

N
#(I ∩ 1

N
Z).

Now, we can say that

|B| = lim
N→∞

1

Nd
#(B ∩ 1

N
Zd),

where B is an arbitrary box. Since, |B| is just the sum of each disjoint
subset of B, the following statement follows:

|B1|+, ...,+|Bn| = lim
N→∞

1

Nd
#(E ∩ 1

Nd
Zd).

We have that the RHS is simply m(E), thus completing the proof of
this lemma. �

This lemma makes it clear that for disjoint elementary sets E1, ..., Ek

for some k ∈ N, m(E1∪, ...,∪Ek) = m(E1) + ...+m(Ek). It also shows
our translation axiom.

Now, let’s move on to Jordan measures. Jordan measures, in gen-
eral, help with finding an appropriate notion of the “size,” or higher-
dimensional analogue of volume, of subsets of Rn. First, suppose we
have a bounded subset E ⊂ Rn. Let’s construct a covering of an in-
terval I from finitely many intervals such that no two contain common
interior points. Now, we keep dividing this interval I in half, and those
two pieces in half again, and so forth. From all these intervals, some
may contain points that are on the closure of E and Ē. We define these
intervals as E1, ..., En. We define the intervals Ẽ1, ..., Ẽm as the inter-
vals containing elements that are only on the interior of E. Now, we
can say the following:

S =
n∑

i=1

m(Ei), S̃ =
m∑
i=1

m(Ẽi).

We define the Jordan inner measure, m∗,(J)(B), as the supremum of

S̃ and the Jordan outer measure, m∗,(J)(B), as the infimum of S. Or,
more formally:

Definition 2.6 (Jordan measure). Suppose E ⊂ Rd is a bounded
subset. We have the following:

a) The Jordan inner measure, denoted by m∗,(J)(E) is defined as:

m∗,(J)(E) := sup
A⊂E,A elementary

m(A)
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b) The Jordan outer measure, denoted bym∗,(J)(E) := inf
B⊃E,B elementary

m(B)

c) If m∗,(J)(E) = m∗,(J)(E), then we define E as Jordan mea-

surable. We call m(E) := m∗,(J)(E) = m∗,(J)(E) the Jordan
measure of E and denote this by m(J)(E).

From this, we can deduce the following equivalent statements for any
bounded subset E ∈ Rd:

a) E is Jordan measurable
b) For every ε > 0, elementary sets A ⊂ E ⊂ B exist such that

m(B\A) ≤ ε.
c) For every ε > 0, an elementary setA exists such thatm∗,(J)(A∆E) ≤
ε.

Interestingly enough, there is a connection between the Jordan mea-
sure and Riemann integration. Naturally, since we have the measure of
a set computing the “size” of it, Riemann integration provides ample
support to measure certain geometries.

3. Darboux and Riemann Integration

Riemann integration is commonly known to be the very first rigorous
form of integration, and for the sake of this paper, we will be cover-
ing the 1-dimensional Riemann integral (although higher-dimensional
analogues can be constructed through Lebesgue integration). An im-
portant concept in Riemann integration is the tagged partition, which
informally, is a partition that links intervals with points. Or,

Definition 3.1 (Tagged Partition). Suppose we have a positive in-
terval [a, b] with a function f : [a, b] → R. A tagged partition P =
((x0, ..., xn), (x̄1, ..., x̄n)) of [a, b] is a finite sequence of real numbers
a = x0 < ... < xn = b with xi−1 ≤ x̄i ≤ xi for each i = 1, ..., n. We
rewrite xi − xi−1 as δxi.

Definition 3.2 (Riemann Sum). The Riemann Sum R(f,P of a func-
tion f : [a, b]→ R with respect to the tagged partition P is

R(f,P) :=
n∑

i=1

f(x̄iδxi).

f is Riemann integrable on [a, b] if∫ b

a

f(x) dx = lim
∆(P)→0

R(f,P).

This idea leads into the following definitions:
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Definition 3.3 (Darboux Integral). Suppose we have an interval [a, b]
and a bounded function f : [a, b] → R. The lower Darboux integral of
f on [a, b] is: ∫ b

a

f(x) dx := sup
g≤f,p.c.

p.c.

∫ b

a

g(x) dx,

where p.c. is the piecewise constant and g is ranged over all p.c. func-
tions that are bounded by f.

We define the upper Darboux integral as the same except with the in-
fimum instead of the supremum. If both the upper and lower Darboux
integrals are the same, we say that f is Darboux integrable. Now, we
have enough to draw connections between the Jordan measure and the
Riemann integral.

Theorem 3.4. Suppose we have an integral [a, b] and two Riemann
integrable functions f, g : [a, b]→ R. Then, the following hold.

(1) For any c ∈ R, cf and f + g are Riemann integrable and∫ b

a
cf(x) dx = c

∫ b

a
f(x) dx and

∫ b

a
f(x) +g(x) dx =

∫ b

a
f(x) dx+∫ b

a
g(x) dx.

(2) If f(x) ≤ g(x) for all x ∈ [a, b] then
∫ b

a
f(x) dx ≤

∫ b

a
g(x) dx.

(3) If E is a Jordan measurable on [a, b], then the indicator function

1E : [a, b]→ R is Riemann integrable and
∫ b

a
1E(x) dx = m(E).

These properties end up uniquely identify the properties of the Rie-

mann integral. This means that the map f 7→
∫ b

a
f(x) dx is the only

mapping that follows the above 3 properties. We can also interpret
this in terms of “area under a curve” with the following theorem:

Theorem 3.5. Suppose we have a bounded function f : [a, b] → R. If
we have Jordan measurable sets E∗ := {(x, t) : x ∈ [a, b], 0 ≤ t ≤ f(x)}
and E∗ := {(x, t) : x ∈ [a, b], f(x) ≤ t ≤ 0} in R2, then∫ b

a

f(x) dx = m2(E∗)−m2(E∗)

where m2 is the 2-dimensional Jordan measure.

This completes our connection between the Jordan measure and the
Riemann integral.
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