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1. Introduction to Martingales

Definition 1.1. A martingale is a sequence of random variables with finite meanX1, X2, . . . , Xn,
such that E(Xn|Xn−1 . . . X1) = Xn−1.

In some instances it is required that Xn be a function of some other sequence M0, . . . ,Mn.

Definition 1.2. Given some martingale X and the random variable Xn defined as the
position of the martingale at time n, the filtration Fn is the set {X1, . . . , Xn−1}.

A filtration F has a rather involved definition, but for this paper, it is defined conditionally.
In fact, for the rest of the paper, we eschew most measure theory.

Hence, Definition 1.1 can be revised more succinctly to be a set of random variables
X1, . . . , Xn s.t. E(Xn|Fn) = Xn−1 for all n ≥ 1.

Definition 1.3. A predictable sequence is a sequence of random variables Z such that Zn
depends only on X1 . . . Xn−1 and not on some future value. That is, Zn = f(X, . . . , Xn−1).

Definition 1.4 (Martingale Transforms). Let γk = Xk − Xk−1 be a martingale difference
and let {Zn}(n≥1) be a predictable sequence. A martingale transform is defined

(Z ·X) = X0 +
n∑
i=1

Ziγi.

Example. A gambler flips a coin. If it turns up heads, let γi = 1. If it is tails, let γi = −1.
Depending on the outcome of the previous throws, assign a bet that the next flip is heads.
Then, it is clear that the sequence of bets, say Z, is a predictable sequence (since it depends
only on Fn). Similarly, define Xn = γ1 + . . . γn. Since E(γi) = 0, E(Xn) = E(Xn−1 + γn) =
E(Xn−1) = Xn−1, so X is a martingale.

Our Martingale Transform (Z ·X)n represents the amount of money the gambler has at
the nth flip.

Example. Instead of coin flips, consider the more general bernoulli trial, or really, any proba-
bility distribution Y s.t. E(Y ) = 0. By similar logic to above, we know that Xn = Y1+ . . . Yn
is a martingale. We can determine some function that assigns a bet on (Z ·X)n depending
on the number of successes in Fn (identical to above).

Martingale Transforms are immensely useful constructs. Since they depend only on Fn−1,
it makes intuitive sense that Transforms may also be martingales themselves. This intuition
turns out to be true.

Lemma 1.5. The martingale transform (Z ·X)n (see Definition 1.4) is also a martingale.
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Proof. We wish to show E((Z ·X)n) = (Z ·X)n−1. Recall Z ·X = X0 +
∑n

i=1 Ziγi = X0 +∑n−1
i=1 Ziγi+Znγn. By linearity of expectation, E((Z ·X)n) = E(X0+

∑n−1
i=1 Ziγi)+E(Zn ·γn) =

E((Z ·X)n−1) + E(Znγn). If {Z} and {γ} are independent, E(Znγn) = E(Zn)E(γn).
Since, E(Xk) = Xk−1 = E(Xk−1), by Linearity of Expectation, we have E(Xk −Xk−1) =

E(γk) = 0.
Thus, E((Z ·X)n) = E((Z ·X)n−1) + E(Znγn) = E((Z ·X)n−1) = (Z ·X)n−1. �

2. Optional Sampling Theorem

Although generally used as an intermediate step to ultimately prove Optional Stopping
Theorem, Doob’s Optional Sampling Theorem is intersting in its own right. In particular,
it demonstrates the extreme power of Martingale Transforms.

Definition 2.1. A stopping time relative to a filtration {Fn}≥0 is a non-negative integer-
valued random variable τ such that for each n the event {τ = n} ∈ Fn. That is, the stopping
time is determined the information up to and including n.

Example. Consider a lazy random walk of an ant on the number line. The ant stops when
it reaches either x = −2 or x = 2 for the first time.

Nonexample. Consider a lazy random walk of an ant on the number line. The last time the
ant reaches x = 2 is not a stopping time. This is because it relies on information that will
come in the future (i.e. is not included in Fn).

Theorem 2.2. Let a∧b refer to min(a, b). The stopped sequence {Xn∧τ}n≥0 is a martingale.

Proof. Since a stopping time relies only on Fn, it seems likely that a stopped martingale is
also a Martingale Transform. To confirm this, we need to explicitly construct our predictable
sequence {Zn}(n≥1).

We claim the following construction for {Zn}(n≥1) holds:{
1 τ ≥ n
0 τ < n

Verifying, note that (Z ·X) = X0 +
∑n

i=1 Ziγi = X0 +
∑n∧τ

i=1 γi = Xτ∧n. �

3. Optional Stopping Theorem

By Optional Sampling Theorem, we know that Xn∧τ = X ′ is also a martingale. As n
approaches infinity, the martingale approaches Xτ , which, by Optional Sampling Theorem,
must be a martingale. In particular, we need to find conditions such that

lim
n→∞

E(X ′) = E(Xτ ).

Then, it is an obvious corollary that E(Xτ ) = E(X0). That is, we know (X ′) is a martingale
by Optional Sampling Theorem, so E(X ′) = E(X0) = 0. Therefore, if limn→∞ E(X ′) =
E(Xτ ), then the result follows.

Definition 3.1. A martingale Xn is uniformly integrable (UI) if supn≥0(E(|Xn|I{|Xn| > x}))
approaches 0 as x approaches infinity.

Proposition 3.2. If a martingale X is UI, then limn→∞ E(X ′) = E(Xτ ), implying E(Xτ ) =
E(X0).
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Armed with this knowledge, we can begin to prove the main result, the Optional Stopping
Theorem.

Lemma 3.3 (Dominated Convergence Theorem). If Xn approaches X as n approaches ∞
and sup |Xn| ≤ Y for some random variable Y with E(Y ) < ∞, then E(Xn) approaches
E(X) as n approaches ∞.

For the sake of notation, this can also be written as: If Xn → X, then E(Xn) → E(X).
Before we can prove this statement, we need to prove another Lemma.

Lemma 3.4 (Fatou’s Lemma). If X1, X2, . . . are non-negative random variables and Xn →
X, then E limn→∞ inf Xn ≤ limn→∞ inf EXn.

Proof. Define a new sequence Yn = infk≥nXk. This is a non-decreasing sequence which con-
verges to limn→∞ inf EXn. SinceXn ≥ Yn, limn→∞ inf EXn ≥ limn→∞ inf EYn = limn→∞ E(Yn)
since Yn is non-decreasing and convergent. By applying monotone convergence theorem (not
proved in the paper), we have limn→∞ E(Yn) = E(limn→∞ Yn) = E limn→∞ inf Xn. �

Now, we finish the proof of Dominated Convergence Theorem.

Proof of Lemma 3.3. Recall |Xn| ≤ Y , so |X| ≤ Y as n→∞. This implies, |X−Xn| ≤ 2Y .
Applying Fatou’s Lemma, we have:

E(2Y ) = E lim
n→∞

inf(2Y − |Xn −X|) ≤ lim
n→∞

inf E(2Y − |Xn −X|) = 2EY− lim
n→∞

supE(|Xn −X|).

Therefore, limn→∞ supE(|Xn −X|) ≤ 0, implying E|Xn − X| → 0. Trivially, we have
|EXn −X| ≤ E|Xn −X| → 0, so |EXn −X| → 0, implying EXn → EX.

�

As a trivial corollary, if a martingale satisfies Dominated Convergence Theorem (hence-
forth referred to as DCT), then it is UI.

Theorem 3.5 (Optional Stopping Theorem). Each of the following conditions are equivalent
and must hold in order for E(Xτ ) = E(X0).

(1) supn≥0 |X ′| ≤ Y where Y is a r.v. such that E(Y ) is finitely bounded.
(2) The stopping time τ is bounded.
(3) E(|Xτ |) <∞ and E(|Xτ |; τ > n) approaches 0 as n approaches ∞.

Proof of Theorem 3.5. It was shown that Optional Stopping Theorem is a corollary of Op-
tional Sampling Theorem as long as the Martingale is UI. Thus, it is enough to show that
the conditions satisfy UI.

(1) This is the direct statement of Dominated Convergence. As previously asserted (but
not proved), any martingale that satisfies DCT is UI.

(2) This is a corollary of (1). In particular, set the random variable Y to be max{|X1|, . . . , |Xn|}.
Then, DCT applies again.

(3) Using a technique similar to the proof or Optional Sampling Theorem, we split |X ′|
into |Xτ |I{τ < n} + |Xn|I{τ ≤ n}. We know E(|Xτ |; τ > n) approaches 0 as n
approaches ∞, so

lim
n→∞

E(|X ′|) = lim
n→∞

E(|Xτ |I{τ ≤ n}).
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Furthermore, it is obvious that |Xτ |I{τ ≤ n} ≤ |Xτ and E(|Xτ | < ∞ is true by
assumption. Now, DCT applies, with the random variable Y as Xτ .

�

4. Random Walks

Martingales, and especially Optional Stopping Theorem, have numerous applications. Per-
haps most importantly, it significantly reduces the amount of time necessary to compute
various facts about the symmetric random walk.

Definition 4.1. A simple symmetric random walk of size n is defined as
∑n

i=0 Zi where Zi
is a random variable that is 1 with probability 1/2 and −1 with probability 1/2.

Lemma 4.2. The symmetric random walk is a martingale.

Proof. Let Xi refer to the position of the simple random walk at time i. Now, note by
Definition 3.1 that E(Xi+1) = 1

2
(Xi − 1) + 1

2
(Xi + 1) = Xi. Therefore, E(Xi+1) = Xi,

implying E(Xi+1|Fn) = Xi. �

Theorem 4.3. For a random walk beginning at x = 0 and ending when the walker first
reaches x = −a or x = b, the probability of hitting x = a first is b

a+b
.

Proof. Since the simple symmetric random walk is a martingale, we may freely use the
Optional Stopping Theorem. Our stopping time is defined as τ = a∧b where a is the position
x = a and b is the position x = b. Recalling Theorem 3.5, we have E(Xτ ) = E(X0) = 0.
Let p1 be the probability of stopping at −a and let p2 be the probability of stopping at b.
Note, we can rewrite E(Xτ ) as p1 · (−a) +p2 · (b) = 0. Clearly, by the constraints of Optional
Stopping Theorem, p1 + p2 = 1. Hence, we have a system of linear equations:

p1 · −a+ p2 · b = 0

p1 + p2 = 1.

Solving the system, we have p1 = b
a+b

and p2 = a
a+b

. �

Theorem 4.4. For a random walk beginning at x = 0 and ending when the walker first
reaches x = −a or x = b, the expected number of moves until the walk ends is ab.

First, we prove a lemma.

Lemma 4.5. If the sequence {Xn} is a martingale representing a simple random walk, then
the sequence {X2

n − n} is also a martingale.

Proof. Define a new martingale {Mn} as {X2
n − n}. We wish to show E(Mn) = Mn−1 ir

E(X2
n− n) = X2

n−1− n. Since this is a random walk, note that Xn = Z1 + . . . Zn where Zi is
±1. So, E(X2

n−n) = E(Xn−1 +Zn)2−n = E(X2
n−1 + 2Xn−1Zn+Z2

n)−n. Applying linearity
of expectation, we have E(X2

n − n) = E(X2
n−1) + 2E(Xn−1Zn) + 1− n = E(X2

n−1 − (n− 1)),
which finishes the proof. Note, in this case E(X2

n−1 − (n − 1)) = X2
n−1 − (n − 1) since the

value of Xn−1 is already known. �

Now, with a bit of algebra, we can finish the Theorem.
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Proof of Theorem 4.4. Since the previously defined Mn is a martingale, we can apply Op-
tional Stopping Theorem. In particular E(Mτ ) = E(M0) = 0. Relabeling the stopping time
as n, we have E(X2

n − n) = 0, and by linearity of expectation, E(X2
n) = E(n). Now, we

explicitly compute E(X2
n). With probability p1 we end at x = −a and with probability p2

we end at x = b. So, the expected value of X2
τ = p1(a2) + p2(b

2). Recall that p1 = b
a+b

and

p2 = a
a+b

, so E(n) = ab2+ba2

a+b
= ab. �
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