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1. Introduction

The spectral gap of a Markov chain is related to the eigenvalues of the transition matrix,
and can help describe how fast that Markov chain converges to the stationary distribution. A
version of Aldous’s Spectral Gap Conjecture was originally stated around 1992, and various
special cases of Aldous’s Spectral Gap Conjecture have been proven since. It was finally
proved in 2010 by Caputo, Liggett, and Richthammer. This conjecture states that the
spectral gap of the random walk on a graph is equal to the spectral gap of the interchange
process on that graph. In this paper, we introduce background related to the spectral gap
and interchange process, and prove the conjecture. We assume basic knowledge of Markov
chains, graph theory, and linear algebra.

2. Spectral Gap of a Random Walk

Let Z = (Zi)i≥0 be a Markov chain with finite state space S and transition probabilities
qij. Assume that the Markov chain is irreducible and that the transition matrix is symmetric,
i.e. qij = qji. We first define the spectral gap:

Definition 2.1. The spectral gap λ1 is the smallest positive eigenvalue of −Q, where Q
is the transition matrix.

We can interpret the spectral gap in terms of the mixing time:

Definition 2.2. We define the relaxation time trel as 1
λ∗

, where λ∗ is the absolute spectral
gap.

Theorem 2.3. Let πmin = minx∈Ω πx. Then,

(trel − 1) log
1

2ε
≤ tmix(ε) ≤ log

(
1

επmin

)
trel

Corollary 2.4. As t→∞,

Pi(Zt = j) = πj + aije
−λ1t + o(e−λ1t)

where aij is a constant depending on i and j.

We can also interpret the spectral gap in terms of the infinitesimal generator, which we
define below:

Definition 2.5. The infinitesimal generator of a Markov chain with transition matrix Q
is the linear operator

Lg(i) =
∑
j∈S

qi,j(g(j)− g(i))

where the input g is a function from S → R, and i ∈ S.
1



2 FUJIMORI

Proposition 2.6. The spectral gap λ1 is the largest constant λ such that

1

2

∑
i,j∈S

qij(g(j)− g(i))2 ≥ λ
∑
i∈S

g(i)2

for all functions g : S → R with
∑

i g(i) = 0.

Equivalently, we have the following:

Corollary 2.7. The spectral gap λ1 is the largest constant λ such that∑
z∈S

(Lg(z))2 ≥ −λ
∑
z∈S

g(z)Lg(z)

A consequence of this is that L2 + λL is nonnegative definite, i.e. its eigenvalues are
nonnegative.

3. The Interchange Process

Let G = (V,E) be a weighted undirected graph with edge weights cxy.

Definition 3.1. In the interchange process, we assign a labeling to the vertices of the
graph and jump from state η to state ηxy with probability cxy, transitioning by switching the
labels at vertices x and y. Let Xn denote the permutations of {1, 2, . . . , n}, and for η ∈ Xn
and xy ∈ E, we define ηxy = ητxy where τxy ∈ Xn is the transposition (x y).

Similar to the way we defined infinitesimal generators of the random walk, we can define
it in the same way for the interchange process:

Definition 3.2. The infinitesimal generator of the interchange process is the linear operator

LIPf(η) =
∑
xy∈E

cxy(f (ηxy)− f(η))

where the input is a function f : Xn → R, and η is an element of Xn.

The linear operator can be represented in terms of a matrix, which allows us to define the
spectral gap for the interchange process:

Definition 3.3. The spectral gap λIP1 is the smallest positive eigenvalue of −M , where M
is the matrix representing L.

4. Special Cases of Aldous’ Spectral Gap Conjecture

In this section, we will look at special cases or weaker forms of Aldous’s Spectral Gap
Conjecture. We first show the following:

Proposition 4.1. For all weighted graphs G, we have λIP1 (G) ≤ λRW1 (G).

Proof. We use the proof from [CLR10]. The idea of the proof is that the random walk is a
subprocess of the interchange process, because we get a random walk if we just focus on the
vertex with label 1. Let L1 represent the infinitesimal generator of the random walk, and
let L2 represent the infinitesimal generator of the interchange process. We denote the state
space of the random walk as S1 and the state space of the interchange process as S2.

Since the random walk is a subprocess of the interchange process, this gives a surjective
function f : S2 → S1 such that L2(g ◦ f) = (L1g) ◦ f for all functions g : S1 → R. We
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want to show that if g is an eigenfunction of −L1, then f ◦ g is an eigenfunction of −L2. If
−L1g = λg, then we have

−L2(g ◦ f) = (−L1f) ◦ π = λg ◦ f

which shows that Spec(−L1) ⊂ Spec(−L2). Thus, λIP1 ≤ λRW1 , as desired. �

In 1980, Diaconis and Shahshahani showed that for an unweighted complete graph (for
which we can just assign each edge a weight of 1), the spectral gap of the random walk is
actually equal to the spectral gap of the interchange process. Note that in this case, we can
think of the interchange process as shuffling a stack of n cards, where we pick two positions
at random and switch the cards at those positions. We then ask how many transpositions
should be made for the permutation to be random, i.e. the distribution is close to the
stationary distribution.

Proposition 4.2 (Diaconis–Shahshahani). For a complete graph on n vertices where ce = 1
for all e ∈ E, we have λIP1 = λRW1 .

Proof. We refer the reader to [DS81] for an in-depth proof and discussion. Since the inter-
change process is related to the permutation group Sn, this paper uses methods from group
theory to compute the eigenvalues of these processes. �

Using similar methods, Flatto, Odlyzko, and Wales showed the following in 1985:

Proposition 4.3 (Flatto–Odlyzko–Wales). For a star graph where ce = 1 for all e ∈ E, we
have λIP1 = λRW1 .

Proof. See [FOW85]. �

Cesi further used these methods in 2009 to extend the results for multipartite graphs:

Proposition 4.4 (Cesi). For complete multipartite graphs where ce = 1 for all e ∈ E, we
have λIP1 = λRW1 .

Proof. See [Ces10]. �

It turns out that this result holds for a general graph. This is Aldous’s Spectral Gap
Conjecture, which was proven in 2010 by Caputo, Liggett, and Richthammer:

Theorem 4.5. For all weighted graphs G, the interchange process and the random walk have
the same spectral gap, i.e.

λIP1 (G) = λRW1 (G).

5. Key Results for the Proof of the Conjecture

We present the proof from [CLR10], which uses induction on the number of vertices in the
graph. We first define the following:

Definition 5.1. Given a weighted graph G = (V,E) and a point x ∈ V , define the reduced
network Gx as the graph obtained when removing x from G, i.e. Vx = V \ x, Ex = {yz ∈
E, y, z 6= x}, and the edge weights are

c′yz = cyz + c∗,xyz , c
∗,x
yz =

cxycyz∑
w∈Vx cxw
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Note that the infinitesimal generator for the random walk on Gx is the same as it is on
G, except with modified edge weights:

Lxg(z) =
∑
y∈Vx

c′zy(g(y)− g(z))

for g : V → R and x ∈ V .

Proposition 5.2. For a weighted graph G and a point x, we have

λRW1 (Gx) ≥ λRW1 (G).

We first prove a lemma:

Lemma 5.3.

Lg(z) =

{
Lxg(z) z ∈ Vx
0 z = x

Proof. Let x ∈ V be arbitrary. Let L represent the infinitesimal generator of the random
walk on G, and let Lx represent the infinitesimal generator of the random walk on Gx. Take
g : V → R such that Lg(x) = 0. Then,∑

y 6=x

cxy(g(y)− g(x)) = 0

We solve for g(x): ∑
y 6=x

cxyg(y) = g(x)
∑
w 6=x

cxw

(1) g(x) =

∑
y∈Vx cxyg(y)∑
w∈Vx cxw

Then for z ∈ Vx,
Lg(z) =

∑
y∈Vx

czy(g(y)− g(z)) + czx(g(x)− g(z))

where we split the separate out the x term. Using 1,

Lg(z) =
∑
y∈Vx

czy(g(y)− g(z)) + czx

(∑
y∈Vx cxyg(y)∑
w∈Vx cxw

− g(z)

)

=
∑
y∈Vx

czy(g(y)− g(z)) + czx

(∑
y∈Vx cxyg(y)−

∑
w∈Vx cxwg(z)∑

w∈Vx cxw

)

=
∑
y∈Vx

czy(g(y)− g(z)) +
czx∑

w∈Vx cxw

(∑
y∈Vx

cxy(g(y)− g(z))

)

=
∑
y∈Vx

czy(g(y)− g(z)) +
cxycxz∑
w∈Vx cxw

(∑
y∈Vx

(g(y)− g(z))

)
=
∑
y∈Vx

(czy + c∗,xzy (g(y)− g(z)) =
∑
y∈Vx

c′zy(g(y)− g(z)) = Lxg(z)
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We have shown that

Lg(z) =

{
Lxg(z) z ∈ Vx
0 z = x

as desired. �

Proof of Proposition 5.2. Recall that the spectral gap λ of a process with infinitesimal gen-
erator L is the largest constant satisfying∑

z∈V

(Lg(z))2 ≥ −λ
∑
z∈V

g(z)Lg(z).

We want to show that λRW1 (G), the spectral gap for the random walk on G, satisfies this
inequality for Lx. By Lemma 5.3, we have∑

z∈Vx

(Lxg(z))2 =
∑
z∈V

(Lg(z))2 ≥ −λRW1 (G)
∑
z∈V

g(z)Lg(z) = −λRW1

∑
z∈Vx

g(z)Lxg(z)

We know that λRW1 (Gx) is the largest constant satisfying this inequality for Lx, and we have
shown that λRW1 (G) satisfies this inequality as well. We conclude that

λRW1 (Gx) ≥ λRW1 (G)

as desired. �

Lemma 5.4. For fixed x ∈ V and g : V → R, we have∑
y∈Vx

cxy [g(y)− g(x)]2 =
∑
yz∈Ex

c∗,xy,z [g(y)− g(z)]2 +
1∑

y 6=x cxy
(Lg(x))2 .

Proof. The proof of this theorem involves the Courant-Fisher min-max theorem; see [CLR10,
Lemma 2.2] for details. �

Theorem 5.5 (Octopus Inequality). Define the gradient ∇xy to be the operator

∇xyf(η) = f(ηxy)− f(η)

where ηxy = ητxy is the product of η and the transposition of x and y, τxy. We also define
ν as the uniform probability measure on the space of permutations Xn, and ν[f ] =

∫
fdν for

functions f : Xn → R.
For a weighted graph G on |V | = n vertices, for all x ∈ V and f : X → R, we have∑

y∈Vx

cxyν
[
(∇xyf)2] ≥ ∑

yz∈Ex

c∗,xyz ν
[
(∇yzf)2] .

Proof. The proof of this theorem is beyond the scope of this paper. We refer the reader
to [CLR10, Section 3]. �

6. Finishing the Proof of the Conjecture

We now would like to reformulate Aldous’s Spectral Gap Conjecture so that it is easier
for us to prove. Define

H = {f : X → R : ν[f |ξi] = 0, i ∈ V }
where ν[f |ξi] is conditional on the position of the particle labeled i. Let ηx be the label of
the particle at x. If η ∈ Xn satisfies ξi(η) = x, then we have

ν[·|ξi](η) = ν[·|ξi = x] = ν[·|ηx = i] = ν[·|ηx](η)



6 FUJIMORI

Thus, we can alternatively define H as

H = {f : X → R : ν[f |ηx] = 0, x ∈ V }

Proposition 6.1. H contains all eigenvalues in Spec(−LIP ) \ Spec(−LRW )

Let µIP (G) denote the smallest eigenvalue of −LIP associated to functions only in H.
Here, it will be helpful to introduce the Dirichlet form and the related interpretation of the
spectral gap.

Definition 6.2. Let P be a reversible transition matrix with stationary distribution π. The
Dirichlet form associated to P is E : RΩ → R, given by

E(f, h) = 〈(I − P )f, h〉π =
∑
x∈Ω

(I − P )f(x)h(x)π(x)

Proposition 6.3.

E(f, f) =
1

2

∑
x,y∈Ω

(f(x)− f(y))2π(x)pxy.

Proof. We have
E(f, f) = 〈f, f〉π − 〈Pf, f〉π

=
∑
x∈Ω

f 2(x)π(x)−
∑
x∈Ω

Pf(x)f(x)π(x)

=
∑
x∈Ω

f 2(x)π(x)−
∑
x∈Ω

f(x)π(x)
∑
y∈Ω

pxyf(y)

=
∑
x,y∈Ω

f 2(x)π(x)pxy − f(x)π(x)pxyf(y)

=
1

2

∑
x,y∈Ω

π(x)pxy(f(x)− f(y))2

as desired. �

On our weighted graph, we have

E(f) =
1

2

∑
b∈E

cbν[(∇b(f))2]

and the spectral gap can be described as the largest constant λ such that for all f : X → R:

(2) E(f) ≥ λVar
ν

(f)

where Varν(f) = ν[f 2] − ν[f ]2, and µIP (G) is the largest such constant if we restrict to
f ∈ H. This shows that

λIP1 (G) = min{λRW1 (G), µIP1 (G)}
We conclude the following:

Corollary 6.4. Theorem 4.5 is equivalent to the statement that

µIP1 (G) ≥ λRW1 (G).

Proposition 6.5. For a weighted graph G, we have

µIP1 (G) ≥ max
x∈V

λIP1 (G).
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Proof. Let f ∈ H and x ∈ V . Note that this means that ν[f |µx] = 0, so

ν[f 2] = Var
ν

(f) = ν[Var
ν

(f |ηx)].

By 2, we know that E(f) ≥ λIP1 (G) Varν(f), so

λIP1 (Gx) Var
ν

(f |ηx) ≤
1

2

∑
b∈Ex

(
cb + c∗,xb ν[(∇bf)2|ηx]

)
We take the expected value of both sides with respect to ν:

λIP1 (Gx)ν[f 2] ≤ 1

2

∑
b∈Ex

(
cb + c∗,xb ν[(∇bf)2]

)
Recall the octopus inequality, which says that∑

y∈Vx

cxyν
[
(∇xyf)2] ≥ ∑

yz∈Ex

c∗,xyz ν
[
(∇yzf)2] .

Applying this to our inequality,

λIP1 (Gx)ν[f 2] ≤ 1

2

∑
b∈Ex

(
cbν[(∇bf)2]

)
+

1

2

∑
b∈Ex

(
c∗,xb ν[(∇bf)2]

)
≤ 1

2

∑
b∈E:x 6∈b

(
cbν[(∇bf)2]

)
+

1

2

∑
b∈E:x∈b

(
cbν[(∇bf)2]

)
=

1

2

∑
b∈E

cbν[(∇bf)2] = E(f).

We have shown that for all x ∈ V and f ∈ H, λIP1 (Gx) satisfies

E(f) ≥ λVar
ν

(f).

We know that µIP1 (G) is the largest constant that satisfies this inequality, so we can conclude
that µIP1 (G) ≥ λIP1 (Gx) for all x ∈ V and thus

µIP1 (G) ≥ max
x∈V

λIP1 (Gx)

as desired. �

We now have all the ingredients we need for the proof of the conjecture.

Proof of Theorem 4.5. We prove the theorem by induction on the number of vertices. Note
that when we have two vertices, the random walk and interchange process are actually the
same Markov chain, so λRW1 (G) = λIP1 (G).

Now, assume that λIP1 (G′) = λRW1 (G′) on every weighted graph G′ with n − 1 vertices.
Then, if we have some weighted graph G on n vertices, we know that for every x ∈ V (G),
the theorem holds for the reduced network Gx. By Proposition 6.5, we have

µIP1 (G) ≥ max
x∈V

λIP1 (G) = max
x∈V

λRW1 (Gx)

By Proposition 5.2, this is greater than or equal to λRW1 (G). Thus,

µIP1 (G) ≥ λRW1 (G)

which by Theorem 5.5 is equivalent to the statement of Aldous’s Spectral Gap Conjecture.
�
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7. Corollaries of Aldous’s Spectral Gap Conjecture

Notice how Aldous’s Spectral Gap Conjecture allows us to compute eigenvalues of an n×n
matrix (corresponding to the random walk) instead of an n! × n! matrix (corresponding to
the interchange process). We can also deduce some results about other processes in between
these two processes.

Corollary 7.1. In the process of symmetric exclusion on a weighted graph G, we label k
of n = |V | particles as occupied and n − k as empty. The k particles are indistinguishable.
Our state space is SEP = {ζ ∈ V : |ζ| = k}, which has

(
n
k

)
elements. Define the process of

symmetric exclusion as switching the particles at x and y in our current position ζ if one of x
or y is occupied in the state ζ and the other is empty, with probability cxy. The infinitesimal
generator of this value is thus

LEPg(ζ) =
∑
xy∈E

cxy(f(ζxy)− f(ζ))

where

ζxy =


ζ \ {y} ∪ {x} y ∈ ζ, x 6∈ ζ
ζ \ {x} ∪ {y} x ∈ ζ, y 6∈ ζ
ζ otherwise

Define λEP1 (G) as the largest eigenvalue in Spec−LEP . We have

λEP1 (G) = λRW1 (G) = λIP1 (G).

Proof. We want to show that

Spec(−LRW ) ⊆ Spec(−LEP ) ⊆ Spec(−LIP ).

We have Spec(−LEP ) ⊆ Spec(−LIP ) because the symmetric exclusion process is a subprocess
of the interchange process, if we call the particles from 1 to k in the interchange process
occupied.

To show that Spec(−LRW ) ⊆ Spec(−LEP ), we show that if f : V → R is an eigenfunction
of −LRW with eigenvalue λ, then λ is an eigenvalue of −LEP as well. Define g : SEP → R
as g(ζ) =

∑
x∈ζ f(x). Then,

−LEPg(ζ) = −
∑

x∈ζ,y 6∈ζ

cxy (g (ζxy)− g(ζ)) = −
∑

x∈ζ,y 6∈ζ

cxy

 ∑
z∈ζ\{x}∪{y}

f(z)−
∑
z∈ζ

f(z)


Notice that the terms for elements that are not x or y get cancelled out, and that the first
sum includes f(y) but not f(x). Thus, this sum is equal to

(3) −
∑

x∈ζ,y 6∈ζ

cxy (f(y)− f(x))

Notice that by symmetry, ∑
x,y∈ζ,x6=y

cxy (f(y)− f(x)) = 0

Thus, we can add the same sum over x ∈ ζ, y ∈ ζ to 3, which yields

−
∑

x∈ζ,y 6=x

cxy (f(y)− f(x)) =
∑
x∈ζ

−LRWf(x) = λ
∑
x∈ζ

f(x) = λg(ζ)
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which shows that
Spec(−LRW ) ⊆ Spec(−LEP ) ⊆ Spec(−LIP )

as desired. We conclude that

λEP1 (G) = λRW1 (G) = λIP1 (G).

�

We can use the same reasoning for the following similar process:

Corollary 7.2. In the process of color exclusion, we fix n1, n2, . . . , nr such that n1 + n2 +
· · · + nr = n and we assign r ≥ 2 colors c1, c2, . . . , cr to n particles such that there are ni
particles of color ci. Particles of the same color are indistinguishable. Our state space is the
set of partitions α = (α1, . . . , αr) where |αi| = ni. In this process, we switch the particles at
positions x and y with probability cxy. Our infinitesimal generator for this process is

LCEPf(α) =
∑
xy∈E

cxy(f(αxy)− f(α))

where we have

αxy =

{
α x, y ∈ αi for some i

(αxy1 , . . . , α
xy
r ) x ∈ αi, y ∈ αj, i 6= j

, αxyk =


αi \ {x} ∪ {y} k = i

αj \ {y} ∪ {x} k = j

αk k 6= i, k 6= j

.

Then, we have

Spec(−LRW ) ⊆ Spec(−LEP ⊆ Spec(−LCEP ) ⊆ Spec(−LIP )

and thus
λCEP1 (G) = λRW1 (G) = λIP1 (G) = λEP1 (G).

We can also use Aldous’s Spectral Gap Conjecture to prove bounds on processes involving
cycles and matching, where the spectral gap is strictly greater than the spectral gap of the
random walk; see [CLR10, Section 6] for a discussion of this.
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