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1 Introduction

The importance of a Webpage is an intrinsically subjective matter which depends
on the surfers interests. But there is a lot that can be said about the importance of
webpages according the perspective of the surfer. This paper describes PageRank,
a method for rating Web pages objectively and mechanically, effectively measuring
the human interest and attention devoted to them. The Pagerank algorithm gives
each page its own rating according to its importance from the perspective of the
surfer where a page becomes important if important pages link to it. Other way
to think of this is to imagine a random surfer on the web following links from page
to page . The pagerank of a page is the probability that the surfer lands on that
page as if a page is important , the surfer is more likely to land on that page. The
behaviour of the surfer is an example of a markov process as the next webpage the
surfer visits depends only uopn the webpage the surfer is currrently on. In this
paper we introduce the reader to Google’s Pagerank algorithm. We assume that
the reader is familiar with working knowledge of Linear algebra and Markov chains
.

2 Some Algebraic Graph Theory

Associating a matrix to a graph can be a powerful concept because we can make
use of all the machinery of linear algebra and matrix computations. In next section
we can see that, if matrix associated to a graph has special properties (primitivity,
irreducibility), then more can be said about the corresponding graph.
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2.1 Terminologies

Definition 1. A directed multigraph G is a pair (V,E) where V is the set of
vertices and E is the multiset built from a subset of V × V

Edges of the form (u, v) are representated are representated by arrows going
from u to v where, u is called the origin and v is called the destination. A di-
graph(directed multigraph) is simple if for all v ∈ V, (v, v) /∈ E
Definition 2. Let G = (V,E) be a directed multigraph. The adjacency matrix
of G is a square matrix A(G) = (A(G))u,v∈V of dimension #(V ) indexed by the
vertices of V where, for all u, v ∈ V , [A(G)]u,v is the number of edges from u to v

In a directed multigraph of finite degree, the indegree of the vertex v is the
number of incoming edges to v or with destination v. It is denoted by deg−(v) and
ω−(v) denotes the set whose elements are the vertices with v as the destination. The
outdegree of the vertex v, denoted by deg+(v), is the number of outgoing edges from
v or with origin v and ω+(v) denotes the set of vertices with v as the origin. The
successors (respectively, predecessors) of a vertex v are the vertices w (respectively,
u) such that (v, w) (respectively, (u, v)) belongs to ω+(v) (respectively, ω−(v)). The
set of successors (respectively, predecessors) of v is denoted by succ(v) (respectively,
pred(v)). Thus there is a loop on v iff succ(v) ∩ pred(v) 6= ∅. We call a vertex
source if it’s indegree is zero and we call it a sink if it’s outdegree is zero.
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The Adjacency matrix of the graph in Figure 1 is
1 0 1 0 1
0 0 0 0 2
0 1 0 1 0
0 1 0 0 1
0 0 0 0 0


Definition 3. We say that two graphs (E1, V1) and (E2, V2) are isomorphic if there
exists a bijective mapping

ψ : V1 → V2

such that, deg+ v = deg+ ψ(v) (respectively deg− ) denoted by G1
∼= G2

As a consequence, we have A(G1) = PA(G2)P
−1 iff G1

∼= G2 where P ∈ {0, 1}n×n
is a permutation matrix .
It is important to note that a result stated for directed graphs can also be applied
for undirected graphs but the converse is not necessarily true. (In particular we
have A(G) is symmetric for undirected graphs). We also have that

A(G)e = (deg+v1 . . . deg
+vn)

T eTA(G) = (deg−v1 · · · deg−vn)

Where e is the n× 1 column vector with all entries 1 .

Now let’s see how adjacency matrix helps us calculate number of walks of length
n between any two vertices.

Proposition 1. Let G be a directed multigraph of order k. The number of walks
of length n from u to v where, u, v ∈ V (G) is [A(G)n]u,v.

Proof. Let A(G) = (a)ijWe have that,

[A(G)n]u,v =
∑

auu1au1u2 · · · aun−1v

where, the sum ranges over all ranges of the sequence (i1, i2, · · · in−1) and 1 ≤ ik ≤ k
which is a consequence of matrix multiplication. But aij is the number of edges
from ai to aj.Hence summing over all (i1, · · · in−1) just gives the total number of
walks of length n from vi to vj , as desired. �

3 Perron Frobenius Theorem

3.1 Essential Linear Algebra

In this section we give some necessary tools to prove Perron-Frobenius Theorem.
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Definition 4. Let A ∈ Cn×n. We define the algebraic multiplicity of an eigenvalue
λ to be its multiplicity as a root of characteristic polynomial of A and geometric
multiplicity to be the dimension of eigenspace with respect to λ. The spectrum of A
is the set of all eigenvalues of A and the spectral radius of A is max{|λ1|, · · · , |λk|}
where {λ1, · · · , λk} are eigenvalues of A and is denoted by ρ(A).

We let Mn denote the set of n×n matrices with complex entries , pA denote the
characetristic polynomial of A ∈Mn and adjA , trA denote the trace and adjugate
of A respectively.

Lemma 1. Let A ∈Mn , λ ∈ C, and nonzero vectors x, y ∈ Cn be given. Suppose
that λ has geometric multiplicity 1 as an eigenvalue of A, Ax = λx and y∗A = λy∗.
There is also a γ ∈ C such that adj(λI − A) = γxy∗

We let A∗ denote the conjugate transpose of A.

Proof. We have rank(λI − A) = n − 1 and hence rank(adj (λI − A)) = 1, i.e.
adj(λI−A) = ξη∗ for some ξ, η ∈ Cn. But (λI−A)( adj(λI−A)) = det(λI−A)I =

0. So (λI−A)ξη∗ = 0 and (λI−A)ξ = 0 which implies that, ξ = αx for some scalar
α. Using the identity (λI − A)( adj(λI − A)) , in a asimilar fashion we conclude
η = βy for some non-zero scalar β. Thus adj(λI − A) = αβxy∗. �

Now we give an important result whose proof relies on Rolle’s theorem and the
fact that p′A(λ) = tr(adjλI − A)

Theorem 1. Let A ∈Mn, λ ∈ C and non zero vectors x, y ∈ Cn. Suppose λ is an
eigenvalue of A and x, y∗ are right and left eigenvectors respectively. Then,
(a) If λ has algebraic multiplicity 1, then y∗x 6= 0.
(b) If λ has geometric multiplicity 1, then it has algebraic multiplicity 1 iff y∗x 6= 0.

Proof. In both the cases we have assumed that the geometric multiplicity of λ is
1. Preceeding lemma tells us that adj(λI − A) = γxy∗. Then pA(λ) = 0 and
p
′

A(λ) = tr adj(λI − A) = γy∗x. In (a) we assume that the algebraic multiplicity
is 1, so p

′

A(λ) 6= 0 and hence y∗x 6= 0. In (b) we assume that y∗x 6= 0 so p
′

A(λ) 6= 0
and hence λ is not a root of p

′
giving us that its algebraic multiplicity is 1.

�

The set of all m− by − n matrices over field F is denoted by Mm,n(F ).
A function ||| · ||| : Mn → R is a matrix norm if it satisfies the following conditions

• |||A||| ≥ 0 and equality occours iff A = 0.

• |||cA||| = |c| |||A||| ∀c ∈ C
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• |||A+B||| ≤ |||A|||+ |||B|||

• |||AB||| ≤ |||A||| |||B|||

We say that a real matrix T is non-negative (or positive) if all the entries of T are
non-negative (or positive).We write T ≥ 0 or T > 0 respectively. The Frobenius

norm of a matrix A is
√

tr(AA∗) and is denoted by ‖A‖2

Proposition 2. Let A,B ∈Mn then we have
(a) If |A| ≤ |B| then, ‖A‖2 ≤ ‖B‖2

(b) ‖A‖2 = ‖ |A| ‖2

Proof. For part (a) , concluding that tr(BB∗) ≥ tr(AA∗) is trivial using the fact
aa = |a|2 ∀ a ∈ C from which the inequality follows. Similar logic can be used for
part B �

Now we give some results using these inequalities.

Proposition 3. (Gelfand’s formula) Let ||| · ||| be a matrix norm on Mn. Then
ρ(A) = limk→∞ |||Ak|||1/k

Proof for this proposition can be found in matrix analysis.

Theorem 2. Let A,B ∈Mn and suppose that B is nonnegative. If |A| ≤ B, then
ρ(A) ≤ ρ(|A|) ≤ ρ(B).

Proof. As |A| ≤ B we have |A|m ≤ Bm and hence, |Am| ≤ |A|m ≤ Bm. Invoking
the above inequalities we have

||Am||2 ≤ || |A|m ||2 ≤ ||Bm||2 and ||Am||1/m2 ≤ || |A|m ||1/m2 ≤ ||Bm||1/m2

forall m ∈ N. Applying Gelfands formula we have ρ(A) ≤ ρ(|A|) ≤ ρ(B) �

We now state two Lemmas concerning norm and spectral radius.

Lemma 2. Let A = [aij] ∈Mn be nonnegative. Then

ρ(A) ≤ |||A|||∞ = max1≤i≤n

n∑
j=1

ai,j

and

ρ(A) ≤ |||A|||1 = max ≤ j ≤ n
n∑
i=1

ai,j.

If all the row sums of A are equal, then ρ(A) = |||A|||∞; if all the column sums of
A are equal, then ρ(A) = |||A|||1.

Page 5



Parth Chavan

Proof. We know that , |λ| ≤ ρ(A) ≤ |||A||| for any eigenvalue λ of A and any
matrix norm ||| · |||. If all the row sums of A are equal, then e = [1, · · · , 1]T is an
eigenvector of A with eigenvalue λ = |||A|||∞ and so |||A|||∞ = λ ≤ ρ(A) = |||A|||∞.
Similarly the statement for columns can be applies to AT . �

Lemma 3. Let A = [aij] ∈Mn be nonnegative. Then

min
1≤i≤n

n∑
j=1

ai,j ≤ ρ(A) ≤ max
1≤i≤n

n∑
j=1

ai,j

and

min
1≤j≤n

n∑
i=1

ai,j ≤ ρ(A) ≤ max
1≤j≤n

n∑
i=1

ai,j

Proof. Let α = min1≤i≤n
∑n

j=1 ai,j. If α = 0, let B = 0. If α > 0 let B = [bi,j]

by letting bi,j = αai,j(
∑n

j=k ai,k)
−1. Then A ≥ B ≥ 0 and

∑n
j=1 bi,j = α. The

preceeding lemmas tell us that ρ(B) = α and ρ(B) ≤ ρ(A). The upper bound in
the first chain of inequalities is the norm bound in previous lemma. The column
sum bounds follows by applying row sum bound to AT . �

Corollary 1. Let A = [aij] ∈Mn. If A is nonnegative and either
∑n

j=1 ai,j > 0 for

all i = 1, · · · , n or
∑n

i=1 aij > 0 for all j = 1, · · · , n, then ρ(A) > 0. In particular,
ρ(A) > 0 if n ≥ 2 and A is irreducible and nonnegative.

Now we state an important theorem for non-negative matrices.

Theorem 3. IfA ∈ Mn is nonnegative, then ρ(A) is an eigenvalue of A and there
is a nonnegative nonzero vector x such that Ax = ρ(A)x.

Proof. For any ε > 0 define A(ε) = A+ εJn. Let x(ε) = [x(εi)] be the perron vector
of A(ε) so that ε > 0,

∑n
i=1 ei = 1. Since vectors {x(ε) : ε > 0} is contained in the

set {x : x ∈ Cn, ||x||1 ≤ 1} there is a monotone decreasing sequence ε1 ≥ ε2, · · · with
lim
n→∞

εn = 0 such that , lim
n→∞

x(εn) = x. Since x(εi >)0, ||x(εi)||1 = 1 foralli ∈ N the

limit vector lim
n→∞

x(εn) = x must be nonnegative and non-zero.Theorem 4 ensures

us that ρ(A(εk)) ≥ ρ(A(εk+1)) ≥ · · · ≤ ρ(A) forallk ∈ N, so ρ = lim
k→∞

ρ(A(εk)) exists

and ρ ≥ ρ(A) . However x 6= 0 and

lim
k→∞

A(εk)x(εk) = lim
k→∞

ρ(A(εk))x(εk) = lim
k→∞

ρ(A(εk)) lim
k→∞

x(εk) = ρx

It follows that ρ is an eigenvalue of A and ρ = ρ(A). �
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Lemma 4. If λ1, · · · , λn are eigenvalues of A ∈ Mn then λ1 + 1, · · · , λn + 1 are
eigenvalues of A+ I and ρ(I +A) ≤ ρ(A) + 1.If A is nonnegative then, ρ(I +A) =
ρ(A) + 1.

Proof. As λ1, · · · , λn are eigenvalues of A We have that

det

a11 − λi · · · a1,n
... . . . · · ·
an,1 · · · ann − λi

 = 0

Thus ,

det

a11 + 1− (λi + 1) · · · a1,n
... . . . · · ·
an,1 · · · ann − (λi + 1)

 = 0

and ρ(I+A) = max1≤i≤n |λi+1| ≤ max1≤i≤n |λi|+1 = ρ(A)+1.. However, previuos
lemma ensures that ρ(A) + 1 is an eigenvalue of A+ I if A ≥ 0. Thus in this case
, ρ(I + A) = ρ(A) + 1. �

3.2 Primitive Graphs and Perron Frobenius Theorem

Definition 5. Let t ≥ 1 be an integer. A matrix A ∈ Rt×t with non-negative
entries is primitive if there exists an integer N such that AN is positive. A directed
multigraph is primitive if its adjacency matrix is primitive.

Definition 6. A matrix A ∈ Rt×t
≥ 0 is irreducible if, for all indices i, j ∈ 1, ..., t,

there exists an integer N such that [AN ]i,j is positive. We say that a directed
multigraph is irreducible if its adjacency matrix is irreducible. A graph is calld
irreducible if its adjacency matrix is irreducible.

Note that a directed multigraph G is strongly connected if and only if A(G) is
irreducible. The definition readily applies to the undirected connected multigraphs.
We say that a real matrix T is non-negative (or positive) if all the entries of T are
non-negative (or positive).We write T ≥ 0 or T > 0 respectively. Note that if a
matrix T is irreducible , I + T is primitive. For matrices A and B we write A > B
if all entries (component wise) af A are greater than that of B.

Theorem 4. (Perron) Let A ∈Mn be positive. Then

• ρ(A) > 0

• ρ(A) is algebraically a simple eigenvalue of A.
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• There is a unique real positive vector x = [xi] such that A(x) = ρ(x) and∑
xi = 1.

• There is a unique vector y = [yi] such that yTA = ρ(A)yT and 〈x, y〉 = 1.

• λ < ρ(A) for every eigenvalue of A other than ρ(A)

Proof. For the first statement we have that A|x| = z > 0 where, ρ(A) = λ and
x is an eigenpair.We have z = A|x| ≥ |Ax| = |λx| = |λ||x| = |ρ(A)||x|. So
y = z− ρ(A)x ≥ 0. If y = 0, ρ(A)|x| = A|x| > 0 and thus, ρ(A) > 0. If y 6= 0 then
0 < Ay = Az − ρ(A)A|x| = Az − ρ(A)z and this implies A(z) > ρ(A)z which is a
contradiction
.Now we prove existence of y. There is an eigenpair λ, x of A with |λ| = ρ(A).
Invoking preceeding lemma tells us that ρ(A), x is an eigenpair and existence of y
follows considering AT .
Suppose w, z ∈ Cn are vectors such that , Aw = ρ(A)w and Az = ρ(A)z. Then w =
αz for some α ∈ C. There are real numbers θ1, θ2 such that p = [pj] = e−iθ1z > 0 and
q = [qj] = e−iθ2 > 0. Let β = min1≤i≤n qip

−1
i . Let r = q − βp. Notice r ≥ 0 and at

east one enry of r is 0. If r 6= 0 then 0 < Ar = Aq−Aβp = ρ(A)q−βρ(A)p = ρ(A)r.
This is a contradiction. We conclude r = 0 and q = βp and w = βei(θ2−θ1)z. Thus
the geometric multiplicity is one and there exist eigenvector x = [xi] such that∑
xi = 1 and previous result shows us that this is unique. This is called right

Perron vector.
AT is also positve and all results can also be applied to AT . An eigenvector of AT

corrosponding th ρ(A) normalized so that
∑
xiyi = 1 is left Perron vector. Now

y∗x = yTx = 1. Thus Theorem 3 tells us that the algebraic multiplicity of x is 1.
�

Theorem 5. (Perron - Frobenius) Let T be an irreducible matrix

• (a) T has a positive (real) eigenvalue λmax such that all other eigenvalues of
T satisfy

|λ| ≤ ρ(A)

• (b) Furthermore ρ(A) has algebraic and geometric multiplicity one, and has
an eigenvector x with x > 0.

• (c) any non-negative eigenvector is amultiple of x.

• (d) There is a unique real vector x = [xi] such that, Ax = ρ(A)x and
∑
xi = 1

; this vector is positive.
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• There is a unique real vector y = [yi] such that yT (A) = ρ(A)yT and∑
xiyi = 1 ; this vector is positive.

In particular, the spectral radius of an irreducible matrix is one of its eigenvalues.

Proof. Lemma 2 shows that ρ(A) > 0 in conditions even weaker than irreducibility.
If algebraic multiplicity of ρ(A) is greater than 1 then the algebraic multiplicity of
ρ(A)+1 in A+I is also greater than 1 which contradicts Perron’s theorem. Previuos
Lemma ensures us that , there is a nonzero vector x such that , Ax = ρ(A)x . Then,
(A+ I)n−1x = (ρ(A) + 1)n−1x . Now x = (ρ(A) + 1)1−n(A+ I)n−1x, is positive. If
we impose normalization eTx = 1, part(b) ensures x is unique. Part (d) follows on
applying part (c) to AT . �

Thus Perron - Frobenius Theorem ensures us that the left and right eigenspaces
of irreducible matrices are one-dimensional. Now we give an application of Perron-
Frobenius Theorem.

Lemma 5. Let P be the transition of an irreducible Markov chain. Then 1 is an
eigenvalue of P , and its eigenspace has dimension 1.

Proof. We first show that 1 is an eigenvalue of P . To do this, we simply produce
a (right) eigenvector with eigenvalue 1, which is e, the vector all of whose entries
are 1. This is an eigenvector with eigenvalue 1 because all the rows of P sum to
1. Now we show that the 1-eigenspace of P is 1-dimensional, as follows. Suppose
v is another eigenvector of P with eigenvalue 1, which isn’t a scalar multiple of
e. By scaling if necessary, we may assume that all of the entries of v are at least
−1, and that one of the entries of v is exactly equal to −1. Since v is not a scalar
multiple of e, not all the entries of v are equal to −1. Now let w = e + v. By the
construction of v, all the entries of w are nonnegative, and they aren’t all 0, but
some entry of w is positive.

Next, note that since the sum of two eigenvectors of P with eigenvalue 1 is again
an eigenvector with eigenvalue 1, so w is an eigenvector of P with eigenvalue 1.
This means that Pw = w. Multiplying by P , we find that P 2w = Pw = w, so
w is an eigenvector of P 2 with eigenvalue 1, and more generally for each positive
integer k, w is an eigenvector P k with eigenvalue 1.

Let i be some index such that wi = 0, which we know must exist, and let j be
some index such that wj 6= 0 (hence wj > 0), which also exists. Now let k be such

that p
(k)
ij > 0. Then we have

0 = wi =
∑
`∈Ω

p
(k)
i` w` ≥ p

(k)
ij wj > 0.
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This is a contradiction, and we can therefore conclude that the 1-eigenspace of P
is 1-dimensional. �

Corollary 2. Let P be a primitive nonnegative stochastic matrix . Then there is
a unique stochastic (row) vector π such that πP = π. Moreover, all the entries of
π are positive.

Proof. Since e is a right eigenvector for P with eigenvalue 1, the Perron–Frobenius
Theorem guarantees that 1 is the Perron–Frobenius eigenvalue for P , so there is a
unique left probability eigenvector with eigenvalue 1. �

4 Google’s Page Rank

4.1 Defining The Google Matrix

A positive real number called PageRank is associated with every Webpage.We
will use the words PageRank and Score equally. Let V = {1, ..., n} be the set of
Webpages on the World Wide Web. If πj denotes the page rank of j we set

πj =
∑

i∈pred(j)

πi
deg+i

Lets assume that the scores are normailzed so that,
∑n

j=1 πj = 1 , and we can
assume it as a probability distribution. But the problem here is that the values of
πi are not known. To eradicate this problem we assume that every page has the
same rank in the beginning. Now the rule given is used to calculate the page rank
at every step. This is an iterative procedure. Let rk+1(πi) denote the page rank of
page i after k + 1 iterations. Then we have

rk+1(πi) =
∑

j∈pred(i)

rk(πj)

deg+j

This is also called as Power method. So this rrocess is started at r0(πi) = 1/n
hoping that this process will converge at some stable value.
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γ1 γ2

Figure 2

iteration 0 iteration 1 iteration 2
1/6 1/12 1/24
1/6 1/4 3/8
1/6 1/6 1/6
1/6 1/6 1/6
1/6 1/6 1/6
1/6 1/6 1/6

It can also be interpreted as follows : Consider a digraph G with each webpage
as a vertex and let P1, P2 be any two webpages. We have that, (P1, P2) ∈ E(G) iff
there is a link on page P1 referencing page P2 amd the Page rank of page Pi is sum
of all rankings of all pages pointing towards page Pi.

Definition 7. Let G = ({1, ..., n}, E) be a digraph with adjacency matrix A(G).
The hyperlink matrix H is defined by

Hi,j =

{
A(G)i,j/deg

+i ifdeg+i > 0

0 ifdeg+i = 0

Compared with H, note that S is stochastic. We have that, ΠH = Π where, Π =
(π1, · · · , πn). Thus we are looking for the eigenvector associated with eigenvalue 1.
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Figure 3

Let π(k)T be the pagerank vector at kth iteration. Using this, we can write the
the pagerank vector at (k + 1)th iteration as

π(k+1)T = π(k)TH.

But still there are some problems. For example sinks (dead ends) in the web
graph those which accumulate more and more PageRank at each iteration, monop-
olizing scores and refusing to share. There’s also a problem of cycles. For example
in Figure, Suppose the iterative process starts with π(0)T = (1 0). Here, the iterates
will not converge no matter how long the process is run. The iterates π(k)T alter
between (1 0) and (0 1) as k is even or odd. If we modified the hyperlink matrix
so that it becomes primitive, then it can be considered as a transition matrix of an
ergodic markov chain and using Convergence for ergodic markov chains we know
that the page ranks converge to a stable state called stationary distribution.
Consider the following scenario : Imagine a random web surfer who bounces along
randomly following the hyperlink structure of the web. In other words he chooses
one of the outlinks (A link which carries him onto a different page ) uniformly and
this process goes on indefinitely. In the long term, the proportion of time spent on
a specific page characterizes the relative importance of that page. Unfortunately,
the random surfer may get stuck on a sink node (dead end) and never escape. And
on the web there are plenty on sinks eg: pdf files , image files , videos, etc. To
fix this we do a stochastic adjustment where the 0T rows are replaced with 1/neT

thereby making H stochastic.
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ξ1 ξ2

Figure 4

Let us introduce a useful variant of hyperlink matrix,

Si,j =

{
A(G)i,j/ deg+ i if deg+ i > 0

1/n if deg+ i = 0

It’s important to note that the hyperlink matrix here is stochastic because there
are no isolated vertices but this isn’t generally true. Assume that you are browsing
web pages and you reach a dead end i.e. there are no external links on that page.
After this an average surfer will either hit the back button or will go to a new
search engine. The point here is that after visiting a page which is a dead end, the
surfer could virtually be on any page of the Web. Thus, this is reasonable to get rid
of sinks proceeding in that way. Having no sinks does not mean that the digraph
is strongly connected and hence we cannot apply Perron-Frobenius theorem as it
requires a irreducible (Strongly connected directed graph) matrix. There is one
last trick to consider

Definition 8. LetG = ({1, ..., n}, E) be a digraph with adjacency matrix A(G).
The Google matrix G is defined by

G = αS + (1− α)1/neeT

where S has been given definition and J is a n × n matrix whose entries are all
equal to 1 and α is a fixed real number in (0, 1).

In this model α is a parameter that controls the time spent on travelling on
hyperlinks opposed to getting bored and being present virtually anywhere (tele-
porting). The teleporting matrix E = 1/neeT meaning that the surfer is equally
likely when teleporting to be present on any page. As α gets closer to 1 we get rid
of sinks (dead ends) and as α gets closer to 0 we start getting a complete graph
made up of links. The value of α has to be carefully chosen. Note that any positive
α 6= 1 does a good job. Also every entry in G is positive and hence G is primitive.
Now G is primitive and hence a transition matrix of an ergodic markov chain. We
also have that,

G = αS+(1−α)1/neeT = α(H+1/naeT )+(1−α)1/neeT = αH+(αa+(1−α)e)1/neT
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where, a is the vector with a1 = 1/n if vertex i is a sink and 0 otherwise. In the
summary, Google’s adjusted Page rank method is

π(k+1)T = π(k)TG

The hyperlink matrix H of the graph in Figure 3 is

H =


0 1/4 1/4 1/4 1/4
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0


The vectors ΠT = (0 0 0 1/2 1/2) and Π′T = (0 1/2 1/2 0 0) are both
pageranks. Thus in even such simple situations we get two different page ranks.

4.2 Computation of the Pagerank vector

The Pagerank vector can be computed in two ways

(a) Solving for the eigenvector problem πT

πT = πTG

πTe = 1

(b) Solve the following linear homogeneous system for πT

πT (I −G) = 0T

πTe = 1

In the first system we know from Lemma 4 and Corollary 2 that 1 is the Perron-
Frobenius Eigenvalue of G so the goal is to find the Perron-Frobenius eigenvector.
In the second system, the aim is to find the left hand normalized null vector of
I −G.
For example consider the webpage graph in figure 5 , taking α = .9 .

G = .9H+(.9(0 1 0 0 0 0)T+.1(1 1 1 1 1 1)T )+1/6(1 1 1 1 1 1)
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ψ1 ψ2

ψ3

ψ5
ψ6

ψ4

Figure 5

=


1/60 7/15 7/15 1/60 1/60 1/60
1/6 1/6 1/6 1/6 1/6 1/6

19/60 19/60 1/60 1/60 1/60 1/60
1/60 1/60 1/60 1/60 7/15 7/15
1/60 1/60 1/60 7/15 1/60 7/15
1/60 1/60 1/60 11/12 1/60 1/60


Google’s PageRank vector is the stationary vector of G and is given by

πT =
1 2 3 4 5 6

(.03721 .05396 .04151 .3751 .206 .2862)

Its interpretation is that 3.721% of the time the surfer is on page 1. Thus the page
rank here is (4 6 5 2 3 1)

One of the reasons power method is used is the number of iterations it requires.
Brin and Page reported in their 1998 papers, and others have confirmed, that only
50 − 100 power iterations are needed before the iterates have converged, giving a
satisfactory approximation to the exact PageRank vector. Each iteration of the
power method requires O(n) effort because H is so sparse. As a result, it’s hard
to find a method that can beat 50O(n) power iterations.The next logical question
is: why does the power method applied to G require only about 50 iterations to
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converge? Is there something about the structure of G that indicates this speedy
convergence? The answer comes from the theory of Markov chains. In general, the
asymptotic rate of convergence of the power method applied to a matrix depends
on the ratio of the two eigenvalues that are largest in magnitude, denoted λ1 and
λ2. Precisely, the asymptotic convergence rate is the rate at which |λ2/λ1|k →
0. For stochastic matrices such as G, λ1 = 1, so |λ2| governs the convergence.
Since G is also primitive, |λ2| < 1. Fortunately, for the PageRank problem, it’s
easy to show that if the respective spectrums are σ(S) = 1, µ2, ..., µn and σ(G) =
1, λ2, ..., λn, then λk = αµk for k = 2, 3, · · · , n(Theorem 6). Furthermore, the link
structure of the Web makes it very likely that |µ2| = 1 (or at least |µ2| ∼ 1), which
means that |λ2(G)| = α (or |λ2(G)| ∼ α). As a result, the convex combination
parameter α explains the reported convergence after just 50 iterations. In their
papers, Google founders Brin and Page use α = .85, and at last report, this is
still the value used by Google. α50 = .8550 ∼ .000296, which implies that at the
50th iteration one can expect roughly 2− 3 places of accuracy in the approximate
PageRank vector. This degree of accuracy is apparently adequate for Google’s
ranking needs. Mathematically, ten places of accuracy may be needed to distinguish
between elements of the PageRank vector but when PageRank scores are combined
with content scores, high accuracy may be less important. Here we conclude with
our paper with proof of Theorem 6.

Theorem 6. If the spectrum of S is {1, λ2, · · · , λn} then the spectrum of the
google matrix G = αS +

(
1− α

)
evT is {1, αλ2, · · · , αλn}

Since S is stochastic, (1, e) is an eigenpair of S. Let Q = (eX) be a nonsingular
matrix that has the eigenvector e as its first column. Let

Q−1 =

(
yT

Y T

)
=⇒ QQ−1 =

(
yTe yTX
Y Te Y TX

)
which gives two useful identities, yTe = 1 and Y Te = 0. As a result, the similarity
transformation

QSQ−1 =

(
yTe yTSX
Y Te Y TSX

)
=

(
1 yTSX
0 Y TSX

)
reveals that Y TSX contains the remaining eigenvalues of S, λ2, · · · , λn Applying
the similarity transformation to G = αS +

(
1− α

)
evT gives

Q−1 =
(
αS + (1− α)evT

)
Q = αQ−1SQ = (1− α)Q−1evTQ

=

(
α αyTSX
0 αY TSX

)
+(1−α)

(
yTe
Y Te

)(
vTe vTX

)
=

(
α αyTSX
0 αY TSX

)(
(1− α) (1− α)vTX

0 0

)
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=

(
1 αyTSX + (1− α)vTX
0 αY TSX

)
Therefore, the eigenvalues of G = αS+

(
1−α

)
evT are {1, αλ2, · · · , αλn}. Thus we

conclude with the proof.
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