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Abstract

This paper will state the Perron-Frobenius Theorem and investigate some of its uses in Markov Chains.

1 Vector Spaces and Fields

To properly state the Perron-Frobenius Theorem, we must first investigate vector spaces. To define a vector
space, we must first define a field F .

Definition 1 (Field Axioms). A field F is a set together with two operations · : F×F → F and + : F×F → F
such that for any a, b, c ∈ F , we have the following:

• Commutativity of Addition: a+ b = b+ a

• Commutativity of Multiplication ab = ba

• Associativity of Additions: (a+ b) + c = a+ (b+ c)

• Associativity of Multiplication: (ab)c = a(bc)

• Multiplication is Distributive over Addition: a(b+ c) = ab+ ac

• Additive Identity: There exists some 0F ∈ F such that a+ 0F = a

• Multiplicative Identity: There exists some 1F ∈ F such that a1F = a

• Additive Inverse: There exists some −a ∈ F such that a+ (−a) = 0F

• Multiplicative Inverse: There exists some a−1 ∈ F such that a(a−1) = 1F

These conditions are called that Field Axioms.

Some examples of fields are the rational numbers Q, the real numbers R, and the complex numbers C.
Now that we have a definition of a field, we can define a vector space on a field F .

Definition 2 (Vector Spaces). A vector space V on a field F is a set together with two operations
+ : V × V → V and · : F × V → V satisfying the following:
For any u, v, w ∈ V and any a, b ∈ F , we have that

• au = ua

• u+ v = v + w

• (u+ v) + w = u+ (v + w)

• (ab)u = a(bu)

• V has an element 0 satisfying u+ 0 = 0

• There exists a −u ∈ V such that u+ (−u) = 0

• u1F = u

• (a+ b)u = au+ bu

• a(u+ v) = au+ av Elements of F are called scalars and elements of V are called vectors.

We now define the basis of a vector space.
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Definition 3 (Bases of Vector Spaces). Suppose we have a vector space V on a field F . A basis on V is a
set of vectors a1, a2, . . . , an satisfying the following:

• Linear Independence: There does not exist c1, c2, . . . , cn ∈ F such that

n∑
i=1

ciai = 0 and not all of the

ci are 0 for 1 ≤ i ≤ n.

• Spanning: For every v ∈ V such that v 6= 0, there exists c1, c2, . . . , cn ∈ F such that v =

n∑
i=1

ciai. If a

set of vectors is not spanning, we call the spanning set of the set of vectors as any vector that can be
expressed as an F -linear combination of the vectors in the set.

We call n the size of the basis.

Remark 4. Every v ∈ V can be uniquely represented as a linear combination of the elements of a basis. For
proof, suppose there are two different representations. Then we can subtract the two resulting equations, and
get that some linear combination of the basis is 0, which contradicts linear independence. This implies that
every element of a basis must be nonzero.

We call n the dimension of V if there exists a basis a1, a2, . . . , an of V . However, we do not know that n
is the same for every basis. The key idea is the following theorem, which we state without proof.

Theorem 5 (Dimension of a vector space). The dimension of a vector space V on a field F is unique. In
other words, every basis of V has the same size.

Now we can safely refer to the dimension of a vector space. We will now investigate a specific type of
function from one vector space to another, called a linear transformation.

2 Linear Transformations

Definition 6 (Linear Transformations). Given to vector spaces V1, V2 on a field F , we define a linear
transformation T : V1 → V2 as a function satisfying, for any a, b ∈ V1 and any c ∈ F , the following hold:

• T (a+ b) = T (a) + T (b)

• T (ca) = cT (a)

Remark 7. Pick a basis a1, a2, . . . , am of V1. We only really care about the values of T (a1), T (a2), . . . , T (am).
This is because for any v ∈ V1, we can write

v =

m∑
i=1

ciai (1)

where the ci are in F . Therefore,

T (v) =

m∑
i=1

T (ciai) =

m∑
i=1

ciT (ai) (2)

This gives us a way to evaluate T (v) for any v ∈ V1 in terms of the T (ai)
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We can go further to write the T (ai) in terms of a basis b1, b2, . . . , bn of V2. We can write

T (v) =

m∑
i=1

ci

n∑
j=1

dijbj (3)

Clearly, the dij are fixed. Therefore, we can represent the transformation T with a m× n matrix, where the
ij entry is dij . Our matrix T would look like

d11 d12 . . . d1n
d21 d22 . . . d2n
...

...
. . .

...
dm1 dm2 . . . dmn

 (4)

3 Square Matrices

Definition 8 (Linear Operators). Given a linear transformation T : V1 → V2, we say that T is a linear
operator if V1 = V2.

Remark 9. If T is a linear operator, then the matrix T is a square matrix. Equivalently, the number of
rows equals the number of columns.

Definition 10 (Eigenvectors and Eigenvalues). Given a linear transformation T : V → V where V is a
vector space on a field F , we say that v ∈ V is an eigenvector of T if T (v) = λv for some λ ∈ F . λ is called
an eigenvalue of T . The set of all eigenvectors v with eigenvalue λ plus 0 is called the eigenspace for λ.

The following is a very important theorem about eigenvectors, which we state without proof.

Theorem 11 (Eigenvectors are Linearly Independent). Suppose we have a linear transformation T on a
n-dimensional vector space V yielding n different eigenvalues, with each eigenvalue yielding one eigenvector.
Then these k eigenvectors are linearly independent.

4 Perron-Frobenius Theorem

We can now state the Perron-Frobenius Theorem for positive matrices, the main focus of this paper.

Theorem 12 (Perron-Frobenius). Given an n× n matrix A with positive entries, we have the following:

• There exists a positive real eigenvalue r of A such that all other eigenvalues of A have absolute value
less than r.

• r has a one dimensional eigenspace.

• There exists an eigenvector v of A known as the Perron-Frobenius eigenvector that has all positive
entries.

• All positive eigenvectors of A are given by positive real multiplies of v.

We will not prove this theorem, but we will investigate its use in Ergodic Markov Chains. Suppose we
have a 4ABC and a particle is at vertex A. Each second, from vertex A it moves to B with probability 0.6,
C with probability 0.4. From B it moves to C with probability 0.6, and A with probability 0.4. From C it
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moves to A with probability 0.6, and B with probability 0.4. We have that the transition matrix T for the
associated Markov Chain is  0 0.6 0.4

0.4 0 0.6
0.6 0.4 0


This is just a matrix where each entry represents the probability of transitioning from one vertex to another.
The question now is, after an infinite amount of time, where is the particle likely to be? Does its starting
position matter? The symmetry of this suggests that it will be equally likely for the particle to be at any
vertex after an infinite amount of time. However, because the sum of each row of this matrix is 1, we have
that the vector 1

1
1


is an eigenvector of the matrix T , with Perron-Frobenius eigenvalue 1 due to the Perron-Frobenius theorem.
Here, the Perron-Frobenius theorem is telling us that multiples of the stated vector are the only positive
eigenvectors of this transition matrix. Even though all of the entries of this matrix are not positive, this
argument still holds because the matrix is ergodic, which means that with a sufficiently large amount of time,
we can get from one vertex to another with positive probability. This would not hold if, for example, we had
a quadrilateral, because we would only be able to reach our original vertex after an even number of seconds.
Therefore, the Perron-Frobenius theorem implies that there exists a unique positive eigenvector π such that

πA = π

where A is the transition matrix. We will not prove this rigorously, but this implies that the distribution of
where the particle is would naturally converge to this eigenvector, as it is unchanged when multiplied to the
matrix. This is the intuition behind the Ergodic Theorem, which states that for an ergodic square stochastic
matrix A, the limit as n approaches infinity of An is a matrix with row vectors that are the same, because
the starting point will not matter.
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