
GENERATING FUNCTIONS IN PROBABILITY

NEIL MAKUR

Abstract. We discuss the moment generating function, which uniquely classifies a prob-
ability distribution.

1. Introduction

The goal of this paper is to determine what information we need to know about a proba-
bility distribution to completely determine it. We already have one tool to do so: expected
value. Recall that the expected value of a random variable X is

E(X) =
∑

x∈imX

x · P(X = x),

where we write imX for all possible values of X. Suppose that we have two random variables
X and Y , with imX = imY = {1, 2, 3, 4, 5, 6}, and E(X) = E(Y ) = 3.5. Is this enough to
completely classify the probability distribution? In other words, is P(X = a) = P(Y = a)
for all a? It turns out that the answer is no. For example, consider the following:

P(X = d) =
1

6
d ∈ {1, 2, 3, 4, 5, 6}

P(Y = d) =

{
1
2

d ∈ {2, 5}
0 d ∈ {1, 3, 4, 6}

.

Then,

E(X) =
6∑

x=1

1

6
x = 3.5,

and

E(Y ) =
1

2
· 2 +

1

2
· 5 = 3.5.

Thus, despite having different probability distributions, X and Y have the same expected
value.

2. Variance

2.1. Introduction to Variance. Now that we have seen the failure of expected value to
completely classify a probability distribution, we define variance.

Definition 2.1. Let X be a random variable with expected value E(X) = µ. Then, the
variance of X is

Var(X) = E((X − µ)2).

Definition 2.2. Let X be a random variable. Its standard deviation is SD(X) =
√

Var(X).
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Remark 2.3. Both variance and standard deviation measure how much a random variable
varies from its expected value on average. However, Var(X) measures the square of the
difference. If we wanted a measure of the magnitude, it makes sense to define SD(X) as its
square root. We will see also that Var(cX) = c2 Var(X), meaning that SD(cX) = c SD(X),
which makes intuitive sense. Despite this, we will not use SD(X) much in this paper, as there
are larger upsides to using Var(X), such as the property that Var(X+Y ) = Var(X)+Var(Y ).

Example. Let us find the variance and standard deviation of the outcome of a standard die
roll. If we let X represent the outcome, we know that µ = E(X) = 3.5. We can form the
following table.

x P(X = x) (x− µ)2

1 1/6 25/4
2 1/6 9/4
3 1/6 1/4
4 1/6 1/4
5 1/6 9/4
6 1/6 25/4

Therefore,

Var(X) = E((x− µ)2) =
1

6

(
25

4
+

9

4
+

1

4
+

1

4
+

9

4
+

25

4

)
=

35

12
,

and

SD(X) =
√

Var(X) =

√
35

12
≈ 1.71.

2.2. Properties of Variance. We will prove some properties of variance that make its
calculation easier.

Proposition 2.4. If X is a random variable with E(X) = µ, then

Var(X) = E(X2)− µ2.

Proof. We have that

Var(X) = E((x− µ)2) = E(X2 − 2Xµ+ µ2)

= E(X2)− E(2µX) + E(µ2) = E(X2)− 2µE(X) + µ2

= E(X2)− µ2.

�

Example. If X is the outcome of a die roll, then

E(X2) =
1

6
(1 + 4 + 9 + 16 + 25 + 36) =

91

6
,

so

Var(X) =
91

6
−
(

7

2

)2

=
35

12
.

Proposition 2.5. If X is a random variable and c is a constant, then

Var(cX) = c2 Var(X),

and
Var(X + c) = Var(X).
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Proof. Let µ = E(X). Then, E(cX) = cµ, so

Var(cX) = E((cX − cµ)2) = E(c2(X − µ)2)

= c2E((X − µ)2) = c2 Var(X).

For the second part, we have E(X + c) = µ+ c, so

Var(X + c) = E(((X + c)− (µ+ c))2) = E((X − µ)2)

= Var(X).

�

Proposition 2.6. If X and Y are independent random variables, then

Var(X + Y ) = Var(X) + Var(Y ).

To prove this, we first need a lemma.

Lemma 2.7. If X and Y are independent random variables, then

E(XY ) = E(X)E(Y ).

Proof. We have that

E(XY ) =
∑

x∈imX

∑
y∈imY

xyP(X = x, Y = y)

=
∑

x∈imX

∑
y∈imY

xP(X = x)yP(Y = y)

=

( ∑
x∈imX

xP(X = x)

)( ∑
y∈imY

yP(Y = y)

)
= E(X)E(Y ).

�

We can now prove Proposition 2.6.

Proof of Proposition 2.6. Note that

Var(X + Y ) = E((X + Y )2)− (E(X + Y ))2 = E((X + Y )2)− (E(X) + E(Y ))2

= E(X2 + 2XY + Y 2)− E(X)2 − 2E(X)E(Y )− E(Y )2

= E(X2) + E(2XY ) + E(Y 2)− E(X)2 − 2E(X)E(Y )− E(Y )2

= (E(X2)− E(X)2) + (E(Y 2)− E(Y )2) + (2E(XY )− 2E(X)E(Y ))

= Var(X) + Var(Y ) + (2E(X)E(Y )− 2E(X)E(Y ))

= Var(X) + Var(Y ).

�

This result can easily be generalized to the sum of any amount of variables.
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3. Moments

3.1. Failure of Expected Value and Variance. We now have two tools to classify a
probability distribution; expected value and variance. However, it turns out that these are
not enough to classify one completely. For example, consider the following distributions.

t 1 2 3 4 5 6
P(X = t) 0 1/4 1/2 0 0 1/4
P(Y = t) 1/4 0 0 1/2 1/4 0

Then, E(X) = E(Y ) = 3.5, and Var(X) = Var(Y ) = 2.25. Thus, given E(X) and Var(X),
we cannot completely classify X’s probability distribution.

3.2. Moments. This failure of expected value and variance may inspire us to define mo-
ments.

Definition 3.1. Let X be a random variable. The kth moment of X is

µk = E(Xk) =
∑

x∈imX

xkP(X = x),

provided that the sum converges.

It turns out that expected value and variance are encoded in moments.

Proposition 3.2. Let X be a random variable. Then,

E(X) = µ1,

and

Var(X) = µ2 − µ2
1.

Proof. We have µ1 = E(X1) = E(X), and Var(X) = E(X2)− E(X)2 = µ2 − µ2
1. �

4. Moment Generating Functions

4.1. Introduction. Now that we have discussed moments, we encode them into a single
object.

Definition 4.1. Let X be a random variable. We define the moment generating function
for X as

gX(t) = E(etX) = E

(
∞∑
k=0

Xktk

k!

)
=
∞∑
k=0

µkt
k

k!
.

The reason that we say we have encoded the moments is that we can in fact derive them
from the function, since

dn

dtn
gX(t)

∣∣∣∣
t=0

=
dn

dtn

∞∑
k=0

µkt
k

k!

∣∣∣∣∣
t=0

=
∞∑
k=n

k!

(n− k)!
· µkt

k−n

k!

∣∣∣∣∣
t=0

= µn.
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4.2. Examples.

Example. Suppose that imX = {1, 2, . . . , n}, and that X is distributed according to the
uniform distribution (i.e. P(X = j) = n−1 for all j ∈ imX). Let us compute the moment
generating function of X. We have

gX(t) = E(etX) =
n∑

j=1

1

n
ejt

=
1

n

n∑
i=1

ejt

=
1

n
· e

(n+1)t − et

et − 1
.

Using the second line, we can see that

µ1 = g′(0) =
1

n

n∑
j=1

j =
n+ 1

2
,

that

µ2 = g′′(0) =
1

n

n∑
j=1

j2 =
(n+ 1)(2n+ 1)

6
,

and that in general,

µk = g(k)(0) =
1

n

n∑
j=1

jk.

In particular, E(X) = µ1 = (n+ 1)/2, and Var(X) = µ2 − µ2
1 = (n2 − 1)/12.

Example. Suppose that imX = {1, 2, . . .}, 0 < p < 1, q = 1− p, and that

P(X = j) = qj−1p.

In this case, X represents the first heads in an unfair coin (where heads has probability p).
Then,

gX(t) =
∞∑
j=1

etjqj−1p = pet
∞∑
j=0

etjqj =
pet

1− qet
.

We also have that

µ1 = g′X(0) =
pet

(1− qet)2

∣∣∣∣
t=0

=
1

p

µ2 = g′′X(0) =
pet + pqe2t

(1− qet)3

∣∣∣∣
t=0

=
1 + q

p2
.

Thus, E(X) = µ1 = 1/p, and Var(X) = µ2 − µ2
1 = q/p2.
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4.3. Ordinary Generating Functions. We now turn to the case where imX = {0, 1, 2, . . . , n}.
In this case, we may define an ordinary generating function.

Definition 4.2. Suppose that imX = {0, 1, 2, . . . , n}. Then the ordinary generating func-
tion of X is

hX(z) =
n∑

j=0

zjP(X = j).

The function hX(z) is very closely related to gX(t), and they contain the same information.
More precisely:

hX(z) = gX(log z)

gX(t) = hX(et).

Thus, if we know gX(t), we can determine hX(z), and vice versa. It also turns out that
hX(z), and thus gX(t), can answer our question in this special case.

Theorem 4.3. Suppose that X and Y are random variables with imX = imY = {0, 1, 2, . . . , n}.
Then, hX(z) = hY (z) if and only if P(X = j) = P(Y = j) for all 0 ≤ j ≤ n.

Proof. Suppose that hX(z) = hY (z) for all z. Then,
n∑

j=0

zjP(X = j) = hX(z) = hY (z) =
n∑

j=0

zjP(Y = j)

for all j. Thus,
n∑

j=0

zj(P(X = j)− P(Y = j)) = 0.

This is a polynomial in z of degree n, so it can have at most n zeros, unless it is the 0
polynomial. It clearly has more than n roots, so P(X = j) − P(Y = j) must be 0 for all j.
Therefore, P(X = j) = P(Y = j). Now, suppose that P(X = j) = P(Y = j) for all j. Then,

hX(z) =
n∑

j=0

znP(X = j) =
n∑

j=0

znP(Y = j) = hY (z).

�

This proof does not give us a nice way to extract the probability distribution from hX(z).
However, it is possible to do this as well.

Proposition 4.4. Let X be a random variable with imX = {0, 1, 2, . . . , n}. Then,

P(X = j) =
1

j!

dj

dzj
hX(z)

∣∣∣∣
t=0

.

Proof. We have that

h
(j)
X (z) =

n∑
i=j

i!

(i− j)!
zi−jP(X = j) = j!P(X = j) +

n∑
i=j+1

i!

(i− j)!
zi−jP(X = j).

Thus,

h
(j)
X (0) = j!P(X = j),
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so
1

j!
h
(j)
X (0) = P(X = j).

�

4.4. Properties of Moment Generating Functions. Similar to how we have formulas
for E(X + a) and Var(X + a), there is also a formula for gX+a(t).

Proposition 4.5. Let X be a random variable. If a and b are constant, then,

gX+a(t) = etagX(t) and gbX(t) = gX(bt).

Proof. We have that

gX+a(t) = E(et(X+a)) = E(etXeta) = etaE(etX) = etagX(t),

and that
gbX = E(etbX) = E(e(tb)X) = gX(bt).

�

Corollary 4.6. Let X be a random variable, and let a and b be constants. Then,

gaX+b(t) = ebt/agX(at).

Proof. Notice that

gaX+b(t) = ga(X+b/a)(t) = gX+b/a(at) = ebt/agX(at).

�

We can also generalize to the case of the sum of random variables.

Proposition 4.7. Suppose that X and Y are independent random variables. Then,

gX+Y (t) = gX(t)gY (t).

Proof. Note that P(etX = etx) = P(X = x). Thus, if X and Y are independent, so are etX

and etY . Therefore,

gX+Y (t) = E(et(X+Y )) = E(etXetY ) = E(etX)E(etY ) = gX(t)gY (t).

�

In the case that imX = {0, 1, 2, . . . , n} and imY = {0, 1, 2, . . . ,m}, then imX + Y =
{0, 1, 2, . . . , n+m}. We also have that

hX+Y (z) = hX(z)hY (z).

Thus,

dj

dzj
hX+Y (z) =

j∑
i=0

(
j

i

)
h
(i)
X (z)h

(j−i)
Y (z),

so
h
(j)
X+Y (z)

j!
= j!

j∑
i=0

(
j

i

)
h
(i)
X (z)

j!

h
(j−i)
Y (z)

j!
= j!

j∑
i=0

(
j

i

)
h
(i)
X (z)

i!

h
(j−i)
Y (z)

(j − i)!
· i!(j − i)!

j!2
.

Evaluating at 0,

P(X + Y = j) =

j∑
i=0

P(X = i)P(Y = j − i),
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an expected formula.

4.5. Random Walks on Z. Let us consider a random walk on Z. We determine how
we move by flipping a coin that has a probability p of heads occurring, and a probability
q = 1− p of tails occurring. We define Xk, which is how we move, as

Xk =

{
+1 kth toss is heads

−1 kth toss is tails
.

We define

Sn = X1 +X2 + · · ·+Xn

to be our position at time n. We investigate when we first go to Z>0. Let

rn =


0 n ≡ 0 (mod 2)

p n = 1

q(r1rn−2 + r3rn−4 + · · ·+ rn−2r1) 1 6= n ≡ 1 (mod 2)

.

Further, let T be a random variable representing the first time we are positive. We claim
that P(T = j) = rj. This is clear in the first two cases, so we only check the last case. Our
method of proof will be induction, with base case n = 1, which is trivial. Now, we must hit
0 at least once after our initial starting position. Our first move must also be in the negative
direction. Suppose that we first hit 0 at time 2k. The probability of this happening, along
with first becoming positive at time n, is

qP(T = 2k − 1)P(T = n− 2k).

This is equal to qr2k−1rn−2k, by the induction hypothesis. Summing over all possible values
of 2k gives the desired result. Thus, the ordinary generating function of T is

hT (z) =
∞∑
n=0

rnz
n.

Now,

h2T (z) =
∞∑
n=0

∞∑
m=0

rnrmz
n+m.

The coefficient of za is
a∑

n=0

rnra−n.

Thus, the coefficient of za in qzh2T (z) is

a∑
n=0

qrnra−1−n.

Note that we can disregard all values of n that are even. Note also that if a is even (meaning
a − 1 is odd), we can also disregard all odd values of n. Thus, the coefficient of za is ra.
However, there is no z term in this. We may add pz to obtain

hT (z) = pz + qzh2T (z).
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Solving, we get that

hT (z) =
1±

√
1− 4pqz2

2qz
=

2pz

1∓
√

1− 4pqz2
.

We know that hT (0) exists, so we choose the one with a limit as z approaches 0. Then,

hT (z) =
1−

√
1− 4pqz2

2qz
=

2pz

1 +
√

1− 4pqz2
.

Now, the probability that we are ever positive is

∞∑
n=0

rn = hT (1) =
1−
√

1− 4pq

2q
.

We have that

1−
√

1− 4pq

2q
=

1−
√

1− 4p+ 4p2

2q

=
1− |p− q|

2q

=

{
p/q p < q

1 p ≥ q
.

Now, let us find the expected value of T . This is

E(T ) = h′T (1) =
d

dz

(
1

2qz
−
√

1

4q2z2
− p

q

)∣∣∣∣
z=1

=
−1

2qz2
− (−2)/(4q2z3)

2
√

1/(4q2z2)− p/q

∣∣∣∣∣
z=1

=
−1

2q
+

1

2q
√

1− 4pq

=
1− |p− q|
2q|p− q|

=


1/(p− q) p > q

∞ p = q

p/(q · (q − p)) p < q

.

4.6. Complete Classification. We now return to our problem of classifying a probability
distribution with the following theorem.

Theorem 4.8. Let X be a random variable with imX = {x1, x2, . . . , xn} with probability
distribution p. Then gX is uniquely determined by p, and vice versa.

Proof. It is clear that p uniquely determines gX , as

gX(z) =
n∑

j=1

etxjP(X = xj).



10 NEIL MAKUR

Now, suppose that imX = imY , and gX = gY . Then,

n∑
j=1

etxjP(X = xj) =
n∑

j=1

etyjP(Y = yj)

=
n∑

j=1

etxjP(Y = xj).

Thus,
n∑

j=1

etxj(P(X = xj)− P(Y = xj)) = 0.

Since etx1 , etx2 , . . . , etxn are linearly independent, P(X = xj)− P(Y = xj) = 0 for all j, so X
and Y have the same probability distribution. �

Once again, this proof is not illuminating as to how to extract the probability distribution,
so we show how to do this as well. Reordering if necessary, we may assume that x1 < x2 <
· · · < xn. Note that gX(t) is differentiable. We have that

g′X(t)

gX(t)
=
x1P(X = x1)e

tx1 + · · ·+ xnP(X = xn)etxn

P(X = x1)etx1 + · · ·+ P(X = xn)etxn
.

Now, we have that

lim
t→∞

g′X(t)

gX(t)
= lim

t→∞

x1P(X = x1)e
tx1 + · · ·+ xnP(X = xn)etxn

P(X = x1)etx1 + · · ·+ P(X = xn)etxn

= lim
t→∞

x1P(X = x1)e
t(x1−xn) + · · ·+ xnP(X = xn)

P(X = x1)et(x1−xn) + · · ·+ P(X = xn)

= xn,

where the last equality holds because xn > xj for all j < n. Thus, we have extracted xn from
gX(t). It is not hard to see that lim

t→∞
e−txngX(t) = P(X = xn), so we can extract this as well.

Now, we may subtract P(X = xn)etxn from gX(t) and repeat to obtain xn−1, xn−2, . . . , x1
and P(X = xn−1),P(X = xn−2), . . . ,P(X = x1). Note that we have shown that we actually
do not need to know imX beforehand, as it can be obtained from gX .

5. Applications

5.1. Markov’s Inequality. We turn now to applications of moment generating functions.
We first state and prove Markov’s Inequality.

Proposition 5.1 (Markov’s Inequality). Let X be a non-negative random variable. Then,
for every constant a > 0,

P(X ≥ a) ≤ E(X)

a
.
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Proof. Notice that

E(X) =
∑

x∈imX

xP(X = x) =
∑

x∈imX
x<a

xP(X = x) +
∑

x∈imX
x≥a

xP(X = x)

≥
∑

x∈imX
x≥a

xP(X = x) ≥
∑

x∈imX
x≥a

aP(X = x) = aP(X ≥ a).

Dividing by a gives the desired result. �

5.2. Chernoff Bounds. We can now use moment generating functions to obtain bounds
on P(X ≥ a) and P(X ≤ a).

Proposition 5.2. Let X be a random variable. Then,

P(X ≥ a) ≤ inf
t>0

gX(t)e−ta,

and
P(X ≤ a) ≤ inf

t<0
gX(t)e−ta.

Proof. Note that

P(X ≥ a) = P(etX ≥ eta) ≤ E(etX)

eta
= gX(t)e−ta,

in the case where t > 0. We also have that

P(X ≤ a) = P(etX ≥ eta) ≤ E(etX)

eta
= gX(t)e−ta,

where t < 0. We may take infimums in both cases. �

It is worth noting that this bound is always at least as good as the simple bound of 1,
as gX(t)e−ta|t=0 = 1, and moment generating functions are continuous. This is not true of
Markov’s Inequality. For example, let X represent the outcome of a die roll. Then,

P(X ≥ 1) ≤ E(X)

1
= 3.5,

which is useless
Moment Generating Functions can also be used to prove the Weak Law of Large Numbers

and the Central Limit Theorem, see [GS12, §10.3] for the latter.
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