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Abstract. In this paper, I would like to cover some important topics, theorems, etc.
relating to Brownian motion. We will begin by introducing the basic scientific idea behind
Brownian motion, then we’ll cover the mathematics of it–in particular, Markov processes,
Gaussian distribution, the Wiener process, the Lévy characterisation, and martingales. I
shall assume basic knowledge of Markov chains and the fundamentals of probability theory.

1. A brief look at the history and science of Brownian motion

In 1827, botanist Robert Brown observed the strange motion of the plant Clarkia pul-
chella’s pollen when placed in water. [Bro28] This fascinating phenomenon, named after
Brown, is essentially caused by the random movements of particles in liquid/gas. There
are plenty of other examples —coal dust and alcohol, diffusion of calcium through bones,
and diffusion of pollutants through the air, to name a few. Around 80 years after Brown
first observed this phenomenon, Albert Einstein wrote a paper 1 in which he stated that the
particles were being moved by individual water molecules. This was an extremely impor-
tant paper in science, because Einstein was able to prove the existence of atoms (a debated
question originating nearly a century earlier).

Einstein’s paper was then used by the physicist Jean Perrin, who proved Dalton’s atomic
theory2 using ideas from Einstein’s paper and Brownian motion. Brownian motion is occa-
sionally refered to as ”pedesis,” from Ancient Greek πηδησις, meaning ”leaping.” This refers
to the random movement of the particles. The connection between Brownian motion and
random walks should be obvious by now, but we will discuss more about this later in the
paper. Let’s now turn to the mathematics of Brownian motion.

2. Introducing the mathematics behind Brownian motion

We will begin with a bit of measure-theoretic probability, assuming knowledge of Markov
chains and some basic probability. First, let’s recall the definition of a σ-algebra, and some
related definitions (mostly taken from [Lei]):

Definition 2.1. A σ-algebra on some set S is a subset of the power set Σ ⊆ 2S, such that

(1) S ∈ Σ;
(2) if A ∈ Σ, then Ac ∈ Σ;
(3) if A1, A2, . . . ∈ Σ, then

⋃∞
i=1Ai ∈ Σ.

Date: November 22, 2020.
1Titled ”Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden

Flüssigkeiten suspendierten Teilchen.” For those interested in the translation, I’d loosely translate this as
”On Molecular Kinetic Heat Theory of the movement demanded of particles suspended in static liquids.”

2A very famous theory in chemistry, essentially stating what we now see as common facts: all matter is
composed of atoms, atoms aren’t divisible (Greek α (not) + τεµνω (I cut)=”atom”), etc.

1



2 MEHANA ELLIS

A measurable space consists of a pair (S,Σ), where Σ is a σ-algebra over S. If C is a collection
of subsets of S, then the σ-algebra generated by C, denoted σ(C), is the intersection of the
σ-algebras on S with C as a subcollection.

We can also review the definitions of measures/measure spaces and probability mea-
sure/space:

Definition 2.2. Let (S,Σ) be a measurable space. A map µ : Σ→ [0, 1] is called a measure
when µ({∅}) = 0 and is countably additive. So, we have

µ

(
∞⋃
j=1

Fj

)
=
∞∑
j=1

µ(Fj).

Additionally, we call the triple (Ω,Σ, µ) a measure space. If X is a function f : Ω → R,
we say that X is Σ-measurable if X−1(H) ⊆ Σ for all H ∈ σ(R). Finally, for a measure
space (S,Σ, µ), when µ(Σ) = 1, we say this map is a probability measure and the associated
measure space is called a probability space.

Note that going forward, we will be using the more common notation (Ω,F ,P) for measure
spaces, rather than (S,Σ, µ). Another common notation is i.o., which stands for ”infinitely
often,” often when dealing with set-theoretic limits. Let’s now recall some standard defini-
tions in measure-theoretic probability.

Definition 2.3. We say that the measure space (Ω,F ,P) is a probability triple, where Ω
denotes a sample space (and ω ∈ Ω is a sample point), F denotes a σ-algebra called a family
of events.

Finally, we have stochastic processes:

Definition 2.4. A stochastic process is a collection of random variables {Wt : t ∈ T } on a
probability space, where T is a set of times.

There are some more basic definitions, but we will cover those later. Now we can formally
define Brownian motion mathematically:

Definition 2.5. Brownian motion started at x ∈ R refers to a stochastic process such that
the following hold:

(1) W0 = x;
(2) For every 0 ≤ s ≤ t, Wt −Ws has normal distribution with mean zero and variance

t− s, and |Wt −Ws| is independent of {Wr : r ≤ s};
(3) With probability 1, the function t→ Wt is continuous.

If the Brownian motion begins at 0, we call it standard Brownian motion.

There is still more to explore concerning the definition of Brownian motion on the dyadic
rationals.
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3. Brownian motion on the dyadic rationals

Before we introduce the definitions, let’s briefly recall what a dyadic rational is.3 A dyadic
rational is analogous to a 2-adic rational.

In his paper, mathematician Peter Rudzis tells us that ”The first ingredient needed for the
mathematical description of Brownian motion is Gaussian distribution.” [Rud17] This is
indeed true; without the definition of Gaussian distribution (which from here on, we shall
refer to as normal distribution), it is impossible to understand Brownian motion.

Definition 3.1. A random variable X has normal distribution with mean µ and variance
σ2 if

P(X > x) =
1√

2πσ2

∫ ∞
x

e
−(u−µ)2

2σ2 du.

We often denote normal distribution as N(µ, σ2).

Remark 3.2. It is a good idea to understand the definitions thoroughly, but it’s also useful to
go by the simpler notation (e.g., the notation in the latter definition above) in following defi-
nitions. We will mostly use notations without discussing how the actual (often-complicated)
definition fits in; nevertheless, we should try to keep the original meanings in mind.

Definition 3.3. We denote the set of non-negative dyadic rationals as D =
⋃
nDn, where

Dn = { k
2n

: k = 0, 1, 2 . . .}. A standard, 1-dimensional Brownian motion on the dyadic
rationals {Wq : q ∈ D} is a random process such that for all n, the random variables
Wk/2n −W (k − 1)/2n, k ∈ N are independent and N(0, 1

2n
).

We will use the following proposition to prove that Brownian motion exists over the dyadic
rationals.

Proposition 3.4. Suppose X and Y are independent normal random variables, each N(0, 1).
Suppose we have that

Z =
X√

2
+

Y√
2

and similarly

Ẑ =
X√

2
− Y√

2
.

Then Z and Ẑ are independent N(0, 1) variables.

Lemma 3.5. Standard Brownian motion exists over the dyadic rationals.

Proof. We will prove this using recursive method. Using Definition 3.3., we can define the
following:

J(k, n) = 2n/2[Wk/2n −W(k−1)/2n ].

Let us assume there exist a countable number of independent normal random variables
{Zn : n ∈ N}. We will use a recursive method to define Wq. Now, for n = 0, we have
{J(k, 0) = Zk : k ∈ N}. Assume there exists n where {J(k, n) : k ∈ n} was defined using

3I assume the reader’s basic knowledge of the p-adic number system. You may want to see
https://www.overleaf.com/project/5d7ff7f3b33b1e0001f7bc02 for a quick introduction.
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{Zq : q ∈ D} and thus are independent N(0, 1) variables. This gives us our definition for
J(k, n+ 1):

J(2k − 1, n+ 1) =
J(k, n)√

2
+
Z(2k+1)/(2n+1

√
2

J(2k, n+ 1) =
J(k, n)√

2
−
Z(2k+1)/2n+1

√
2

.

Seeing those
√

2’s in the denominators should remind us of Proposition 3.4; using it repeat-
edly gives us {J(k, n + 1) : k ∈ N} (independent N(0, 1) variables), so we can now define
Wk/2n as follows:

Wk/2n = 2−n/2
k∑
j=1

J(j, n).

We then have

2n/2(Wk/2n −W(k−1)/2n) =
k∑
j=1

J(j, n)−
k−1∑
j=1

J(j, n) = J(k, n),

thus proving the existence of standard Brownian motion over the dyadic rationals. [Rud17]
�

Here is another lemma, this time about convergence of Brownian motion:

Lemma 3.6. If Wq, q ∈ D is a standard 1-dimensional Brownian motion, then it is almost
certain that this function converges uniformly on every closed interval [a, b].

The proof for this lemma is rather long; it utilizes dyadic rationals, the triangle inequality,
the Borel-Cantelli lemma (see Leiner’s paper) and involves bounding Brownian motion using
integrals. See Leiner’s paper for a complete proof. [Lei]

Theorem 3.7. Standard Brownian motion exists.

Proof. This is a rather silly statement, for which we can make a fairly straightforward proof.
Essentially, this follows from uniform continuity. Let us choose ε

2
that yields some δ where

|Wt − Ws| ≤ ε
2

for all s, t ∈ D. Now pick n0 ∈ N such that 1
2n0

< δ. Pick a ∈ D, and

n,m > n0 and kn0 = 0, 1, . . . , 2n0 such that 0 < a − kn0
2n

< 1
2n

. We can pick kn and km
similarly. We get

|kn − kn0 | <
1

2n0

|km − kn0 <
1

2n0
.

This gives us |Wkn −Wkm| < |Wkn −Wkn0
|+ |Wkm −Wkn0

< ε. We have a Cauchy sequence
Wkn , so there is a convergent subsequence with a unique limit. If we define {Wt, t ∈ R} to be
the limit, we get a unique extension of {Wq : q ∈ D} to {Wt : t ∈ R} that is continuous. �

One interesting thing about Brownian motion is that, although it is continuous, it is differ-
entiable nowhere. The reader may find Leiner’s section on non-differentiability interesting.
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4. Brownian motion as a Markov process

Even if one knows only the loosest definition of a Markov chain, one will see that Brownian
motion is a perfectly intuitive example of a random walk, which we will recall in the following
definition:

Definition 4.1. A random walk, loosely defined, is a stochastic/random process describing
a path consisting of random ”steps” on some space.

An intuitive observation about random walks is that they are basically Markov chains,
because the (n+ 1)th step does not depend on the nth step.

Remark 4.2. Note that many authors may refer to Markov chains as Markov processes, but
the two are essentially the same. Note that a Markov process might be a more general term
(i.e., with a continuous state space and continuous movements), but a Markov chain may
assume discreteness in state space or time steps.

Definition 4.3. Let W1, . . . ,Wd be independent Brownian motions started in x1, . . . , xd,
then the random process Wt given by Wt = (W1, . . . ,Wd) is called a d-dimensional Brownian
motion started in (x1, . . . , xd). If Wt starts at the origin, we call this a standard d-dimensional
Brownian motion.

Definition 4.4. A filtration on a probability space (Ω,F ,P) is a family F(t) : t ≥ 0) of
σ-algebras where F(S) ⊂ t ⊂ F . We call a probability space with a filtration a filtered
probability space. A random process {Xt : t ≥ 0} defined on (Ω,F ,P) is adapted if Xt is
F(t) measurable for all t ≥ 0.

Theorem 4.5 (Simple Markov Property for Brownian motion). Let {Wt : t ≥ 0} be a
Brownian motion started in x ∈ Rd. Then the process {Wt+s −Ws : t, s > 0} is a Brownian
motion started at the origin, and it is independent of {Wt : 0 ≤ t ≤ s}.

What this theorem is essentially saying is that we know just as much from the current
position as we do from the past positions in Brownian motion. An analogous explanation
is that we do not need to know the past positions, we focus entirely on the current one.
The latter is the main idea surrounding Markov chains. In addition to the simple Markov
property, we also have the strong Markov property. First, let’s define the notation F+:

Definition 4.6. The germ σ-algebra is defined as F+(0), where

F+(t) =
⋂
s>t

F0(s)

and {F0 : t ≥ 0} is the σ-algebra generated by {Wt : 0 ≤ s ≤ t}.

Theorem 4.7 (Strong Markov Property for Brownian motion). For each finite4 stopping
time T , we have that the process {WT+t − WT : t ≥ 0} is a standard Brownian motion
independent of F+T .

Proof. See Leiner’s paper for the complete proof. [Lei] �

4Almost always, but not absolutely guaranteed to be finite.
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5. The Wiener process, another definition of Brownian Motion

Now let’s introduce another mathematical model for Brownian motion, called the Wiener
process. We will be using the notations a and S, both coming from the following definition:

Definition 5.1. IfX is a normal random variable in Rn, we call the notion of one-dimensional
variance covariance, denoted with the matrix Cov(X) = E[XXT ]. We denote a = E[X].

Definition 5.2. Let X = {Xt}t≥0 is some real valued stochastic process. Then we say X is
a Wiener process in R if the following are satisfied:

(1) X0 = 0, or more generally, X0 = x (meaning that X starts from x).

(2) If 0 ≤ t0 < · · · < tm, then for 1 ≤ j ≤ m the increments Xtj −Xtj−1
are independent.

(3) If 0 ≤ s < t, then Xt −Xs ∈ Nn(a, S), where a = E[X] and S = Cov(X).

(4) The paths of X are almost certainly continuous.

Remark 5.3. Note that this is basically the same as the definition of Brownian motion. The
conditions are the same, albeit there being a bit more nuance in the definition of the Wiener
process.

6. Introduction to Martingales

Generally speaking, a martingale is a sequence of random variables such that, for a given
time, the expected value of the next step in the sequence is equal to that of the current step
(regardless of the previous steps). This is also a great example of a Markov chain–a sequence
in which the nth step is not determined by the n− kth step. Additionally, we call a process
in which we cannot see into the future an adapted process. Let’s now see the more technical
definition:

Definition 6.1. An adapted process M = {Mt, t ≥ 0} is called a martingale with respect
to Ft, where {Ft, t ≥ 0} denotes a filtration, if the following apply.

(1) For all t ≥ 0, we have E(|Mt|) <∞.

(2) For each s ≤ t, we have E(Mt|Fs) = Ms.

A few things to note about about the second condition–first, we can write it as E(Mt −
Ms|Fs) = 0. Second, we call Mt a supermartingale/submartingale if the second condition
is instead E(Mt|Fs) ≤ Ms or E(Mt|Fs) ≥ Ms. We have that for any integrable random
variable X, {E(X|Ft), t ≥ 0} is a martingale. [Nua16]

Martingales give us an interesting theorem concerning stopping times:

Theorem 6.2. Suppose Mt is a continuous martingale. Let S ≤ T ≤ K be two bounded
stopping times. Then we have

E(MT |FS) = MS.

Furthermore, we simply have that

E(MT ) = E(MS).
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Proof. Let’s show that E(MT ) = E(M0). Suppose T is some value in the set 0 ≤ t1 ≤ . . . ≤
tn ≤ K. By the martingale property, we have

E(MT ) =
n∑
i=1

E(MT1{T=ti})

=
n∑
i=1

E(Mti1{T=ti})

=
n∑
i=1

E(Mtn1{T=ti})

= E(Mtn)

= E(M0).

We can approximate T as follows:

τn =
2n∑
k=1

kK

2n
1 (k−1)K

2n
≤T< kK

2n
.

We have that Mτn →MT by continuity. We must now show that MτN is integrable:

E(|MτN |1|Mτn |≥A) =
2n∑
k=1

E(|M kK
2n
|1{|M kK

2n
|≥A,τn= kK

2n
})

≤
2n∑
k=1

E(|MK |1{|M kK
2n
|≥A,τn= kK

2n
})

= E(|MK |1{|Mτn |≥A})

≤ E(|MK |1{sup0≤s≤K |MS |≥A}).

This converges to 0 as A→∞, uniformly in n. This completes the proof. [Nua16] �

Here’s another interesting theorem, which we will also give a proof of:

Theorem 6.3. Let {Mt, t ∈ [0, t]} be a continuous martingale, where E(|MT |p) < ∞ for
some p ≥ 1. Then, for all λ > 0, the following holds:

P

(
sup

0≤t≤T
|Mt| > λ

)
≤ 1

λp
E(|MT |p).

If p is strictly greater than 1, then we have

E

(
sup

0≤t≤T
|Mt|p

)
≤
(

p

p− 1

)p
E(|MT |p).

Proof. First we look at

P

(
sup

0≤t≤T
|Mt| > λ

)
≤ 1

λp
E(|MT |p).

If we let
τ = inf{s ≥ 0 : |MS| ≥ λ} ∧ T.

Notice that τ is a bounded stopping time, and |Mt|p is a martingale, so we have

E(|Mτ |p) ≤ E(|MT |p.
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Next, we consider

E

(
sup

0≤t≤T
|Mt|p

)
≤
(

p

p− 1

)p
E(|MT |p),

for p > 1. We have

|Mτ |p ≥ 1{sup0≤t≤T |Mt|≥λ}λ
p + 1{sup0≤t≤T |Mt|<λ}|MT |p

by definition of τ . This implies that

P

(
sup

0≤t≤T
|Mt| > λ

)
≤ 1

λp
E(|Mτ |p) ≤

1

λp
E(|MT |p.

�

7. Martingales and Brownian motion

Here are some applications of martingales to Brownian motion, in a series of short propo-
sitions with quick proofs.

Proposition 7.1. Let Bt be a Brownian motion. Consider a ∈ R and the hitting time

τa = inf{t ≥ 0 : Bt = a}.
If a < 0 < b, then we have

P (τa < τb) =
b

b− a
.

Proof. A stopping theorem for martingales states that the expected value of a martingale at
a stopping time is equal to its initial expected value. By this theorem, we have

E(Bt∧τa) = E(B0) = 0.

If we let t→∞, we have

aP (τa < τb) + b(1− P (τa < τb)) = 0.

�

Proposition 7.2. Let T = inf{t ≥ 0 : Bt /∈ (a, b)}, where a < 0 < b. Then we have

E(T ) = −ab.

Proof. We can use the fact that B2
t − t is a martingale to see that

E(B2
T∧t) = E(T ∧ t).

Furthermore, we have
E(T ) = lim

t→∞
E(B2

T∧t) = E(B2
T ) = −ab.

�

Here is one more interesting proposition:

Proposition 7.3. Let a > 0. Then the hitting time

τa = inf{t ≥ 0 : Bt = a}
satisfies (assuming α > 0)

E[exp(−ατa)] = e−
√
2αa.

Now, we will finally define the strong Markov property in terms of martingales:
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Theorem 7.4. Let B be a Brownian motion and let T be a finite stopping time where the
filtration FBt is generated by B. Then the process

{BT+t −BT , t ≥ 0}
is a Brownian motion independent of BT .

Proof. Consider the process B̃t = BT+t − BT , and suppose T is bounded. Let λ ∈ R and
0 ≤ s ≤ t. We have

E[eiλBT+t+
λ2

2
(T+t)|FT+s] = eiλBT+s+

λ2

2
(T+s)

by the optional stopping theorem for the martingale

exp

(
iλB̃t +

λ2t

2

)
.

Therefore, we have

E[eiλ(BT+t−BT+s|FT+s] = e−
λ2

2
(t−s).

[Nua16] �
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