
MARKOV CHAINS WEEK 10: COVER TIMES

LORENZO WOLCZKO

1. Cover Times

Definition 1.1. The cover time of a Markov Chain X1, X2, . . . over a state space Ω is

C ≡ max
j

τj(1)

We use the ≡ sign to emphasize that C is random. This will also be referred to as τcov or
just cov or cover. Also, C(z) denotes the cover time starting at z.

This is essentially the time it takes to cover every state in a Markov chain. Obviously this
is undefined if the Markov chain has multiple absorbing states. We also have:

Definition 1.2. The “cover-and-return” time of a Markov Chain X1, X2, . . . over a state
space Ω is

C+ ≡ min{t ≥ C : Xt = X0}
This is essentially the time to hit every element of Ω and return to the initial state.

We now turn to an application of cover times on random walks.

2. Random Walks on Unweighted Graphs

Definition 2.1. A random walk on a graph is the Markov chain with the following structure.
We start at a vertex, and for each step we travel along one of the edges connected to the
current vertex. If the probabilities of going along any two of these edges are equal for any
vertex, then the random walk is said to be unweighted. Otherwise, the random walk is
weighted.

Example. If the graph K∗
n is the complete graph with n vertices (and also self loops at each

node to make it aperiodic), then its cover time for an unweighted random walk is θ(n log n).
This is equivalent to the coupon collector problem which we covered in class.

Example. Where Ln is a line of n vertices, its cover time is θ(n2). To prove this, let us call
the vertices 1 through n. If hxy is the hitting time of y from x, we have h12 = 1 and

hi,i+1 =
1

2
+

1

2
(1 + hi−1,i+1) = 1 +

1

2
(hi−1,i+1)

hi,i+1 = 1 +
1

2
(hi−1,i + hi,i+1).

This gives us a recurrence
hi,i+1 = 2 + hi−1,i

which yields
hi,i+1 = 2i − 1.
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This means that

h1,n =
n−1∑

i=1

hi,i+1 =
n−1∑

i=1

(2i − 1)

= 2
n−1∑

i=1

i −
n−1∑

i=1

1

= 2
n(n − 1)

2
− (n − 1)

= (n − 1)2

This brings us to our first theorem, after we define a few more things.

Definition 2.2. A spanning tree of a graph is a version of the graph with as many edges
removed as possible so that it is still connected.

Definition 2.3. A depth-first search is a method of searching a graph in which each branch
is followed to the end before backtracking.

Lemma 2.4. If two vertices x and y are connected by an edge, we have

hxy + hyx ≤ 2m

where m is the number of edges on the graph. The sum hxy + hyx is also called a commute
time.

We will prove this Lemma later on.

Theorem 2.5. Let G be a connected graph with n vertices and m edges. The expected time
for a random walk to cover all vertices of G is bounded above by 4m(n − 1)

Proof. Consider a depth-first search of G starting on some vertex z, and let T be the spanning
tree of that search. This covers every vertex. Now, consider the time to cover every vertex
in the order of the depth-first search. Clearly this bounds the cover time of G starting from
z. Also note that each edge is traversed exactly twice, once in each direction. This gives us

C(z) ≤
∑

(x,y)∈T,(y,x)∈T

hxy

where h denotes hitting time. By Lemma 2.4, this is less than or equal to

2m ∙ 2 ∙ (n − 1)

since there are n − 1 edges in the spanning tree. This holds for all vertices z. �

3. Electrical Networks

We can use Markov chains to model certain electrical networks, but first we need to lay
out some ground work.

Definition 3.1. Each edge has a value for conductivity, which determines the probability of
crossing that edge in a random walk. For an edge (x, y) this is denoted as cxy. For a vertex
x, its conductivity is ∑

y

cxy.
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We also have
pxy =

cxy

cx

.

Note that the stationary distribution in this situation is defined as

πx =
cx

c0

where c0 =
∑

x cx. Additionally,

Definition 3.2. The resistance of an edge (x, y) is defined as

rxy =
1

cxy

Definition 3.3. The effective resistance of a graph G is

reff(G) = max
x,y

(rxy)

This brings us to our next theorem

Theorem 3.4. Let G be an undirected graph with m edges. Then

mreff(G) ≤ C(G) ≤ 2e3mreff log n + n

Before we prove this, we need another useful theorem.

Theorem 3.5. Given an undirected graph, consider the electrical network where each edge
is replaced with a 1-ohm resistor. Given vertices x and y, the commute time commute(x, y),
equals 2mrxy, where reff(x, y) is the effective resistance from x to y and m is the number of
edges in the graph.

However, before proving this, we need to learn about voltage and current. Voltage (v)
is a property of every vertex in an electrical network. Normally we fix the voltages of two
vertices and calculate the rest using equations which will be shown shortly. Also, current ( i)
is a property of any path connecting two vertices. We have the two following equations to
help us determine the meaning of both:

ixy =
vx − vy

rxy

= (vx − vy)cxy

(Ohm’s law) and ∑

y

ixy = 0.

(Kirchhoff’s Law). Therefore, ∑

y

cxy(vx − vy) = 0

∑

y

cxy(vx) =
∑

y

cxy(vy)

cxvx =
∑

y

cxy(vy)

vx =
∑

y

cxy(vy)
1

cx
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vx =
∑

y

pxy(vy).

Thus, the voltage of a vertex is a weighted average of of the voltages of the adjacent vertices.
This leads to the following result

Theorem 3.6. If the voltage of vertex a is 1 and the voltage of vertex b is 0, then the voltage
of a vertex x, vx, is the probability that a random walk starting on x reaches a before b.

Proof. Let us consider px, the probability that a random walk starting on x will reach a
before b. It is obvious that pa = 1 and pb = 0. Furthermore, the probability of the random
walk from x reaching a before b is equal to the sum over all y adjacent to x of pxypy, because
this is equivalent to starting on x, going to an adjacent y, and doing the random walk from
there. Since px and vx have equivalent definitions, they must be equal. �

And finally,

Definition 3.7. The effective resistance from x to y reff is equal to

vx − vy

ixy

.

We are finally ready to prove theorem 3.5.

Proof. of theorem 3.5 Insert on each vertex i a current of di (the degree of i.) This means
the total current is 2m. Extract all of the current from a single vertex j. Now, let vij be
the voltage difference from a vertex i to j. Now let k be a vertex adjacent to i. The current
through the resistor between i and k is vij − vjk, because the resistor has resistance 1. Thus,
we must have

di =
∑

k adj to i

(vij − vjk) = divij −
∑

k adj to i

vkj .

Solving for vij ,

vij = 1 +
∑

k adj to i

1

di

vkj =
∑

k adj to i

1

di

(1 + vjk).

Not that the hitting time hij can be expressed as
∑

k adj to i

1

di

(1 + hkj)

so we can subtract these to get

vij − hij =
∑

k adj to i

1

di

(vjk − hjk)

thus vij − hij is harmonic. Let us set j as our boundary vertex, meaning we define

vjj − hjj = 0

(because this is obviously true). This means that vij − hij is zero everywhere, meaning the
voltage is equal to the hitting time. Now imagine that the current is extracted from i. This
means that, following the same line of reasoning, vji = hji. Now reverse the current, and we
get −vji = hji. Since −vji = vij , we have vij = hji.
Thus, when we apply a current of di at each i, we have vij = hij . When we reverse the
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currents and extract the current from i, we have vij = hji. Now, superpose these situations.
All current cancels except for 2m amps that flow from i to j. Thus,

2mrij = vij = hij + hji.

This also proves lemma 2.4. �

Proof. of Theorem 3.4 By definition reff(G) = maxx,y rxy. Let u and v be the vertices for
which rxy is maximal. Then, reff(G) = ruv. By theorem 3.5, we have commute(u, v) = 2mruv,
so mruv = 1

2
commute(u, v). The commute time from u to v and back to u is clearly less than

twice max(huv, hvu), which is clearly less than cover(G). Putting this together, we have the
first half of the inequality

mreff(G) ≤ cover(G).

Now for the second half of the inequality. By theorem 3.5, we know that for any x, y,commute(x, y) =
2mrxy, which is less than or equal to 2mreff(G), meaning hxy ≤ 2mreff(G). By Markov’s in-
equality, since the expected time to reach y starting at any x is less than 2mreff(G) the
probability that y is not reached from x in less than 2mreff(G)e3 steps is at most 1

e3 . Thus,
the probability that a vertex y has not been reached in 2e3mreff(G) log n steps is at most
1
e3

log n
= 1

n3 because a random walk of length 2e3mreff(G) log n steps is a sequence of log n
independent random walks of length 2e3mreff(G). Suppose after a walk of length 2e3mreff(G)
vertices v1, v2, . . . , vl had not been reached. Walk until v1 has been reached, then v2 and so
on. Each of these has expected time at most n3 but each only happens with probability 1

n3 ,
so essentially we add O(1) for each vi, a total at most n. So we have

cover(G) ≤ 2e3mreff(G) log n +
∑

v

1

n3
n3 ≤ 2e3mreff(G) log n + n.

I did not go into the reason why it is n3 but it’s fairly simple to show that this is greater
than or equal to than the number in theorem 3.5. �
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