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Abstract

While an intuitive understanding of probability theory typically suffices, it fails to model many im-
portant scenarios. For example, what is the chance a dart thrown at the unit interval will land on a
rational number? The traditional notion of a probability density function breaks down here. Mathemati-
cians developed measure theory to resolve cases like this by giving a more rigorous notion of density. In
this paper, we lay out the foundations of measure theory, discussing rings, algebras, and the Lebesgue
measure, in order to solve the dart problem with our newfound understanding.

1 Why Measure Theory?

The traditional way to introduce probability theory in an undergraduate class, besides the straightforward
finite case, revolves around the idea of a probability density function (PDF). For many cases, PDFs suffice.
They let us calculate the chance that a plant will grow to have a height greater than than one standard
deviation above the mean, or the chance that a radioactive particle will have decayed after a thousand years.
But consider the problem of throwing a dart at an interval:

Question 1.1. What is the chance a dart thrown randomly in [0, 1] lands on a rational number?

Normally to resolve such a probability question boils down to integrating the probability density function,
but what PDF can we use? The indicator function 1Q on the rationals, which maps x 7→ 1 if x ∈ Q and
x 7→ 0 otherwise, captures what we mean, but how to integrate it? In other words, how can we find the size
of the rational numbers compared to the real interval [0, 1]?

Perhaps the rationals occupy essentially the entire interval, because they are dense in the reals. Maybe
they actually take up no space. Maybe the rationals account for precisely π2−10 percent of the unit interval.
Without a rigorous sense of what length is, we cannot say. We need measure theory to answer these questions.

As we develop measure theory from the ground up, we take a more abstract approach than directly
necessary to answer the question about the dart. We detour into sets and algebras in order to appreciate
the generality measure theory can offer. Our goal is the so-called Lebesgue measure, which once defined will
allow us to declare with certainty the size of many subsets of R. By then, we’ll be able to measure the size
of Q within the unit interval [0, 1] to answer how often the dart will land on a rational number.

2 Rings and Algebras

Measure theory is all about measures, which are functions from the power set of a set M to R. To solve the
dart problem, we eventually define the so-called Lebesgue measure on Rn, but at first we consider measures
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in the more abstract setting of pure set theory. That is, we seek to define a sensible concept of measure for
all sets, not just R and its variants.

The path to doing so begins with two structures called rings and algebras, which despite the strong
connotation have nothing to do with ring theory in modern algebra. In this section, we develop the notion
of a ring and of an algebra as it relates to measures.

2.1 Preliminary Measures

To begin, let M be an arbitrary, non-empty set and S be a family of subsets of M . A measure, typically
written µ, is a function that maps members of S to nonnegative real numbers. The measure is the new
notion of size that motivates measure theory. One useful property a measure µ can have is to be additive.

Definition 2.1. A functional µ : S → R+ is called a σ-additive measure if

µ(A) =

N∑
k=1

µ(Ak)

for any set A ∈ S that is a disjoint union of a countable sequence {Ak}Nk=1, where N is either finite or
N =∞. If the property holds but not for N =∞, then we say µ is a finitely additive measure.

In words, a measure is finitely additive when the expected occurs: taking two disjoint parts of the
container set and combining them yields a measure equal to the sum of the measures of the two parts. A
measure is σ-additive when we can do the same for countably large disjoint unions. Sometimes a measure is
not quite σ-additive, but it still has a useful, less strict property.

Definition 2.2. A functional µ : S → R+ is called a σ-subadditive measure if

µ(A) ≤
N∑
k=1

µ(Ak)

whenever A ⊂
⋃N
k=1Ak, where A ∈ S and all Ak ∈ S and N is finite or infinite.

Example 2.3. Consider the family of bounded intervals in R. If we define a functional l to be the length
b − a of any such interval [a, b], then l is a σ-additive measure. The proof requires topological tools we do
not develop here, so we just outline it.

Proof Sketch. Consider a disjoint union I =
⊔∞
k=1 Ik, where each Ik is a bounded interval. We show that

l(I) ≥
∞∑
k=1

l(Ik) and l(I) ≤
∞∑
k=1

l(Ik).

For the first inequality, note that for any n ∈ N, we have I ⊃
⊔n
k=1 Ik. By finite additivity, we therefore get

l(I) ≥
n∑
k=1

l(Ik).

Letting n tend to∞ yields the first inequality. To show the second inequality, which is equivalent to showing
that l is σ-subadditive, is the tricky part. Without getting too far into the details, we construct an open
cover of I using open intervals {Jk}∞k=1. Fix ε > 0. For each k ∈ N, we define Jk ⊃ Ik, where

l(Jk) < l(Ik) +
ε

2k
.
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We can do this assuming that each Ik has a finite length, which is sensible, because otherwise clearly

l(I) =∞ =

∞∑
k=1

l(Ik).

The Heine-Borel theorem from topology guarantees that we can find a finite subset of {Jk}∞k=1 that still
covers I. Renumber the Ik so that the first N of them correspond to the N open intervals Jk given by the
Heine-Borel theorem. Pick some closed interval [a, b] ⊂ I such that b − a > l(I) − ε. (If l(I) = ∞, choose
any large length interval [a, b].) Now the finite subadditivity of l gives us

b− a ≤
N∑
k=1

l(Jk)

≤
N∑
k=1

l(Ik) +
ε

2k

=

N∑
k=1

l(Ik) +

N∑
k=1

ε

2k

≤
∞∑
k=1

l(Ik) +

∞∑
k=1

ε

2k

= ε+

∞∑
k=1

l(Ik).

Because l(I)− ε ≤ b− a, the transitive property gives

l(I)− ε ≤ ε+

∞∑
k=1

l(Ik).

As ε tends to 0, we get l(I) ≤
∑∞
k=1 l(Ik), completing the proof sketch.

2.2 Semi-rings and Rings

Currently, our notion of measure is based quite generally on an arbitrary family S of subsets of some nonempty
set M . It is now the time to narrow our focus. We introduce two structures on sets called semi-rings and
rings, to which we will limit our family of subsets S. Contrary to what one might expect from the names,
these structures have little or no relation to the rings and semi-rings of abstract algebra. Our goal will then
become to extend an arbitrary σ-additive measure on a semi-ring to an equivalent one on a ring.

Definition 2.4. A family S of subsets of a nonempty set M is called a semi-ring if

1. S contains ∅.

2. For A,B ∈ S, the intersection A ∩B is in S.

3. For A,B ∈ S, the difference A \B is a disjoint union of a finite subset of S.

For example, if M = R, then the family of subsets S corresponding to all intervals is a semi-ring. The
intersection of two intervals is an interval, even if one or both are half-open. In addition, the difference of
two intervals is either one new interval or the union of two intervals now separated by a gap. Therefore S is
a semi-ring. For another example, if M is arbitrary and nonempty, then its power set forms a semi-ring. In
fact, the power set of M is more than just a semi-ring.
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Definition 2.5. A family of subsets S of M is called a ring if

1. S contains ∅.

2. For A,B ∈ S, the union A ∪B is in S.

3. For A,B ∈ S, the difference A \B is in S.

Unlike in a semi-ring, the difference of two sets in a ring S must be in S. Additionally, the union of two
sets in S must be in S. Although the intersection of A,B ∈ S is not explicitly stated to be in S, the fact
follows from writing

A ∩B = A \ (A \B).

Thus, every ring is a semi-ring. Returning to our example from earlier, the power set of an arbitrary
nonempty set M is a ring. Just as we extended additivity of measures to a more general σ-additivity, we
can extend the notion of a ring to include closure under countable unions of members of S.

Definition 2.6. A ring S is called a σ-ring if the union of any countable family {Ak}∞k=1 is in S.

Not only is the power set P(M) ofM a ring, it is in fact a σ-ring. Indeed, every subset ofM is contained
in P(M), so any arbitrary union must fall within P(M), too. It follows as well that countable intersections
are closed in a σ-ring. For any A =

⋂
k Ak for Ak ∈ S, choose B = A1. Then B ⊃ A, so

A = B \ (B \A) = B \

(
B \

⋂
k

Ak

)
= B \

(⋃
k

(B \Ak)

)
∈ S.

Soon we will see how to extend a σ-additive measure µ from a ring to a σ-ring, but first we must show
how to extend µ from a semi-ring to a ring. The idea of a minimal ring will be crucial.

Definition 2.7. For a nonempty set M and a family of subsets S, the minimal ring containing S is the
intersection of all rings containing S. Similarly, the minimal σ-ring containing S is the intersection of all
σ-rings containing S.

Why must such an intersection even yield a ring? For any family {Sα} of rings (or σ-rings), call the
intersection S =

⋂
α Sα. Clearly ∅ ∈ S because ∅ ∈ Sα for each ring Sα. Suppose A,B ∈ S. Then A∪B ∈ Sα

for each α because A,B ∈ Sα. Similarly, we see that A \B ∈ Sα for each α because A,B ∈ Sα. Given that
A∪B and A \B are in Sα for each α, they are in the intersection, too. Furthermore, there is always at least
one ring that contains S, namely the power set P(M). Thus, the minimal ring containing S always exists.

For an example, suppose S is the semi-ring of all intervals on R. Then the minimal ring R(S) consists of
all finite disjoint unions of intervals on R. The concept of length extends to all these finite unions, because
for any disjoint union of intervals I composed of {Ik}nk=1, we have

l(I) =

n∑
k=1

l(Ik).

We can use the sum above to extend l on S to a new measure on R(S). In fact, this extension is not limited
to intervals on R. Using the minimal ring, we can extend an arbitrary σ-additive measure uniquely from a
semi-ring to a ring. The following theorem makes the result explicit.

Theorem 2.8. Let S be a semi-ring.

a) The minimal ring R(S) consists of all finite disjoint unions of sets from S.

b) If µ is a finitely additive measure on S, then µ extends uniquely to a finitely additive measure on R(S).
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c) If µ is σ-additive, then its extension to R(S) is also σ-additive.

Proof. a) Let S′ be the family of sets consisting of all finite disjoint unions of sets of S, meaning

S′ =

{
n⊔
k=1

Ak : Ak ∈ S, n ∈ N

}
.

Our goal is to show S′ = R(S). It suffices to show that S′ is a ring. If that were so, then because S′

contains S, it would also contain R(S). In addition, because R(S) is a ring, we already know that it will
contain all finite disjoint unions of elements of S. The preceding containments prove that S′ = R(S)

if S′ is a ring. We break down the proof into four steps.

Step 1. If A,B ∈ S′ and A,B are disjoint, then AtB ∈ S′. We know so because we can write A =
⊔n
k=1Ak

and B =
⊔m
j=1Bj for mutually disjoint Ak, Bj ∈ S, and then we can write A t B as a disjoint

union of all the Ak with the all Bj .

Step 2. If A,B ∈ S′, then A ∩B ∈ S′. This follows from writing

A ∩B =
⊔
k,j

Ak ∩Bj .

Because S′ is a semi-ring, it is closed under intersection. Thus, the finite disjoint union of the
intersections is also in S′.

Step 3. If A,B ∈ S′, then A \ B ∈ S′. We reduce the claim to simpler components in order to prove it.
First, write

A \B =
⊔
k

Ak \B

so that, by Step 1, we need only prove that Ak \B ∈ S′. Then write

Ak \B = Ak \
⊔
j

Bj =
⋂
j

Ak \Bj .

so that, by Step 2, we need only prove that Ak \Bj ∈ S′. Because Ak and Bj are in S, which is a
semi-ring, by definition Ak \ Bj is a disjoint union of a finite family of sets from S, proving that
A \B ∈ S′.

Step 4. If A,B ∈ S′, then A ∪B ∈ S′. We get the result by decomposing

A ∪B = (A \B) t (B \A) t (A ∩B),

each part of which is in S′ by Steps 2 and 3, and the disjoint union of which is in S′ by Step 1.

By Steps 3 and 4, we conclude that S′ is a ring, which completes the proof.

b) Now let µ be a finitely additive measure on S. We seek the extend the measure uniquely to the minimal
ring R(S). Indeed, for A ∈ R(S), we know that A =

⊔n
k=1Ak for some Ak ∈ S. Define

µ(A) =

n∑
k=1

µ(Ak).

Let us prove that µ as defined is finitely additive. Before anything, we show that µ does not depend
on a choice of how to split A =

⊔n
k=1Ak. Suppose we have another splitting A =

⊔m
j=1Bj . Then

Ak =
⊔
j

Ak ∩Bj ,
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and because Ak ∩Bj ∈ S and µ is finitely additive on S, we get

µ(Ak) =
∑
j

µ(Ak ∩Bj).

Summing over k, we obtain ∑
k

µ(Ak) =
∑
k

∑
j

µ(Ak ∩Bj).

Similarly, ∑
j

µ(Bj) =
∑
j

∑
k

µ(Bj ∩Ak).

But then clearly
∑
k µ(Ak) =

∑
j µ(Bj), so the way we split A does not matter.

Now we prove the finite additivity of µ over R(S). Let A and B be two disjoint sets from R(S). Assume
that A =

⊔n
k=1Ak and B =

⊔m
j=1Bj , where Ak, Bj ∈ S. By choosing another way to split A t B, we

get

µ(A tB) = µ

( n⊔
k=1

Ak

)
t

 m⊔
j=1

Bj

 =
∑
k

µ(Ak) +
∑
j

µ(Bk) = µ(A) + µ(B).

For any finite family of disjoint sets C1, . . . , Cn ∈ R(S), we can use induction in n along with the
property that unions of sets in R(S) are in R(S) to show that

µ

(⊔
k

Ck

)
=
∑
k

µ(Ck).

c) Suppose that A =
⊔∞
j=1Bj , where A,Bj ∈ R(S). We need to prove that

µ(A) =

∞∑
j=1

µ(Bj).

We define finite counterparts. Write A =
⊔
k Ak and Bl =

⊔
mBjm, where the sums in k and m are

finite and where Ak and Bjm are in S. Define

Ckjm = Ak ∩Bjm,

whereupon Ckjm ∈ S. Then we have

Ak = Ak ∩A = Ak ∩
⊔
j,m

Bjm =
⊔
j,m

(Ak ∩Blm) =
⊔
lm

Ckjm,

Bjm = Bjm ∩A = Bjm ∩
⊔
k

Ak =
⊔
k

(Ak ∩Blm) =
⊔
k

Ckjm.

By the σ-additivity of µ on S, we get

µ(Ak) =
∑
l,m

µ(Ckjm),

µ(Bjm) =
∑
k

µ(Ckjm).

It follows that ∑
k

µ(Ak) =
∑
k,l,m

µ(Ckjm) =
∑
j,m

µ(Bjm).
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On the other hand, by the definition of µ on R(S), we have

µ(A) =
∑
k

µ(Ak),

µ(Bl) =
∑
m

µ(Bjm).

Then, summing over j, ∑
j

µ(Bj) =
∑
j,m

µ(Bjm).

Combining the above results, we complete the proof with

µ(A) =
∑
k

µ(Ak) =
∑
j,m

µ(Bjm) =
∑
j

µ(Bj).

2.3 Algebras

Having extended a σ-additive measure from a semi-ring to a ring, our principal goal now is to extend a
σ-additive measure from a ring to a σ-ring. After all, a σ-ring would be a natural domain for a σ-additive
measure. The majority of the work occurs in the next sections, although we begin here by defining the
notion of an algebra.

So far we have seen only a few examples of σ-rings: S = {∅} and S = P(M). We can obtain implicit
σ-rings with an analogy of the minimal ring.

Definition 2.9. For any family S of subsets of M , denote by Σ(S) the intersection of all σ-rings containing
S.

Because P(M) is always a σ-ring containing S, and because the intersection of any number of σ-rings
remains a σ-ring, the set Σ(S) is in fact a σ-ring. We call Σ(S) the minimal σ-ring containing S.

Most rings we have seen are not σ-rings. For example, the ring of finite disjoint unions of intervals is
not a σ-ring, because it does not contain the countable union

∞⋃
k=1

(k, k + 1/2).

In general, an explicit description of the minimal σ-ring is difficult to produce. Counterexamples such as the
Cantor set invalidate the most natural guesses, for example that Σ(S) would consist of countable disjoint
unions of sets from S. The actual construction requires the notion of transfinite induction, whereby we
perform an inductive step uncountably many times. We do not digress into the details of that procedure
here. We would be right to imagine that extending a measure on a ring to a measure on a σ-ring is quite
complicated. We succeed in this task in the coming sections, after one final definition here to distinguish an
important kind of ring.

Definition 2.10. If a ring contains the entire set M as an element, then we refer to it as an algebra.
Similarly, if a σ-ring contains the entire set M , we call it a σ-algebra.

3 Measures

In this section, we will develop the notion of a measure further. Going forward, let R be an algebra and let
M be a random nonempty set.
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3.1 Outer Measure

Assuming that R is an algebra and µ is a σ-additive measure on R, for any subset A ⊂ M , we can now
define its outer measure.

Definition 3.1. The outer measure of A is defined as:

µ∗(A) = inf

{ ∞∑
k=1

µ(Ak) : Ak ∈ R and A ⊂
∞⋃
k=1

Ak

}
For a moment, let us diverge from our progression to discuss an important theme not only in measure

theory but throughout mathematics. The outer measure being just one example, definitions are carefully
chosen. The reason the outer measure cannot suffice as our ultimate destination is that it has certain flaws.
For example, there is a set C ∩ [0, 1] with outer measure 1 whose complement CC ∩ [0, 1] also has outer
measure 1, a phenomenon that our intuition says shouldn’t occur. But it does. We do not delve into the
details of the construction here, because it would take us too far off track. The interested reader may
consult [2]. Nonetheless, we need the outer measure to build up better measures. Suffice it to say that
though the modern definitions given throughout are clean, impeccable, and sometimes inscrutable, they
have good reason for existing. An in-depth study of the history and of the relevant counterexamples can
reward newfound appreciation for why definitions take the form they do. Unfortunately, that study is out
of the scope of the discussion here.

Returning to our analysis, we can see that µ∗ satisfies A ⊂ B → µ∗(A) < µ∗(B). Now, we are going to
show that the outer measure is finite.

Theorem 3.2. If A ⊂M then µ∗(A) <∞.

Proof. Consider a sequence Ak = {M, ∅, ∅, ∅, . . . }. Then it must be so that µ∗(A) ≤ µ(M) + µ(∅) + · · · =

µ(M) <∞ because this is the "maximal covering."

Building off of this, we can also see that if A is in an algebra, then µ(A) = µ∗(A) because if we take the
covering {Ak} = {A, ∅, ∅, ∅, . . . }, we get that µ∗(A) ≤ µ(A) and by sub-additivity we can take the infimum
over all other sequences to get that µ∗(A) = µ(A). One final property that is important to know is that it
is σ-subadditive over the power set and likewise, for any two sets A,B ∈M we get that the difference of the
outer measures of those two sets is bounded by the outer measure of the symmetric difference of those two
sets. The symmetric difference of A and B is

A4B = (A ∪B) \ (A ∩B),

which is sometimes called the XOR operation.

3.2 Measurable Sets

Before we move on to Carathéodory’s Extension Theorem, we are going to introduce the concept of a
measurable set.

Definition 3.3. Given a subset A ⊂ M , we say A is measurable if, for any ε > 0, there exists B ∈ R such
that µ∗(A)− µ∗(B) < ε.

What this definition ostensibly says is that a set is measurable if we can approximate sets in an algebra
infinitely closely.
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3.3 Carathéodory’s Extension Theorem

In this section we will talk about Carathéodory’s Extension Theorem which is quite an important theorem
in measure theory. It lets us extend measures and outer measures on algebras from a given ring. Let’s write
out the extension theorem:

Theorem 3.4. Let R be an algebra on a set M and µ be a σ-additive measure on R. Let M denote the
family of all measurable subset of M . Then:

1. M is a σ-algebra and R ⊂M.

2. The restriction of µ∗ onM is a σ-additive measure (that extends measure µ from R toM).

3. If µ̃ is a σ-additive measure defined on a σ-algebra Σ such that R ⊂ Σ ⊂M, then µ̃ = µ∗ on Σ.

Before I prove this, I will parse this information so we can get a more conceptual understanding of this
theorem. The first two statements of this theorem suggest that a σ-additive measure can be extended from
the algebra R to the σ-algebra of all measurable sets M. Furthermore, part 3 shows that if Σ = M, the
extension/restriction is unique. Now let’s do the proof.

Proof. We’ll prove this, by separating this into several claims.

1. The family of all measurable setsM, is an algebra containing R.

Proof. If A ∈ R, then A is measurable, because

µ∗(A4A) = 0 as µ∗(A) = µ(A)

if A is in an algebra. Thus, R ⊂M and thusM is a measurable set. In our quest to show thatM is an
algebra, we can show that if A1, A2 ∈ M then A1 ∪ A2 and A1 A2 are also measurable sets. Looking
at A1 and A2 we know that there must be sets H1 and B2 such that

µ∗(A14B1) < ε and µ∗(A24B2) < ε

If we let B = B1 ∪B2 ∈ R, we can get that

A4B ⊂ (A14B1) ∪ (A24B2)

and because µ∗ also has the property of subadditivity, we get that

µ∗(A4B) ≤ µ∗(A14B1) + µ∗(A24B2) < 2ε

Because ε is arbitrary and B ∈ R this means that A satisfies the definition of a measurable set.

2. µ∗ is σ-additive onM

Proof. As we have just established that M is an algebra and µ∗ is σ-subadditive, so to prove that
it is σ-additive, we can just proof that µ∗ is finitely additive on M. Now, we want to show that if
A = A1 tA2 we get that

µ∗(A) = µ∗(A1) + µ∗(A2)

We know that
µ∗(A) ≤ µ∗(A1) + µ∗(A2)

9
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so that means we have to show the inequality in the opposite direction, so

µ∗(A) ≥ µ∗(A1) + µ∗(A2)

We again know that for any ε > 0 there are sets B1, B2 ∈ R such that

µ∗(A14B1) < ε and µ∗(A24B2) < ε

is true. Letting B = B1 ∪ B2 ∈ R we can use our inequality about outer measures and symmetric
differences to get that

|µ∗(A)− µ∗(B)| ≤ µ∗(A4B) < 2ε and thus µ∗(A) ≥ µ∗(B)− 2ε

Then, since B ∈ R we get that

µ∗(B) = µ(B) = µ(B1) + µ(B2)− µ(B1 ∩B2)

so for both k = 1, 2 we get that

|µ∗(Ak)− µ∗(Bk)| ≤ µ∗(Ak4Bk) < ε because µ(Bk) ≥ µ∗(Ak)− ε.

Looking at B1 ∩B2, we get that

µ(B1 ∩B2) = µ∗(B1 ∩B2) ≤ µ∗(A14B1) + µ∗(A24B2) < 2ε

so combining all these terms,

µ∗(A) ≥ µ∗(A1) + µ∗(A2)− 6ε and as ε→ 0

the proof is completed and thus µ∗(A) = µ∗(A1) + µ∗(A2) and thus µ∗(A) is σ-additive.

3. M is a σ-algebra.

Proof. We know thatM is an algebra and µ∗ is σ-additive, so let’s now show thatM is a σ-algebra.
Let {An}∞n=1 be a sequence of measurable sets, let’s show that

⋃∞
n=1An is measurable to complete our

proof. To do this, let
Ãn = An\An−1\ . . . \A1 ∈M

and we can see that

A = A1\(A2\A1) ∪ (A3\A2\A1) · · · = t∞n=1Ãn

Thus, renaming Ãn to be An, we see that it suffices to treat the case of a disjoint union: given
A =

⋃∞
n=1An where An ∈M, prove that A ∈M. We get that for any fixed N ,

µ∗(A) ≥ µ∗(tNn=1An) =

N∑
n=1

µ∗(An)

by additivity and monotonicity. Thus, letting N →∞, we get that

∞∑
n=1

µ∗(An) ≤ µ∗(A) <∞

so
∞∑
n=1

µ∗(An)
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converges. Thus, for any ε > 0, there exists some N ∈ N such that
∞∑

n=N+1

µ∗(An) < ε

By letting A
′

= tNn=1An and A
′′

= t∞n=N+1An we obtain by the σ-subadditivity of µ∗ that

µ∗(A
′′
) ≤

∞∑
n=N+1

µ∗(An) < ε

Using our first claim thatM is an algebra, we get that A
′
is measurable and can be written as a finite

union of measurable sets. Thus, there exists some B ∈ R such that

µ∗(A
′
4B) < ε

Because A = A
′ ∪A′′

, we have that

A4B ⊂ (A
′
4B) ∪A

′′

Now, if x ∈ A′
then with x 6∈ B, it gives

x ∈ A
′
4B ⊂ (A

′
4B) ∪A

′′

If x ∈ A′′
then the inclusion is quite obvious. Moving on, we get that

µ∗(A4B) ≤ µ∗(A
′
4B) + µ∗(A

′′
) < 2ε

This thus implies that A ∈M and thusM is a σ-algebra.

Now, for our final claim, we will talk about the extensions and restrictions.

4. Let Σ be a σ-algebra such that R ⊂ Σ ⊂M and let µ̃ be a σ-additive measure on Σ such that µ̃ = µ

on R. Then, µ̃ = µ∗ on Σ.

Proof. We want to prove that (̃µ)(A) = µ∗(A) for any A ∈ Σ. By the way in which we defined the
outer measure µ∗, we can apply the σ-subadditivity of µ̃ and obtain that

µ̃(A) ≤
∞∑
n=1

µ̃(An) =

∞∑
n=1

µ(An)

Taking the infimum over all such sequences {An}, we obtain that

µ̃(A) ≤ µ∗(A)

However, because A is measurable, for any ε > 0 there is some B ∈ R such that

µ∗(A4B) < ε

By our early inequality, we can then get that

|µ∗(A)− µ∗(B)| ≤ µ∗(A4B) < ε

Combining these inequalities, we can use that

µ̃(B) = µ(B) = µ∗(B)

where we get that
|µ̃(A)− µ∗(A)| ≤ |µ∗(A)− µ∗(B)|+ |µ̃(A)− µ̃(B)| < 2ε

Letting ε go to 0, we can conclude that µ̃(A) = µ∗(A), which finishes the proof.

11
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3.4 σ-finite Measures

In this next section, we will discuss σ-finite measures. Let’s begin with the abstract definition of a measure.

Definition 3.5. LetM be a non-empty set and S be a family of subsets ofM . A functional µ : S → [0,+∞]

is called a measure if, for all A,Ak ∈ S such that A = tNk=1Ak (where N is either finite or infinite), we have
µ(A) =

∑N
k=1 µ(Ak)

Moving on, let’s define another concept relating to a measure.

Definition 3.6. A measure µ on a set S is called finite if M ∈ S and µ(M) < ∞. A measure µ is called
σ-finite if there is a sequence {Bk}∞k=1 of sets from S such that µ(Bk) <∞ and M = ∪∞k=1Bk

We get that any finite measure is also a σ-finite measure. Finally, we’ll introduce one more definition
before we go to our main theorem for this section.

Definition 3.7. A set A ∈M is called measurable if A ∩Bk ∈ MBk
for any k. For any measurable set A,

set µM (A) =
∑
k µBk

(A ∩Bk)

Now, for our main theorem.

Theorem 3.8. Let µ be a σ-finite measure on a ring R andM be the family of all measurable sets defined
above. Then the following is true. Here, RBk

is in algebra in Bk.

1. M is a σ-algebra containing R.

2. The functional µM which we defined in the definition of a measurable set, is a measure on M that
extends measure µ on R.

3. If µ̃ is a measure defined on a σ-algebra Σ such that R ⊂ Σ ⊂M, then µ̃ = µM on Σ.

Proof. 1. To prove our first, claim, we see that if A ∈ R, then A ∩ Bk ∈ R because Bk ∈ R as well.
Hence, A ∩Bk ∈ RBk

whence A ∩Bk ∈ MBk
and A ∈ M. Hence, R ⊂M Then, we can show that if

A = ∪Nn=1An where An ∈M then also A ∈M (where N can be ∞). Then, we have

A ∩Bk = ∪n(An ∩Bk) ∈MBk

because
An ∩Bk ∈MBk

andMBk
is a σ-algebra. Thus, A ∈M. By the same manner, if

A
′
, A

′′
∈M

then the difference
A = A

′
\A

′′

belongs toM because
A ∩Bk = (A

′
∩Bk)\(A

′′
∩Bk) ∈MBk

Lastly, because M ∈M because
M ∩Bk = Bk ∈MBk

Thus,M must be a σ-algebra.

12
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2. If A ∈ R then A ∩Bk ∈ RBk
whence

µBk
(A ∩Bk) = µ(A ∩Bk)

Since
A = t(A ∩Bk)

and µ is a measure on R, we obtain

µ(A) =
∑
k

µ(A ∩Bk) =
∑
k

µBk
(A ∩Bk)

Now, from our definition above, we can get that µM (A) = µ(A). Hence, µM on R coincides with µ.
Now, we can show that µM is a measure. Let

A = tNn=1An

where
An ∈M

and N is either finite or infinite. We want to show that

µM (A) =
∑
n

µM (An)

Then, we get that ∑
n

µM (An) =
∑
n

∑
k

µBk
(An ∩Bk)

and this then becomes ∑
k

µBk
(tn(An ∩Bk))

and then this becomes µM (A), where we use our identity of

A ∩Bk = tn(An ∩Bk)

along with the σ-additivity of the measure µBk
.

3. Let µ̃ be another measure defined on a σ-algebra Σ such that

R ⊂ Σ ⊂M

and µ̃ = µ or R. Let us prove that µ̃(A) = µM (A) for any A ∈ Σ. Then, we can get that given A ∈ Σ

we get that A = tk(A ∩Bk) and A ∩Bk ∈ ΣBk
whence

µ̃(A) =
∑

µ̃(A ∩Bk) =
∑

µM (A)

and thus we are done and the proof is finished.

3.5 Lebesgue Measure

In this section, we are going to try and define a new measure. Let S1 be the semi-ring of all bounded intervals
in R, then define Sn to be Sn = Sn1 . Thus, any set A ∈ Sn takes the form I1×· · ·×In, where Ik are bounded
intervals in R. Now, in order to introduce our measure, let’s define the generalized notion of the product
measure.

13
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Lemma 3.9. Let M = M1 ×M2 = {(x, y) : x ∈ M1, y ∈ M2} and the family S of subsets of M , defined
S = S1 × S2 = {A×B : A ∈ S1, B ∈ S2}. Now, if S1 and S2 are semi-rings, then S is also a semi-ring.

Now, let’s define a product measure

Definition 3.10. If µ1 is a finitely additive measure on the semi-ring S1 and µ2 is a finitely additive measure
on the semi-ring S2, then the Product Measure µ = µ1 × µ2 on S is defined as follows: given A ∈ S1 and
B ∈ S2, µ(A×B) = µ1(A)µ2(B)

Now, we can also show that µ is a finitely additive measure on S. We clearly get that Sn is a semi-ring
as the product of semi-rings. Now, the product measure λn on Sn can be defined by λm = l × · · · × l where
l is the length on S1. Thus, λn(A) = l(I1) · · · l(In). Thus, λn is a finitely additive measure on the semi-ring
Sn ∈ Rn. We can see that this is σ-additive.

Lemma 3.11. The product measure λn as defined above is a σ-additive measure on Sn.

The proof is left to the reader, however, it just requires unpacking a few definitions. We also know that
λn is a σ-finite measure on Sn. We know from earlier that λn can be uniquely extended as an σ-additive
measure to the minimal ring Rn = R(Sn), which consists of a finite union of bounded boxes. Calling the
extension λn, as well, we get that λn is a σ-finite measure on Rn. Hence, λn is a measure on the σ-algebra
Mn that contains Rn. Now, we get the definition we’ve been working towards.

Definition 3.12. The measure λn onMn is called the Lebesgue Measure (in Rn). The measurable sets in
Rn are also called Lebesgue Measurable.

4 Probability

First, let’s define the notion of a probability space, and probability measures in the abstract and then we’ll
get into some of their properties.

Probability theory is a generalization of measure theory.

Definition 4.1. A Probability Space is a triple (Ω,F ,P) where the following properties hold:

1. Ω is a non-empty set. which is called the sample space.

2. F is a σ-algebra of subsets of Ω, whose elements are called events.

3. P is a probability measure on F , that is, P is a measure on F and P(Ω) = 1 (in particular, P is a finite
measure). For any even A ∈ F ,P(A) is called the probability of event A.

When we look at probability spaces, here are few more aspects of a measure that we need to recall.

1. µ(∅) = 0

2. σ-additivity: µ
(⋃∞

i=1Ai

)
=
∑∞
i=1 µ(Ai)

4.0.1 Properties of Probability Measures

Let’s now run through a few properties of probability measures. For this section, let (Ω,F ,P) be our
probability space.

Theorem 4.2. 1. Suppose A is a subset of Ω such that A ∈ F . Then, P(Ac) = 1− P(A)

2. Consider events A and B such that A ⊆ B and A,B ∈ F . Then, P(A) ≤ P(B)

14
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3. If A1, A2, . . . , An are a finite number of disjoint events, then P(∪ni=1Ai) =
∑n
i=1 P(Ai)

4. For any A,B ∈ F ,P(A∪B) = P(A)+P(B)−P(A∩B) In general, for a family of events {Ai}ni=1 ∈ F , we
get that P(∪ni=1Ai) =

∑n
i=1 P(Ai)−

∑
i<j P(Ai∩Aj) +

∑
i<j<k P(Ai∩Aj∩Ak)+· · ·+(−1)n+1P(∩ni=1Ai)

5. If {Ai, i ≥ 1} are events, then P(∪∞i=1Ai) = limm→∞ P(∪mi=1Ai) (this is called the continuity of proba-
bility measures)

6. If {Ai, i ≥ 1} is a sequence of decreasing nested events Ai+1 ⊆ Ai∀i ≥ 1, then P(∩∞i=1Ai) = limm→∞ P(Am)

7. If {Ai, i ≥ 1} is a sequence of decreasing nested events i.e. Ai+1 ⊆ Ai∀i ≥ 1, then P(∩∞i=1Ai) =

limm→∞{(Am)

8. Suppose {Ai, i ≥ 1} are events, then P(∪∞i=1Ai) ≤
∑∞
i=1 P(Ai)

Proof. 1. Given some A ∈ P(Ω), A and Ac partition the sample space. Thus, Ac∪A = Ω and Ac∩A = ∅.
Because we have countable additivity we get that

P(A) + P(Ac) = P(A ∪Ac) = P(Ω) = 1

This implies that
P(A) + P(Ac) = 1P(A) = 1− P(Ac)

2. We know that B = A ∪ (Ac ∩B) and thus

P(B) = P(A) + P(Ac ∩B) = P(B)

Which shows that P(A) ≤ P(B) as P(Ac ∩B) ≥ 0.

3. This follows more or less directly from σ-additivity (verify this for yourself).

4. We get that
A ∪B = A ∪ (Ac ∩B)

Because the events are disjoint,

P(A ∪B) = P(A) + P(Ac ∩B)

We can now partition B to be
B = (A ∩B) ∪ (Ac ∩B)

Thus,
P(B) = P(A ∩B) + P(Ac ∩B)

Then we get that
P(A ∪B) = P(A) + P(B)− P(A ∩B)

The general result follows by induction.

5. For this proof, we’ll use two claims to prove it. Let

Bn = An\ ∪ni=1 Ai

(a) Bi ∩Bj = ∅,∀i 6= j

(b) ∪∞i=1Ai = ∪∞i=1Bi
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Since the Bi’s are a disjoint sequence of events, we can use the previous lemmas to get that

P
( ∞⋃
i=1

Ai

)
= P

( ∞⋃
i=1

Bi

)
=

∞∑
i=1

P(Bi)

Thus

P
( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Bi)

= lim
n→∞

n∑
i=1

P(Bi)

= lim
n→∞

P
( n⋃
i=1

Bi

)

= lim
n→∞

P
( n⋃
i=1

Ai

)
It is easy to deduce the result from here.

6. This is a corollary of the last property.

7. This is also a corollary of the last proven property.

8. Using the same two claims that we established in property 5, we will define the Bi’s used in this proof
in a similar manner. Using the previous claims we can also get that

P
( ∞⋃
i=1

Ai

)
= P

( ∞⋃
i=1

Bi

)
=

∞∑
i=1

P(Bi)

Since
Bi ⊆ Ai∀i ≥ 1,P(Bi) ≤ P(Ai)∀i ≥ 1

Hence,
n∑
i=1

P(Bi) ≤
n∑
i=1

P(Ai)

As we go to infinity, we get that
∞∑
i=1

P(Bi) ≤
∞∑
i=1

P(Ai)

Eventually, we get

P
( ∞⋃
i=1

Ai

)
≤
∞∑
i=1

P(Ai)

5 Returning to the Dart

With our newfound understanding of probability in terms of the Lebesgue measure, we can finally return to
our central question: What is the chance a dart thrown randomly in [0, 1] lands on a rational number? We
now know another way to formulate this question.

Question 5.1. What is the Lebesgue measure of the subset Q∩[0, 1] ∈ R?
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We have the answer. Because Q is a countable set, its Lebesgue measure is zero. We say the dart will
almost surely not hit a rational number, because it could conceivably occur, but only with probability zero.
What if we are more lenient? What if we allow the dart to land close to a rational number?

Here’s a surprise! It turns out we have control over that chance, depending on how we define the word
“close.” For example, enumerate the rationals in some way to get a sequence {qi}∞k=1. Assign to qk an open
interval Ak of length ε/2k, where 0 < ε < 1. Thus, each rational is covered. What is the Lebesgue measure
of the union of the intervals A =

⋃∞
k=1Ak? Because nearby fractions may overlap (take 1/2 and 11/23, for

instance), calculating an exact answer for this setup is challenging, but it is likely that µ(A) will be close to
ε depending on how we enumerate Q. We can bound the measure:

0 < µ(A) ≤
∞∑
k=1

µ(Ak) = ε

∞∑
k=1

1

2k
= ε.

If ε = 0.5, then these intervals do not contain every real number despite containing every rational number
in some interval. How is this possible? Aren’t the rational numbers dense in the interval? It turns out that,
although rational numbers converge to every real number, they do not converge fast enough. A real number
that is difficult to cleanly approximate with rational numbers will not be included in the measure for low
enough ε. Thus, we can fiddle with the chances that the randomly thrown dart lands near a rational.

Let’s take a moment to appreciate how far we’ve come. Previously, our notion of size was constricted to
a small subset of all cases. Now, with the help of the Lebesgue measure and σ-algebras of measurable sets,
we can formally speak of many otherwise bizarre lengths, areas, and volumes. Countable sets pale in size to
the real continuum, as shown by them having measure zero. But we can also finesse the covering to yield an
arbitrary measure. If we owned a casino, we would have the power to rig the game to offer a drunken dart
thrower an arbitrary maximum chance of hitting near to a rational number. With measure theory, we have
a precise grasp of the notions of size and density. These concepts form the foundation of many theories that
form the foundation of our world.
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