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Abstract. Brownian Motion is a continuous time stochastic process {B(t) : t ≥ 0}, defined as
having independent increments similar to a random walk. For Brownian motion, the continuous
analog of the discrete probability distribution of Random walks is taken to be the normal distribu-
tion, with zero mean and variance based on increment size.
The goal of this expository paper is to study the Brownian motion that is resultant from these
properties, and explore its wide variety of interesting properties. We start by proving some basic
but fundamental properties of Brownian motion like nowhere differentiability and scaling invari-
ance. Then, we make the analogy to the random walk more concrete, proving Donsker’s invariance
principle theorem that directly relates the two in a weak sup-norm convergence. Lastly, we explore
the formulation of a stochastic calculus based on the properties of Brownian motion, along with
some applications in physics and finance given by Ito’s formula.
For this paper, we assume a background knowledge in probability theory and that of some rudi-
mentary analysis and measure theory.

1. An Introduction and Preliminaries

The random walk, a familiar object in probability theory, is the stochastic process {St}t∈T over

the index set T = Z≥0 starting from S0 = 0 defined as St =
∑t

k=0Xk, where {Xk}k∈T is a sequence
of independent random variables. In a mathematical sense, Brownian motion can be thought of
being the continuous time analog of the random walk, with the index set T being generally chosen
as R≥0. However, it is quite different from the random walk in that the increments are normally
distributed. This stochastic process permits some really interesting mathematics, which will be the
central focus of this paper. First we introduce some preliminaries necessary for the understanding
of the material here.

1.1. Multivariate Gaussian Distribution. The primary reason behind introducing the multi-
variate Gaussian distribution is that it becomes applicable in better analyzing the Gaussian nature
of Brownian Motion, which will then be used to prove several key theorems.

Definition 1.1.1. A random vector X = (X1, X2, . . . , Xn)T is called a multivariate d-dimensional
standard Gaussian distribution if

(1) X1, X2, . . . , Xd ∼ N(0, 1), where N(µ, σ) is the normal distribution given by the probability

density function fN(x) = 1
σ
√
2π

exp
(
− (x−µ)2

2σ2

)
.

(2) X1, X2, . . . , Xd are independent random variables.

The independence property really helps characterize the multivariate distribution: firstly, the joint
distribution function will be

fX(t) =
1

(
√

2π)d
e−

1
2
(t21+t

2
2+···+t2n) =

1

(
√

2π)d
e−

1
2
〈t,t〉

1
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for t = (t1, t2, . . . tn) ∈ Rd. For this distribution, the mean and covariance would be

E[X] =


0
0
...
0

 , Cov(X) = 1d

where 1d is the d × d identity matrix. Th expectation is zero since all individual components are
standard normally distributed with mean zero. The covariance gives the identity matrix since along
the diagonal, the variance of each Xi is 1 while the Cov(Xi, Xj) = 0 for i 6= j since all components
are independent random variables.

Next, we can scale and shift this definition of standard multivariate normal distribution to create
a more generalized normal distribution. For scaling, we start with the following lemma related to
invariance under orthogonal scaling.

Lemma 1. If X is a d-dimensional standard Gaussian random vector and A an orthogonal d× d
matrix, then AX is also standard Gaussian.

Proof. Recall that orthogonality implies that A is invertible and that AT = A−1 with det(A) = ±1.
Then we can apply a transformation on the density random vector AX as follows:

fAX(t) = fX(A−1t) | det(A−1) |= fX(A−1t) =
1

(
√

2π)d
e−

1
2
〈A−1t,A−1t〉

Now we can exploit the orthogonality ofA to get that 〈A−1t, A−1t〉 = 〈(A−1)TA−1t, t〉 = 〈(AAT)−1t, t〉 =
〈t, t〉. But then that implies

fAX(t) =
1

(
√

2π)d
e−

1
2
〈A−1t,A−1t〉 =

1

(
√

2π)d
e−

1
2
〈t,t〉 = fX(t)

�
Now for the generalized Gaussian Random Variable, we have the following definition:

Definition 1.1.2. A random vector Y is d-dimensional Gaussian if we can express it as

Y = AX + µ

for some m-dimensional standard Gaussian vector X, d ×m matrix A, and some µ ∈ Rd. Notice
that from this definition, it is also clear that if Y1, Y2, . . . , Yn are independent Gaussian random
variables, then Y = (Y1, Y2, . . . Yn)T is a Gaussian random vector.

Proposition 2. For the normal distribution Y expressed as Y := AX + µ, we have expectation
E[Y] = µ and covariance Cov(Y) = Σ := AAT .

Proof. Notice that for this matrix, E[Y] = E[AX + µ] = AE[X] + µ, which is equal to µ since
X is standard Gaussian. Additionally, since we can reinterpret the covariance matrix Cov(X) =
E[(X− µ) · (X− µ)T], we then have for our covariance the following

Cov(Y) = E
[
(AX + µ− E[AX + µ]) · (AX + µ− E[AX + µ])T

]
= E

[
A(X− E[X]) · (A(X− E[X]))T

]
= AE[(X− E[X]) · (X− E[X])T]AT

= ACov(X)AT = AAT

since Cov(X) = 1. �
We also have the following important result about Gaussian vectors under affine transformations.

Corollary 2.1. Affine transformations preserve the Gaussian property.
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Proof. To see this, for Y ∼ N(µ,Σ), we look at an affine transformation Y → A′Y + µ′ where A′

is a d′ × d dimensional matrix and µ′ ∈ Rd′ . In this case,

A′Y + µ′ = A′(AX + µ) + µ′ = (A′A)X + (A′µ + µ′)

which makes the transformation multivariate Gaussian by Proposition 2. �

1.2. Measure Theory and Probability. We provide a brief background on the measure-theoretic
probability concepts that would be needed in this paper, especially in the later sections that deals
with convergence. However, this definitely is not a proper introduction to measure theory; for a more
comprehensive study of the subject and its use in probability, we refer the reader to [ARDDC00].

Definition 1.2.1 (σ-algebra). For a set X, a σ algebra on X is the set C of subsets of X such that

(1) ∅ ∈ C
(2) If S ∈ C then Sc ∈ C as well
(3) For a finite or countable collection of sets S1, . . . Sn ∈ C, both the union

⋃
n Sn and the

intersection
⋂
n Sn are in C.

Definition 1.2.2 (Measure). Given a set X and a σ-algebra on X, a measure on (X, C) is a function
µ : C → [0,∞] such that the following properties hold:

(1) µ(∅) = 0
(2) For a finite or countable collection of pairwise disjoint sets S1, . . . Sn ∈ C,

µ
(⋃

n

Sn) =
∑
n

µ(Sn)

The triple (X, C, µ) is called a measure space. Probability spaces, a special kind of measure space,
are defined by the triple (Ω,F ,P).

Definition 1.2.3. For an index set I, a filtration on a probability space (Ω,F ,P) is a family
(F(i) : i ∈ I) of σ-algebras such that F(s) ⊂ F(t) ⊂ F for s < t. A probability space with
a filtration is called a filtered probability space. The natural index set for Brownian motion is
I = R≥0.

Example 1.1. A right-continuous filtration is the family (F+
i )i∈I such that F+

i =
⋂
z>iFz.

Definition 1.2.4 (Nonanticipating Processes). A stochastic process {X(t)}t≥0 defined by the fil-
tration (F(t))t≥0 is an adaptive or non-anticipating process if X(t) is measurable for any F(t) for
t ≥ 0.

One last probability theoretic notion that we need is that of martingales, which have a strong
connection to Brownian motion, and due to their rich and developed theory, will be used to prove
certain results about the latter.

Definition 1.2.5 (Martingales). A discrete time martingale is the sequence of random variables
{Xn}n∈N such that for all n, we have that E[|Xn|] <∞ and E[Xn+1 | X1, X2, . . . Xn] = Xn.

One of the very interesting properties of Brownian motion is its deep interconnectedness with
Random walks, especially in a limiting sense, wherein they tend to exhibit the same distribution.
To see this, however, we need to have a formal notion of convergence of probability measures, which
we now provide in the L2 sense. Note that most results stated here in the L2 usually extend to
more generalized spaces; however, proving these extensions is beyond the scope of this paper. For
a much more rigorous and comprehensive treatment of convergence, we refer the reader to [Bil71].
We start by defining the Lp space.
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Definition 1.2.6. The Lp space is a functional space that is a generalization of the `p norm of
vector spaces. The Lp space is the vector space of all measurable functions for which(∫

S
|f |pdµ

)1/p
<∞

Of particular interest is the L2 space, or the space of all square-integrable measurable functions,
since it can also be thought of as containing all random variables with a finite second moment
E[X2] < ∞. It is also very important since most convergences we will observe, partly due to the
quadratic variation of Brownian motion, will be in an L2 sense. In general, L2 convergence is a
norm commonly seen throughout throughout probability theory.

A significantly important theorem is about the weak convergence of measures, commonly referred
to as the Portmanteau theorem. This theorem equates several definitions of weak convergence, some
of which we use in proving results. This theorem, along with its proof, can be found in any good
measure theory book, take for example [Bil71]. We also have another really important theorem
about martingales that we are able to use for proving an embedding result about Brownian motion.

Theorem 3 (Levy’s Upward Theorem). Suppose X is an integrable random variable and that Xn =
E[X | Fn]. Then the sequence {Xn}n≥0 is a uniformly integrable martingale and limn→∞Xn =
E[X | F∞], where F∞ = ∪∞n=1Fn, as the union of elements of the filtration, is the smallest σ-
algebra with the entire filtration.

2. Brownian Motion

2.1. Introduction.

Definition 2.1.1. A real-valued stochastic process {B(t) : t ∈ R≥0} with B(0) = x for x ∈ R is
called a (one-dimensional) Brownian Motion or Wiener Process if

(1) The process consists of independent increments, so that for times 0 ≤ t1 ≤ t2 ≤ t3 ≤ · · · ≤
tn, the sequence of steps B(tn) − B(tn−1), B(tn−1) − B(tn−2). . . . , B(t2) − B(t1) forms a
sequence of independent random variables.

(2) B(t+ s)−B(t) ∼ N(0, s)
(3) Almost surely, t 7→ B(t) is continuous.

Lastly, we say that {B(t) : t ≥ 0} is a standard Brownian motion if B(0) = 0.

It is natural to ask if such a stochastic process could actually exist. Fortunately, due to a
non-trivial theorem by Wiener, we can affirm the existence of Brownian motion.

Theorem 4 (Wiener 1923). Standard Brownian Motion exists.

Clearly, this theorem is fundamental to the study of this subject. However, the Brownian motion
constructed by Wiener in his proof is quite complex and lengthy, and is beyond the scope of this
paper. This proof, with appropriate motivation and rigor, can be found in [MP10], or any other
text that gives a detailed and rigorous treatment of this topic. Another construction due to Levy
can be found in [SP14].

Lemma 5. Brownian Motion is a Gaussian process

Proof. To prove this lemma, we will show that for 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn, (B(t1), B(t2), . . . , B(tn))
is a Gaussian vector. We first define the random vector δ = (δ1, . . . , δn)T based on increments
with δi = B(ti) − B(ti−1). Since the increments of Brownian motion are independent Gaussian
random variables, δi would be the same, and then it follows that δ is a Gaussian random vector.
Now notice that we can represent (B(t1), B(t2), . . . B(tn)) by an affine transformation of δ given by
B(ti) = δ1+δ2+ · · ·+δi. So then by Corollary 2.1, (B(t1), B(t2), . . . B(tn)) must also be a Gaussian
random vector. Note that for this random vector E[B(t)] = 0 and Cov(B(ti), B(tj)) = min{ti, tj},
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which follows from the definition of Brownian motion. �

With these initial formulations, we can see some interesting geometrical invariances that will
become fundamental to Brownian motion and further extremely helpful in proving other properties.

Proposition 6. Suppose {B(t) : t ≥ 0} is a standard Brownian motion. Then the following
processes are also standard Brownian motions:

(1) Shifting invariance: For s ≥ 0, the process defined as {W1(t) := B(t + s) − B(s) : t ≥ 0},
which is also independent of {B(t) : 0 ≤ t ≤ s}, or the Brownian motion before s.

(2) Scaling invariance: For a > 0, the process {W2(t) : t ≥ 0} defined as W2(t) := 1
aB(a2t).

(3) Inversion invariance: The process {W3(t) : t ≥ 0} defined as

W3(t) :=

{
0 t = 0

tB(1/t) t > 0

Proof. We need to check the properties in Definition 2.1.1 to see that the process is still a Brownian
motion.

(1) Note that for any sequential increment of W1(t), we have

W1(tk+1)−W1(tk) = B(tk+1 + s)−B(s)− [B(tk + s)−B(s)] = B(tk+1)−B(tk),

and thus the sequence of steps is independent. The map is trivially continuous, and W1(0) =
B(0 + s)−B(s) = 0. Finally, for h > 0,

W1(t+ h)−W1(t) = B(t+ h+ s)−B(s)− [B(t+ s)−B(s)]

= B(t+ s+ h)−B(t+ s) ∼ N(0, h)

since {B(t) : t ≥ 0} is a standard Brownian Motion. The existence of all these properties
makes W1(t) a standard Brownian motion as well. To verify its independence from B(t),
simply note that since Brownian motion has independent increments, for t1, . . . tn ≥ 0 and
s ≥ s1, . . . sn ≥ 0, (W (t1),W (t2), . . . ,W (tn)) = (B(t1 + s) − B(s), . . . , B(tn + s) − B(s))
and (B(s1), B(s2), . . . B(sn)) are independent.

(2) Continuity of the map W2(t) : t → 1/aB(a2t) follows since W2(t) is just a composition
of continuous functions; furthermore, independence is not affected by scaling. Clearly we
also have W2(0) = 0. It remains to see that the random variable is normally distributed,
that too with the same mean and variance as B(t). First note that for some h > 0,
B(t+ h)−B(t) ∼ N(0, h). Then

E[W2(t+ h)−W2(t)] = E[
1

a
B(a2(t+ h))− 1

a
B(a2t)]

=
1

a
E[B(a2t+ a2h)−B(a2t)] = 0

where the last equality follows from the definition of Brownian motion since a2t ∈ R≥0 is a
point on the process. We employ a similar process for the variance, where

Var[W2(t+ h)−W2(t)] = Var[
1

a
B(a2(t+ h))− 1

a
B(a2t)]

=
1

a2
Var[B(a2t+ a2h)−B(a2t)] =

1

a2
· a2h = h

and thus the Brownian nature follows.
(3) A proof of the third part requires a little more analysis. Clearly, W3(t) for t ≥ 0 is a

Gaussian process as well, and it also follows that the random vector W3(t) of the motion
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has expectation zero. The covariance between two components for t > 0 and h ≥ 0 is given
by

Cov(W3(t+ h),W3(t)) = t(t+ h)Cov(B(1/(t+ h)), B(1/t)) = t(t+ h) · 1

t+ h
= t

which are same as the results one would obtain for B(t). Since Gaussian processes are
uniquely determined by their mean and variance, it follows that W3(t) is similar in distri-
bution to B(t). It remains to show that the paths are continuous, specifically at t = 0,
since the t > 0 case is trivial. To show for t = 0, note that since Q is countable and
{X(t) : t ≥ 0, t ∈ Q} has the same distribution as a Brownian motion,

lim
t↓0
t∈Q

X(t) = 0

Next, since Q>0 is dense in R>0 and since X(t) is a.s. continuous for t > 0, the limiting
behaviour can be extended to the R>0 and thus lim

t↓0
X(t) = 0 as desired.

�
These scaling and inversion properties of Brownian Motion lead to some interesting results.

Example 2.1. We can establish a bound on the Brownian motion since almost surely, we must
have

lim
t→∞

B(t)

t
= 0

This is easy to see with the time inversion invariance. Defining u := 1/t,

lim
t→∞

B(t)

t
= lim

u→0+
uB(1/u) = lim

u→0+
W3(u) = W3(0) = 0

Example 2.2. We can analyse the first exit time of the Brownian motion, defined for the interval
[a, b] where a < 0 < b as τ(a, b) = inf{t ≥ 0 : B(t) = a or B(t) = b} primarily due to a scaling
property. Notice that if we define W (t) := 1/aB(a2t),

E[τ(a, b)] = inf
{
t ≥ 0 :

1

a
B(t) = 1 or

1

a
B(t) = b/a

}
= a2 inf

{
t ≥ 0 : W (t) = 1 or W (t) = b/a

}
= a2E[τ(1, b/a)]

Firstly, this implies that E[τ(−b, b)] is a constant multiple of b2. Secondly, this shows how we can
extend this scaling invariance to have probabilistic and statistical interpretations; in this case:

P
(
t <∞ : B(t) = a,B(t) exists [a, b]

)
= P

(
t <∞ : W (t) = 1,W (t) exists [1, b/a]

)
2.2. Nowhere differentiability of Brownian motion. From the results of Proposition 6, an ex-
tremely interesting feature of Brownian motion emerges: despite being continuous, it is extremely
pathological in that it is almost surely nowhere differentiable. As one might expect, this theo-
rem raises several problems in analyzing the Brownian motion and its subsequent calculus as the
standard definition of the derivative is rendered meaningless. This problem is addressed with the
stochastic integral, which is covered in Section 4.

Theorem 7 (Nondifferentiability of Brownian Motion). Almost surely, Brownian motion is nowhere
differentiable. Furthermore, for all t,

D∗B(t) = +∞ and D∗B(t) = −∞
almost surely, where

D∗f(x) := lim sup
h→0

f(x+ h)− f(x)

h
, D∗f(x) = lim inf

h→0
inf

f(x+ h)− f(x)

h
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Proof. Due to the scaling invariance of Brownian motion it is sufficient to look at the [0, 1]. Aiming
for a contradiction, suppose there exists t0 ∈ [0, 1] such that −∞ < D∗B(t0) ≤ D∗B(t0) < ∞.
Since Brownian motion is bounded in [0, 1], there must exist M such that for t0, we have

sup
h∈[0,1]

|B(t0 + h)−B(t0)|
h

≤M

It suffices to show that this event has probability zero regardless of M . We partition the unit
interval into 2n sub-intervals, taking the limit as n → ∞. Let t0 be contained within the interval
[(k − 1)/2n, k/2n] for n ≥ 3 and 1 ≤ k ≤ 2n − 3.Then if we look at some j ∈ [1, 2n − k], we can use
the triangle inequality to get that the following must also necessarily hold∣∣∣∣B(k + j

2n

)
−B

(k + j − 1

2n

)∣∣∣∣ ≤ ∣∣∣∣B(k + j

2n

)
−B(t0)

∣∣∣∣+

∣∣∣∣B(t0)−B
(k + j − 1

2n

)∣∣∣∣
≤ M(2j + 1)

2n

For convenience of summability for n ≥ 3 while avoiding overlap, we must set j = 1, 2, 3. Next, we
examine the probability of the latter inequality actually being true. For this, first we define the
event

E(n, k) =

{∣∣∣∣B(k + j

2n

)
−B

(k + j − 1

2n

)∣∣∣∣ ≤ M(2j + 1)

2n
for j = 1, 2, 3

}
We ultimately wish to show that lim

n→∞
P(
⋃
k

E(n, k)) = 0. Now notice that for 1 ≤ k ≤ 2n − 3, the

invariance properties of Brownian motion can be used as follows to bound the probability:

P(E(n, k)) = P

({∣∣∣∣B(k + j

2n

)
−B

(k + j − 1

2n

)∣∣∣∣ ≤ M(2j + 1)

2n
for j = 1, 2, 3

})

≤
3∏
j=1

P

({∣∣∣∣B(k + j

2n

)
−B

(k + j − 1

2n

)∣∣∣∣ ≤ M(2j + 1)

2n

})

=
3∏
j=1

P

({∣∣∣∣B( 1

2n

)
−B(0)

∣∣∣∣ ≤ M(2j + 1)

2n

})
where the last equality follows by translational invariance. Bounding above by the j = 3 case, we
get

P(E(n, k)) ≤ P

(∣∣∣∣B( 1

2n

)
−B(0)

∣∣∣∣ ≤ 7M

2n

)3

= P
(∣∣2n/2B(2−n)

∣∣ ≤ 7M2n/2

2n

)3

= P
(
|B(1)| ≤ 7M

2n/2

)3
≤
( 7M

2n/2

)3
The last equality follows from scaling invariance, and the last inequality follows from the fact that
the density of the Gaussian is bounded by 1/

√
2π < 1/2. Then over all possible k,

P
( 2n−3⋃
k=1

E(n, k)
)
≤

2n−3∑
k=1

P(E(n, k)) ≤ 2nP(E(n, k)) ≤ 2n
( 7M

2n/2

)3
=

(7M)3

2n/2

Now, observe that

∞∑
n=1

P
( 2n−3⋃
k=1

E(n, k)
)
≤
∞∑
n=1

(7M)3

2n/2
=

(7M)3√
2
· 1

1− 1√
2

=
(7M)3√

2− 1
<∞,
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so then we can apply the Borel-Cantelli Lemma to see that for infinitely many n,

P(B(t) is differentiable) = P
(

there exists t0 ∈ [0, 1] such that sup
h∈[0,1]

|B(t0 + h)−B(t0)|
h

≤M <∞
)

≤ P
(

lim sup
n→∞

2n−3⋃
k=1

E(n, k)
)

= 0

proving that B(t) is almost surely nowhere differentiable. �
Due to this nowhere differentiability, we see that a significant problem emerges in the formulation
of a proper calculus for such continuous-time stochastic processes. This was an area of interest in
the study of Brownian motion, resolved by Ito through stochastic calculus, which we will explore
in the final section.

3. Reflection Principles and Applications

3.1. The strong Markov property and reflection. Similar to what we see for the Random
Walk on Z, Brownian motion also permits many interesting reflection principles that help better
analyze certain properties of the overall motion.

Definition 3.1.1. The maximum value of a Brownian motion is given by M(t) := max0≤s≤t{B(s)},
while the minimum can similarly be expressed as m(t) := min0≤s≤t{B(s)}

Proposition 8 (Reflection Principles). The following reflection principles are associated with a
Brownian motion {B(t) : t ≥ 0}:

(1) For τ a stopping time, a ∈ R such that B(τ) = a, the standard Brownian motion {B(t) :
t ≥ 0} reflected at τ , defined as

W (t) =

{
B(t) t < τ

B(τ)−
[
B(t)−B(τ)

]
t ≥ τ

is also a standard Brownian motion.
(2) M(t) has the same distribution as |B(t)|, that is for a ∈ R

P(M(t) > a) = P(τ > t) = 2P(B(t) > a) = P(|B(t)| > a) = 2− 2Φ(a/
√
t)

A rigorous proof of both these principles is based on the strong Markov property that Brownian
motion obeys:

Lemma 9 (Strong Markov Property). Brownian motion obeys the strong Markov property, namely
that for a standard motion {B(t) : t ≥ 0} and a stopping time τ defined with respect to it, ∆(τ) =
B(t + τ) − B(τ) for t ≥ 0 is also a standard Brownian motion. Furthermore, for each t > 0,
{∆(s) : 0 ≤ s < t} is independent of F+(τ).

Proof. Equipped with this property,

(1) For t > τ , first note that B(t) = B(τ) + B(t)− B(τ). Additionally, by the strong Markov
Property, for 0 ≤ s ≤ τ , we have B(s + τ) − B(τ) also a Brownian Motion independent
of B(s). But now since negation also preserves the Brownian property, we know that
B(τ)−B(s+ τ) for s ≥ 0, or equivalently for t > τ , must also be a Brownian motion. We
can then use this on the first relationship as follows:

{B(t), t > τ} = {B(τ) +B(t)−B(τ), t > τ} ∼ {B(τ)−
[
B(t)−B(τ)

]
, t > τ} = {2a−B(t), t > τ}

which proves the first part of the theorem.
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(2) We define the stopping time τ = inf{t ≥ 0 : B(t) = a} and let W (t) be the Brownian
motion reflected at τ . Notice that we can divide the desired probability into two cases:

{M(t) > a} = {B(t) > a} ∪ {B(t) ≤ a,M(t) > a}
The union between these events is disjoint so the probabilities can be summed directly. The
key detail to notice next is that the second event {B(t) ≤ a,M(t) > a} is the same as saying
W (t) ≥ a. Since the latter set in the union implies that t < τ , we will have W (t) = B(t)
for the interval, and thus P(M(t) > a) = P(B(t) > a) +P(W (t) > a) = 2P(B(t) > a). Note
that the other statements follow quite trivially, since 2P(B(t) > a) = P(|B(t) > a), and
P(B(t) > a) = 2(1− P(B(t) ≤ a)) = 2− 2Φ(a/

√
t).

�

Example 3.1 (A Notion of Absorption). We define the absorbed Brownian motion A(t) to be

A(t) =

{
B(t) M(t) < a

a M(t) ≥ a
We can derive the cumulative distribution function as

P(A(t) ≤ x) = Φ
( x√

t

)
− 1 + Φ

(2a− x√
t

)
For x < a, we have the cumulative distribution probability as

P(A(t) ≤ x) = P(B(t) ≤ x,M(t) < a)

= P(B(t) ≤ x)− P(B(t) ≤ x,M(t) ≥ a)

= P(B(t) ≤ x)− P(B(t) ≤ x, τ ≤ t)
where the last equality is a simple consequence of the Intermediate Value theorem: if the maximum
has been hit above a, then the stopping time giving B(τ) = a must have been hit sometime before
that. Notice that by the reflection principle, since t ≥ τ , for the second probability we have

P(B(t) ≤ x, τ ≤ t) = P(2a−B(t) ≤ x, τ ≤ t)
= P(B(t) ≥ 2a− x, τ ≤ t) = P(B(t) ≥ 2a− x)

The last equality here follows because if B(t) ≥ 2a− x > a, then it is directly implied that a > x
and so τ ≤ t for the reflection. Then we can combine to get

P(A(t) ≤ x) = P(B(t) ≤ x)− P(B(t) ≥ 2a− x)

= P(B(t) ≤ x) + P(B(t) ≤ 2a− x)− 1

= Φ
( x√

t

)
− 1 + Φ

(2a− x√
t

)
as desired.

Example 3.2 (Arcsine Law). For a standard Brownian motion {B(t) : t ≥ 0} restricted into
t ∈ [0, 1], the time at which the maximum value is achieved, defined by the random variable τM
where B(τM ) = M(1), is arcsine distributed.
Note that due to the scaling invariance of Brownain motion, we can extend the restricted Brownian
motion in [0, 1] to infinity to apply these properties in the general scenario. We define a maximum
variable M(t,X(t)), which gives the maximum process for X(s) over the interval 0 ≤ s ≤ t. For
s ∈ [0, 1] in our interval,

P(τM < s) = P(M(s) > max
s≤u≤1

B(u))

= P(M(s)−B(s) > max
s≤u≤1

B(u)−B(s))

= P
(
M(s,B(s− t)−B(s)) > M(1− s,B(s+ t)−B(s))

)
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By the reflection principle in the second part of Proposition 9, we can take the absolute values,
which gives

P
(
M(s,B(s− t)−B(s)) > M(1− s,B(s+ t)−B(s))

)
= P(|B1(s)| ≤ B2(1− s))

where B1(s) := B(s − t) − B(s) and B2(1 − s) := B(s + t) − B(s). Using the scaling invariance
of Brownian Motion, we normalize B1 and B2 and introduce in place normalized gaussian random
variables Z1 and Z2:

P(|B1(s)| ≤ B2(1− s)) = P
(√
s|Z1| >

√
1− s|Z2|

)
= P

( |Z2|
|Z1|

>

√
s√

1− s

)
= P

( |Z2|√
|Z1|2 + |Z2|2

>
√
s
)

The natural substitution then seems to be (Z1, Z2) = (r sin θ, r cos θ) for a random variable θ ∈
[0, 2π]. So then we have

P
( |Z2|√
|Z1|2 + |Z2|2

>
√
s
)

= P(| sin θ| <
√
s) = 4P(θ < sin−1(

√
s)) =

2

π
sin−1(

√
s)

which is the arcsine distribution.

4. Brownian Motion as the limit of a Random Walk

4.1. Limiting behavior. The analogy between random walks and Brownian motion previously
mentioned actually extends further than the similar Markov nature. In particular, Brownian mo-
tion can be interpreted as the limit of a Random Walk through a functional extension of the Central
Limit theorem, for Brownian Motion. To set up this limiting behaviour, let X1, X2, . . . be a se-
quence of i.i.d random variables with mean 0 and variance 1 and let Sn =

∑n
i=1Xn represent the

corresponding random walk. Furthermore, we linearly interpolate the integral time index so that

S(t) := Sbtc + (t− btc)(Sbtc+1 − Sbtc)

which is a random function in C[0,∞). Then if we consider the normalized sequence of functions
Zn(t) in [0, 1]

Zn(t) :=
S(nt)√

n
for all t ∈ [0, 1]

we have the following result.

Theorem 10 (Donsker’s Invariance Principle). Let {B(t)}t≥0 be a standard Brownian motion.
Then on C[0, 1], the space of continuous functions on [0, 1], with the metric induced by the sup-
norm, the normalized sequence {Zn(t) : n > 0} converges in distribution to B(t) for t ∈ [0, 1].

The invariance here can be associated with the invariance of the distribution from discretized
to continuous time steps, along with an invariance along variation, since any process with mean
0 and finite variance would converge to a Brownian motion. Furthermore, notice that Donsker’s
invariance principle lends further insight into the ubiquity of Brownian phenomena. For instance,
consider the motion of microscopic particles, which under the influence of a quantum phenomena
and inter-particle interactions, can be categorized as random. Then since these random influences
lead to a random small displacement, interpreting their motion as Brownian is helpful since their
displacement is essentially the limit of a random walk under small displacements and small time
intervals.
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4.2. Embedding Theorems. The proof of this theorem relies on significant convergence theorems
over metric spaces, and thus involve some degree of measure theory. The idea behind this principle
is that we can embed random variables in the behaviour of the stopping times of a Brownian
Motion, which will follow the same law and have the same first-moment. This is the statement
of the Skorokhod embedding theorem that we will see below. Then we choose a sequence of such
stopping times with iid increments and interpret it as a random walk, whose limiting behaviour
would converge to a Brownian motion. First however, we state the necessary conditions that govern
Skorokhod’s embedding theorem, which are fortunately addressed completely by Wald’s lemmas.

Lemma 11 (Wald’s lemmas). The following properties hold for a Brownian motion:

(1) Let {B(t)}t≥0 be a standard linear Brownian motion and τ a stopping time for which either
E[τ ] < ∞ or {B(min{t, τ} : t ≥ 0} is dominated by an integrable random variable. Then
E[B(τ)] = 0.

(2) Let B(t) be a Brownian motion and τ a stopping time for which E[τ ] <∞. Then

E[B(τ)2] = E[τ ]

Theorem 12 (Skorokhod Embedding theorem). Let X be a real-valued random variable with
E[X] = 0 and finite second moment E[X2] < ∞. Then there exists a stopping time τ of the
Brownian motion {B(t)}t≥0 with respect to the natural filtration (F(t) : t ≥ 0) such that X can be
embedded onto B(τ), that is to say that B(τ) has the same law as X and E[X2] = E[τ ].

Notice that by Wald’s Identities, we have that E[B2(τ)] = E[τ ], which makes the embedding
further explicit. Before proving the theorem, we first look at an example embedding.

Example 4.1. We consider the simple case where X can take values a and b. For E[X] = 0, we
need a < 0 < b and P(X = a) = b/(b − a) and P(X = b) = −a/(b − a). It is easy to see that for
the stopping time defined on the basis of this random variable τ = inf{t : B(t) /∈ (a, b)}, we have
E[τ ] = −ab, and that B(τ) has the same law as X.

For the proving the existence of such an embedding, we first construct the following intermediate
embedding on martingales. Specifically, we look at the binary martingale, which is defined as
follows.

Definition 4.2.1. A binary splitting martingale is a martingale in which for each n ≥ 1, the
random variable Xn+1 is characterized by two values whenever the event E(x0, x1, . . . , xn) = {X0 =
x0, X1 = x1, . . . , Xn = xn} has a positive probability. In a sense, there is a binary split between
these two values at Xn+1 for a given condition on the values of the previous event.

Lemma 13 (Dubins’ Embedding theorem). Let Y be a real-valued random variable with finite
second moment E[X]2 <∞. Then there exists a martingale {Xn}n∈N such that Xn converges to X
almost surely in L2.

Proof. To construct the aforementioned embedding, we define the following ±1 elementary binary
splitting martingale over {Ω,F ,P}. Take X0 = E[X] and the basic trivial filtration F0 = {∅,Ω}.
Then, we define a sequence of auxillary Bernoulli variables as follows for n > 0

ξn =

{
1 if X ≥ Xn−1

−1 if X < Xn−1

Next, let Fn = σ(ξ0, ξ1, . . . ξn−1) be the σ-algebra generated by these random variables, and let
Xn = E[X | Fn]. With this definition of the martingale (the fact that it is a martingale trivially
follows) and its associated filtration {Fn}n≥0, it is evident that the martingale is binary splitting.
Notice that the filtration Fn partitions the probability space into 2n different sets of the form
E(x0, x1, . . . , xn) = {X0 = x0, . . . , Xn = xn where xi = ±1 for 1 ≤ i ≤ n}, each of which has a
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positive probability. Each random variable Xn+1 takes values ±1 based on E(x0, x1, . . . , xn), and
thus the binary splitting nature is also evident. Now since E[X2] < ∞, X is bounded in L2, and
thus by an application of Jensen’s inequality, it follows that

E[X2
n] = E

[
(E[X | Fn])2

]
≤ E

[
E[X2 | Fn]

]
= E[X2] <∞

Jensen’s inequality can be applied since ϕ : x → x2 is a convex function from R to R, and the
last equality follows by the law of total expectation. This gives us that E[X2

n] is bounded in L2,
and so we can apply Levy’s upward theorem for martingales and the convergence of L2 bounded
martingales to say that lim

n→∞
Xn = X∞ = E[X | F∞] for the filtration F∞ =

⋃∞
i=1Fi. Then it only

remains to show that X = X∞ almost surely.

Claim 13.1. Almost surely we have

lim
n→∞

ξn(X −Xn+1) = |X −X∞|

With this claim, we note that

E[ξn(X −Xn+1)] = E
[
ξnE[X −Xn+1 | Fn+1]

]
= 0

and since ξn(X −Xn+1) is bounded in L2 and uniformly integrable, by the dominated convergence
theorem,

E[X −X∞] = E[ lim
n→∞

ξn(X −Xn+1)] = lim
n→∞

E[ξ(X −Xn+1)] = 0

from the claim. But since E[X − X∞] = 0, we have X = X∞ almost surely. The final step is to
prove the claim. If X(ω) = X∞(ω) for some ω ∈ Ω, then the claim naturally holds. In the case that
X(ω) > X∞(ω), then for n > N for sufficiently large N we must have X(ω) > Xn(ω), so we set
ξn = 1 to get the claim. The same argument holds if X(ω) < X∞(ω), except we choose ξn = −1,
and with the claim, the embedding theorem has been proved. �

Proof of Skorokhod Embedding Theorem. Notice that if we take the binary splitting martingale from
Dubins embedding, then since Xn is supported on at most two values based on E(x1, x2, . . . xn),
we can use the stopping time seen in Example 4.1. Next, we construct a sequence of times τ0 ≤
τ1 ≤ τ2 ≤ · · · with limn→∞ τn = τ defined as

τn = inf
{
t ≥ τn−1 : B(t) /∈

(
fn(B(τ1), . . . , B(τn−1), ξn) for ξn = ±1

)}
such that E[X2

n] = E[τn] and B(τn) ∼ Xn. Notice that by the strong Markov property, {B(τn−1 +

t) − B(τn−1)}t≥0 is independent of the Brownian filtration F (B)
τn−1 , and so we can confirm that the

distribution of each B(τn) would indeed match that of Xn as planned. To verify that we indeed
have E[X2

n] = E[τn], we use the law of total expectation

E[τn − τn−1] = E
[
E[τn − τn−1 | F (B)

τn−1
]
]

= E
[
E[(B(τn)−B(τn−1))

2 | F (B)
τn−1

]
]

= E
[
E[(B(τn)−B(τn−1)

2]
]

= E[(Xn −Xn−1)
2]

where the last line follows by the strong Markov property since it asserts that (B(τn)−B(τn−1))
2 is

independent of the filtration F (B)
τn−1 . The desired result then follows by properties of the martingale,

E[τn] =
n∑
j=1

E[τn − τn−1] =
n∑
j=1

E[(Xn −Xn−1)
2] = E[X2

n]

Now, we use the dominated convergence theorem and L2 convergence

E[τ ] = lim
n→∞

E[τn] = lim
n→∞

E[X2
n] = E[X2] <∞
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Furthermore, by the continuity of Brownian motion, limn→∞B(τn) = B(τ), which converges in
distribution to limn→∞Xn = X as shown. �
Finally, we can prove Donsker’s invariance principle after the introduction of a lemma.

Lemma 14. Let B(t) be a linear Brownian motion. Then for any random variable X with mean
zero and variance one, there exists a sequence of stopping times

0 = τ0 ≤ τ1 ≤ τ2 ≤ · · ·
such that

(1) The sequence {B(τn)}n≥0 has the distribution of a random walk and its increments have
the law of X.

(2) For the sequence of C[0, 1] random functions {Zn(t) : n > 0} now constructed from the
random walk {B(τn)}n≥0, so that

Zn(t) =
B(nt)√

n
where B(u) = B(τbuc) + (u− buc)(B(τbuc+1)−B(τbuc))

we have the following sup-convergence

lim
n→∞

P
(

sup
0≤t≤1

∣∣∣∣Zn(t)− B(nt)√
n

∣∣∣∣ > ε
)

= 0

Proof. To prove the first part, we develop an inductive argument using the Skorokhod embedding
theorem to claim that the following construction is valid.

Claim 14.1. There exists a sequence of stopping times 0 = τ0 ≤ τ1 ≤ τ2 ≤ · · · such that B(τn) is
the embedded random walk with E[τn] = n.

By the embedding theorem, we first define a stopping time τ1 such that E[τ1] = 1 and B(τ1)
d
= X,

which sets the base case. For the inductive step, suppose we have τk a stopping time such that

E[τk] = k and B(τk)
d
= X. Then by the strong Markov property of Brownian motion, since

{B′(t) := B(τk + t)−B(τk)}t≥0
is independent of the filtration F+(τk), we can consider another stopping time τk→k+1 such that

E[τk→k+1] = 1 and B′(τk→k+1)
d
= X. Then notice that if we define τk+1 := τk + τk→k+1, we get

E[τk+1] = 1 + E[τk] = k + 1 and that B(τk+1) is the (k + 1)th entry of the sequence which has
increments given by the law of X due to our construction of τi→i+1.

For the second part we define the event En that the distributions Zn(t) and Wn(t) := B(nt)√
n

do not

converge, which is to say that there exists t ∈ [0, 1] such taht |Zn(t)−W (t)| > ε. Then our theorem
will be proven if we show that limn→∞ P(En) = 0. In the partitioning of the unit interval, let k be
the integer that contains t in the sense that (k − 1)/n ≤ t ≤ k/n. Since this interval is between
integers, Zn(t) is defined by its linear interpolation, so we have

En ⊂
{
∃ t ∈ [0, 1] such that

∣∣∣∣B(τk)√
n
−Wn(t)

∣∣∣∣ > ε

}⋃{
∃ t ∈ [0, 1] such that

∣∣∣∣B(τk−1)√
n
−Wn(t)

∣∣∣∣ > ε

}
Next, by scaling invariance, we can substitute B(τk) =

√
nWn(τk/n) to get

En = E∗n ⊂
{
∃ t ∈ [0, 1] such that

∣∣Wn(τk/n)−Wn(t)
∣∣ > ε

}
∪
{
∃ t ∈ [0, 1] such that

∣∣Wn(τk−1/n)−Wn(t)
∣∣ > ε

}
And then for 0 < δ < 1, we can further generate the inclusion by splitting based on stopping times:

En = E∗n ⊂
{
∃ s, t ∈ [0, 2] such that |s− t| < δ, |Wn(s)−Wn(t)| > ε

}
∪
{
∃ t ∈ [0, 1] such that |τk/n− t| ∨ |τk−1/n− t| ≥ δ

}
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Notice that by this redfinition, the first event is independent of n, so then since Brownian motion
is continuous, we can choose arbitrarily small δ > 0 to make the probability as small as possible,
hence can send it to zero. Then all we need to show is that the second converges to zero, for which
since originally t ∈ [(k − 1)/n, k/n], we obtain

P
{
∃ t ∈ [0, 1] such that |τk/n− t| ∨ |τk−1/n− t| ≥ δ

}
≤ P

{
sup

1≤k≤n

(τk − (k − 1)

n

)
∨
(k − τk−1

n

)
≥ δ

}

≤ P

{
sup

1≤k≤n

(τk − (k − 1)

n

)
≥ δ/2

}
+

{
sup

1≤k≤n

(k − τk−1
n

)
≥ δ/2

}
= 0

As the last step towards our proof, we will show that each of the summands indeed converges to
zero as n→∞. To see this, first note that

lim
n→∞

τn
n

= lim
n→∞

1

n

n∑
k=1

(τk − τk−1) = lim
n→∞

1

n

n∑
k=1

τk→k+1 = 1

where the convergence to 1 follows by the Komlmogorov law of large numbers since E[τk→k+1] = 1
for all k by construction. Next, it remains to notice that since limn→∞ τn/n = 1, we would also
have that

lim
n→∞

sup
0≤k≤n

|τk − k|
n

= 0

Hence, the probabilities being added converge to zero, and so does limn→∞ P(En), which was our
original objective. �

Proof of Donsker’s Invariance Princple. With the lemma, we can prove Donsker’s theorem simply
by validating one of the conditions of the Portmanteau theorem for the sequence Zn and Wn(t).
With definitions consistent with the lemma, let K ⊂ C[0, 1] be closed. We define

K(ε) := {f ∈ C[0, 1] : ‖f − g‖sup ≤ ε for some g ∈ K}

From this definition, we have the following probabilistic inequality

P(Zn ∈ K) ≤ P(Wn ∈ K[ε]) + P(‖Zn −Wn‖sup > ε

From the previous lemma, we know that

lim
n→∞

P
(

sup
0≤t≤1

|Zn −Wn| > ε
)

= 0

To treat the second term, notice that since we can choose epsilon arbitrarily, we have

lim
n→∞

lim
ε→0+

P(Wn ∈ K(ε)) = lim
ε→0+

P(B ∈ K(ε)) = P(B ∈ ∩ε>0K(ε) = P(B ∈ K)

So then the inequality becomes

lim
n→∞

P(Zn ∈ K) ≤ P(B ∈ K)

and by an application of the Portmanteau theorem, it follows that Zn(t)
d
= B(t) as desired. �
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5. Stochastic Calculus

5.1. Setting up the stochastic integral. As mentioned before, the nowhere differentiability of
Brownian motion poses a significant problem with regards to how one might formulate a proper and
intuitive calculus for it, especially in the absence of a limiting behavior. An extremely successful
approach turns out to be to start with the integral, and after demonstrating convergence in a
mean-square sense, further the theory of differentiation and differential equations. We mark the
foundations of stochastic calculus in this section, as well as look at some key results like Ito’s
formula and explore some of its applications.

Definition 5.1.1 (Progressively Measurable processes). A process {X(t, ω) : t ≥ 0, ω ∈ Ω} is
called a progressively measurable process if for each t ≥ 0, the map X : [0, t]×Ω→ R is measurable
with respect to the σ-algebra B([0, t])⊗ F(t), where B is a Borel measure and F is the complete
filtration.

Lemma 15. Any non-anticipating process that is either left or right-continuous is also progressively
measurable.

We do not prove this lemma, but a relatively straightforward proof can be found in [MP10].
Equipped with this and the notion of L2 convergence, however, we now define the stochastic
integral, whose existence will be our main focus for a majority of this section.
Let {F (t, ω) : t ≥ 0, ω ∈ Ω} be a progessively measurable process that is of the form

F (t, ω) =

k∑
i=1

fi(ω)1(ti,ti+1](t) for 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk+1 and F(ti) measurable fi

which analogous to the classical case, can define the integral finitely as∫ ∞
0

F (s)dB(s) :=
k∑
i=1

fi(B(ti+1)−B(ti))

Now we must show that every progressively measurable process can be expressed as the limiting
behavior of a sequence of progressively measurable processes {Fn}n∈N, and for this the definition
of the stochastic integral of F would be∫ ∞

0
F (s)dB(s) := lim

n→∞

∫ ∞
0

Fn(s)dB(s)

Naturally, this raises several questions about existence and convergence, which we address in the
next definition.

Definition 5.1.2. Let F be a progressively measurable process such that E
∫∞
0 F (s)2ds <∞. We

define the stochastic integral to then be∫ ∞
0

F (s)dB(s) := lim
n→∞

∫ ∞
0

Fn(s)dB(s)

where the convergence will be proven in the L2 sense, but can be extend to generalized spaces beyond
L2 (see [SP14]). However, we require for the integral the following conditions to be satisfied:

(1) Existence of limiting behavior : Every progressively measurable process {F (t, ω) : t ≥ 0, ω ∈
Ω} with E

∫∞
0 F (s)2ds <∞ can be approximated by progressively measurable step processes

Hn in the `2 norm sense.
(2) Monotone convergence for the limiting sequence: For each of these sequences the above

limiting integration relation holds in an L2 sense.
(3) Invariance: The limit is independent of the chosen sequence Hn.

The first lemma we introduce towards forming the stochastic integral will prove (1):
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Lemma 16. For every progressively measurable process F with properties as above, there is a
sequence of progressivley measurable processes Fn such that limn→∞ ‖F − Fn‖2 = 0.

Proof. We prove this lemma and form a proper approximation through three different convergence
results with measures:

(1) Approximation by a bounded progressively measurable process: If we define a
form of cut-off at time n > 0 with Fn as Fn(s, ω) := F (s, ω) for s ≤ n and Fn(s, ω) = 0
otherwise, then clearly we get limn→∞ ‖F − Fn‖2 = 0. Next we consider the truncation
Fn(s, ω) := min{F (s, ω), n} for large n on a finite interval, for which the `2 convergence
also holds.

(2) Approximation by a bounded, a.s. continuous, progressively measurable pro-
cess: Let h = 1/n, and setting F (s, ω) = F (0, ω) for negative s, we can define a continuous
process through the average

Fn(s, ω) =
1

h

∫ s

s−h
F (u, ω)du

which taken over past entries, is non-anticipating. It is almost surely continuous, and thus
by the aforementioned lemma, Fn is a progressively measurable process. The furthermore,
as an average, the following limiting behavior is clear:

lim
n→∞

1

h

∫ s

s−h
F (u, ω)du = lim

h→0+

1

h

∫ s

s−h
F (u, ω)du = F (s, ω)

Finally, it remains to show that we indeed have convergence in an `2 sense. This is a simple
consequence of the dominated convergence theorem over Lp spaces, and so we also have
limn→∞ ‖F − Fn‖2 = 0.

(3) Approximation by a step process: The bounded, almost surely continuous and pro-
gressively measurable function defined above can easily be converted into a step process by
defining Fn(s, ω) := F (k/n, ω) for j/n ≤ s ≤ (j+ 1)/n. It is easy to check both progressive
measurability and the desired limiting behavior, completing the proof.

�
Next, following a quick lemma, we can move on to proving the last two properties.

Lemma 17. For F a progressively measurable step process such that E
∫∞
0 F (s)2ds <∞, we have

that

E

[(∫ ∞
0

F (s)dB(S)

)2
]

= E
∫ ∞
0

F (s)2ds

Proof. Due to the strong Markov property, this lemma becomes relatively easy to prove since the

cross terms vanish. We consider the progressively measurable step process F =
∑k

i=1 fi1(ti,ti+1]

E
(∫ ∞

0
F (s)dB(S)

)2

= E

[
k∑
i=1

k∑
j=1

fifj
(
B(ti+1)−B(ti)

)(
B(tj+1)−B(tj)

)]

=
k∑
i=1

E
[
f2i
(
B(ti+1)−B(ti)

)2]
+ 2

∑
i 6=j

E
[
fifj

(
B(ti+1)−B(ti)

)(
B(tj+1)−B(tj) | F(tj)

)]

=

k∑
i=1

E
[
f2i
(
B(ti+1)−B(ti)

)2]
=

k∑
i=1

E[f2i ](ti+1 − ti) =

∫ ∞
0

F (s)2ds

�
Notice that this lemma leads directly to the following corollary:
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Corollary 17.1. Suppose that for a progressively measurable step process {Fn(s, ω)}n∈N we have

lim
m,n→∞

E
∫ ∞
0

(Fm − Fn)2ds = 0

then we can make a similar statement mean-squared sense for the stochastic integral, namely it
follows that

lim
m,n→∞

E

[(∫ ∞
0

Fm(s)− Fn(s)dB(S)

)2
]

= 0

This final corollary allows us sufficient background to summarize and develop the results into
one comprehensive theorem that addresses (2) and (3) from the original definition, completing the
formulation of the stochastic integral for step processes.

Theorem 18 (The stochastic integral for step processes). Let F be a progressively measurable
process. Suppose that {Fn}n∈N is a sequence of progressively measurable step processes such that

lim
n→∞

E
∫ ∞
0

(F − Fn)2ds = 0

Then the stochastic integral is defined as

lim
n→∞

∫ ∞
0

Fn(s)dB(s) =:

∫ ∞
0

F (s)dB(s)

which is convergent in an L2 sense and is independent of the sequence Fn. Furthermore, we also
have that

E
(∫ ∞

0
F (s)dB(S)

)2

= E
∫ ∞
0

F (s)2ds

Proof. Applying the triangle inequality to Corollary 17.1 qualifies Fn for its assumption and so it
follows that

∫∞
0 Fn(s)dB(s) is a Cauchy sequence in L2 by virtue of the assertion of Corollary 17.1.

Thus the stated limit exists, and independence of choice comes from the Corollary as well. The
last statement holds simply because of Lemma 17 applied to Fn under the limit. �

While we have achieved the existence of the stochastic integral, the problem of continuity remains
since the theorem only works for progressively measurable step processes. Fortunately, there is a
natural extension into continuity, which we prove in the following theorem.

Theorem 19. Suppose we have a progressively measurable process {F (s, ω) : s ≥ 0, ω ∈ Ω} such

that E
∫ t
0 F (s, ω)2ds < ∞ for all t. Then there almost surely exists a continuous modification of∫ t

0 F (s, ω)dB(s) that is a martingale so that E
∫ t
0 F (s, ω)dB(s) = 0 for all t.

Notice that our bounds of [0,∞) have been replaced by finite bounds. This comes from a simple

addition to our definition of the stochastic integral: we define F (t0)(s, ω) := F (s, ω)1s≤t0 as a
progressively measurable process based on {F (s, ω) : s ≥ 0, ω ∈ Ω} such that E

∫∞
0 F (s)2ds < ∞.

Clearly, all properties are preserved, but due to the updated definition for the process s > t0, we
have the stochastic integral up to t0 as∫ t

0
F (s)dB(s) :=

∫ ∞
0

F (t0)(s)dB(s)

Proof. Moving on to the proof, our general goal will be to embed the properties of the stochastic
integral for the progressively measurable processes to a continuous martingale Y (t) that is in the
question. Let Fn be a sequence of step processes such that we can fix large t0 to have ‖Fn −
F (t0)‖2 −→ 0, and so by the corollary and the argument in the previous theorem,

E
(∫ ∞

0
Fn(s)− F (t0)(s)dB(s)

)2
→ 0
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Naturally for s ≤ t,
∫ s
0 Fn(u)dB(u) is F(s) measurable, and beyond that

∫ t
s Fn(u)dB(u) is inde-

pendent of the filtration due to a variant of the strong Markov property. This makes{
Xn(s) :=

∫ s

0
Fn(u)dB(u) : 0 ≤ s ≤ t0

}
a martingale for all n. Based on the limiting behaviour of Xn(s), we define another martingale{

Y (t) := E
[ ∫ t0

0
F (u) dB(u) | F(t)

]
: 0 ≤ t ≤ t0

}
such that Y (t0) =

∫ t0

0
F (u)dB(u)

But now notice that by Doob’s Maximal inequality,

E
[

sup
0≤t≤t0

(
Xn(t)− Y (t)

)2]
= E

[
sup

0≤t≤t0

(∫ t

0
Fn(s) dB(s)− Y (t)

)2]
≤ 4E

(∫ t0

0
Fn(s) dB(s)− Y (t0)

)2
= 4E

(∫ t0

0
Fn(s)− F (s) dB(s)

)2
→ 0 as n→∞

Thus, Y (t), as the limiting behaviour of the continuous time martingale Xn(t), is a continuous time
martingale itself. Taking the limit in an L2 sense, we can examine properties of Y (t) in the context

of Xn(t): for 0 ≤ t ≤ t0, the random variable
∫ t
0 H(u)dB(u) must now be F(t) measurable, while

the remaining portion of
∫ t0
t H(u)dB(u) is independent of the filtration and has zero expectation.

But this leads to the following

Y (t) = E[Y (t0) | F(t)] = E
[ ∫ t0

0
F (u) dB(u) | F(t)

]
= E

[ ∫ t

0
F (u) dB(u) | F(t)

]
+ E

[ ∫ t0

t
F (u) dB(u) | F(t)

]
=

∫ t

0
F (u) dB(u) + E

[ ∫ t0

t
F (u) dB(u)

]
=

∫ t

0
F (u) dB(u)

proving that Y (t) is matches
∫ t
0 F (u) dB(u), making the latter a suitable continuous analog for the

stochastic integral. �

5.2. Ito’s Formula and Applications. Apart from formulating the stochastic integral, Ito was
also responsible for producing results that extensively characterized the nature of stochastic calculus
and furthered the scope of integration of such functions. In this next section, we look at his
eponymous formula, stated without proof as a rigorous proof is somewhat involved. One can find
this proof, along with a much more rigorous and deeply measure theoretic treatment of the topic,
in [SP14]. The book also delves extensively into the many applications of Ito’s formula in stochastic
differential equations; however, a more application-centric text with arguably less rigor is [Cal12],
which lays heavy focus on the resultant Black-Scholes equation and other applications of stochastic
calculus to finance. With that, we now provide Ito’s formula in two different versions:

Theorem 20 (Ito’s Formula I). Let f : R→ R be a twice continuously differentiable function such

that E
∫ t
0 f
′(B(s))2ds <∞ for some t > 0. Then almost surely for 0 ≤ s ≤ t, we have

f(B(s))− f(B(0)) =

∫ s

0
f ′(B(u))dB(u) +

1

2

∫ s

0
f ′′(B(u))du

Ito’s formula can be thought of as the fundamental theorem of calculus for stochastic processes,
and plays a large role in the solution of stochastic differential equations as we will see in the following
examples. That being said, we now state another version of Ito’s formula that is more general.
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Theorem 21 (Ito’s Formula II). Let {W (s) : s ≥ 0} be an increasing, continuous and non-
anticipating stochastic process. Let f : R→ R be a twice continuously differentiable function in x,
and a continuously differentiable function in y. Then if

E
∫ t

0

(
∂xf(B(s),W (s))

)2
ds <∞

almost surely, for 0 ≤ s ≤ t we have

f(B(s),W (s)− f(B(0),W (0)) =

∫ s

0
∂xf(B(u),W (u))dB(u) +

∫ s

0
∂yf(B(u),W (u))dW (u)

+
1

2

∫ s

0
∂xxf(B(u),W (u)du

To see the faculty and sheer applicability of Ito’s formula, consider the Ornstein Uhlenbeck
process.

Example 5.1 (The Ornstein-Uhlenbeck process). The Ornstein-Uhlenbeck process, used to model
the velocity of a large Brownian particle under the influence of friction, obeys the stochastic differ-
ential equation

dX(t) = −αX(t)dt+ βdB(t)

A solution in terms of X(t) can be calculated by virtue of Ito’s formula. We start by defining the
function Y (t) = F (t,X(t)) given by f(x, t) = xeαt. Notice that in terms of traditional ODEs, the
eαt term serves as our integrating factor. We have ∂tf(x, t) = αxeαt, ∂xf(x, t) = eαt and finally
∂xxf(x, t) = 0. Then we can use Ito’s formula on f(t,X(t)) to get that

Y (t)− Y (0) =

∫ t

0
αX(s)eαsds+

∫ t

0
eαsdX(s) +

1

2

∫ t

0
∂xxf(x, s)ds︸ ︷︷ ︸

=0

=

∫ t

0
αX(s)eαsds+

∫ t

0
−αX(s)eαsds︸ ︷︷ ︸

=0

+

∫ t

0
βeαsdB(s)

where we used the original SDE dX(t) = −αX(t)dt + βdB(t). Then substituting X(t) from our
original map, we get

X(t)eαt = X(0) +

∫ t

0
βeαsdB(s)

or X(t) = X(0)e−αt +

∫ t

0
βeα(s−t)dB(s)
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