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Abstract. This paper goes over random walks over groups. We first start with definitions
of groups and other related material, and then transition into convolutions of distributions
and Fourier transforms. Lastly, we use this to prove a nice upper bound on the mixing
time, which we then illustrate in an example of the lazy random walk on Z/nZ. The paper
mostly follows [Dia87], though hopefully is easier to follow. Huge thanks to Simon, whose
help otherwise would not have made this paper possible.

1. Preliminaries

A paper on random walks in groups would be incomplete if it didn’t start out with a good
introduction. Here we define the basics of a group.

Definition 1.1. A group G is a set closed under a binary operation satisfying

(1) ∃e ∈ G | eg = ge = g ∀g ∈ G
(2) ∃h ∈ G | gh = hg = e ∀g ∈ G
(3) f(gh) = (fg)h ∀f, g, h ∈ G

.

These are the identity, inverse, and associative properties. Subsets of groups that are also
groups called subgroups. Because subgroups are closed under their operation, we can split a
group into cosets of a subgroup H, where each coset is gH for elements g ∈ G.

In fact, gH is actually a left coset, and Hg would be a right coset. However, we usually
talk about cosets of normal subgroups, which is when gH and Hg are the same set. Note
that this is equivalent to H being closed under conjugation (i.e subgroup H ∈ G is normal
iff ghg−1 ∈ H for all g ∈ G, h ∈ H). The set of cosets of a normal subgroup forms a group
called the quotient group.

Groups also contain a generating set, which is the smallest subset such that every element
can be expressed as the combination of finitely many elements in the set and their inverses.
Groups are usually represented by their generating set.

Since groups are essentially objects, we can define functions that send elements in one
group to another. But we only want functions that will preserve the group structure, such
as sending the identity to the identity and the generating set to the generating set.

Definition 1.2. For groups G,H, a homomorphism is a function f : G→ H satisfying

f(g1g2) = f(g1)f(g2) ∀g1, g2 ∈ G.

When we usually think of probability, we think of events such as rolling a die or flipping
a coin, and associate a value from 0 to 1 to that event. We can do the same with groups, by
using a function to associate a probability to each element of a group.
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Definition 1.3. A probability distribution is a function P : G→ [0, 1] such that∑
g∈G

P (g) = 1.

For example, rolling a fair die is a distribution on Z /6Z, with equal probabilities for
each element. A game where you can move forward or backward at every step with equal
probability is best represented by Z+ with distribution P (1) = P (−1) = 1

2
and P (X) = 0

otherwise. In these non-uniform distributions, the elements that have probability zero are
not important, so in many cases we want to work with the support of P .

Definition 1.4. The support of a distribution P is the set of elements of G with nonzero
probability.

Now just like how we can construct a sequence of coin flips or dice rolls, we can construct
a sequence by starting from the identity and then every step multiplying by an element g
with probability P (g).

Definition 1.5. A random walk on a group G along with its associated probability distri-
bution P is a sequence of elements starting from e such that the probability of g moving to
gh is P (h) for g, h ∈ G.

A random walk is irreducible if the probability of getting to h from g is positive for all
g, h ∈ G, and it is aperiodic if for time t > T where T is fixed the probability of reaching a
state is positive. If both conditions are satisfied, the random walk is ergodic.

Example. Shuffling cards is a random walk on Sn, the symmetric group. The probability
distribution depends on what method is used to shuffle the cards.

One easy albeit inefficient way to shuffle a deck is by transposition, or switching the
positions of two not necessarily distinct cards in the deck. This can be represented by the
distribution

P (π) =


1
n

π = e
2
n2 π is a transposition

0 otherwise.

In standard probability, as long as we repeat for a large amount of times, our sequence
will “converge” to some value. For example, a fair coin will always converge to a 50-50
distribution after a large number of tries no matter what the first few flips are.

In the same way, as long as we make a large amount of steps in any random walk, we
also approach a “stationary distribution” consisting of the probabilities of landing on each
element. But finding the probability of being at element g after a long time k is quite hard
in practice.

Definition 1.6. The convolutions of a distribution P are defined recursively by

P ? P (g) =
∑
h

P (gh−1)P (h)

and

P k(g) = P k−1(g) ? P (g).
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Note that P 2(g) is the summing over all instances of first rolling element h and then rolling
gh−1. The

In many cases we want to find what the convolutions converge to. It turns out that ergodic
random walks always have a unique stationary distribution. This distribution is uniform if
the P is symmetric, i.e. P (g) = P (g−1) ∀g ∈ G. But when are random walks ergodic?

Theorem 1.7. For a group G and its probability distribution P , the random walk will be
ergodic iff the support of P cannot be contained by a proper subgroup or a coset of a proper
normal subgroup of G.

Proof. Let the support of P be Σ. If the random walk is irreducible, then starting from e we
can arrive at any element g, so Σ generates G. But then Σ cannot be contained by a proper
subgroup of G, as then due to closure the set generated by Σ must be contained within the
subgroup. Conversely, if Σ cannot be contained within a proper subgroup H of G, then since
the set generated by Σ is a subgroup, it must be G. Then we can always get from g → h by
multiplying through the corresponding generators in g−1h, so the random walk is irreducible.

Assume that the random walk is irreducible. Now suppose that Σ is contained by some
coset gH. Then after the nth step we will arrive at some (gh1)(gh2) · · · (ghn) = gn(h1 · · ·hn) ∈
gnH. Thus we can pick some element g′ ∈ G\gnH, we can never get to g′ in n steps, so
the random walk is periodic. Conversely, suppose the random walk is periodic with period
m > 1. In formal terms, this is

m = gcd{k | ξ1 · · · ξk = e, ξi ∈ Σ}.
Now define

Σi = {ξ1 · · · ξk | ξj ∈ Σ, k ≡ j (mod m)}.
We prove that these sets do not overlap. Note that if x ∈ Σi, y ∈ Σj, then xy ∈ Σi+j, which
also implies x−1 ∈ Σ−i. Suppose we have ξ1 · · · ξp = ξ′1 · · · ξ′q, and thus

e = ξ′1 · · · ξ′qξ−1p · · · ξ1−1 ∈ Σp(m−1)+q.

Therefore p(m− 1) + q ≡ 0 (mod m) and p ≡ q. Finally, note that Σ0 is a normal subgroup
of G, so because Σ ⊂ Σ1 it is contained in a coset of Σ0. �

Mixing Times

Because mathematicians are greedy, we also want to find how many steps we need to get
a close approximation of the stationary distribution.

Definition 1.8. Total variation measures how much a distribution deviates from its sta-
tionary distribution u after a certain amount of steps, and is calculated by

||P k − u||TV =
1

2

∑
g

∣∣∣∣P k(g)− 1

|G|

∣∣∣∣ .
When the total variation is small, commonly measured with 1

4
or other small number, we

say that the random walk is sufficiently mixed. The mixing time, is the minimum time k for
which a random walk is mixed.

It is always nice to find the mixing time or find better bounds on it in a random walk
in order to have more efficient processes. For example, Diaconis and Shahshahani proved
in [DS80] that it takes 270 transpositions on a 52-card deck to ensure the total variation was
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less than 0.01. In comparison, the popular riffle shuffle takes about 6 shuffles to ensure the
same “randomness.”

The mixing time is often very hard to compute, so we rely on bounds to get a rough
estimate. One such bound uses Fourier analysis.

For a finite group G, we can define a representation ρ as a homomorphism ρ : G→ GL(V )
that sends group elements to a matrix. Here, GL(V ) is the general linear group, or the group
of invertible matrices with dimension dim(V ). Now we introduce Fourier transforms :

Definition 1.9. The Fourier transform of a distribution P on a finite group G at ρ is

P̂ (ρ) =
∑
g∈G

P (g)ρ(g).

For the uniform distribution, we have the following nice property:

P̂ (ρ) =

{
1 ρ is trivial

0 otherwise
.

Here 1 and 0 refer to the identity and zero matrices respectively, and the trivial representation
is the map that sends everything to the identity matrix. The proof for trivial ρ is trivial,
while the other part relies on ρ(g−1)ρ(g) being the identity.

They also play nicely with convolutions:

Proposition 1.10. Fourier transforms convert convolutions to products:

P̂ n(ρ) =
(
P̂ (ρ)

)n
.

Proof. In the case of n = 2, we have

P̂ 2(ρ) =
∑
g∈G

(
ρ(g)

∑
h∈G

P (gh−1)P (h)

)
=
∑
h∈G

∑
g∈G

P (gh−1)ρ(gh−1)P (h)ρ(h)

=
∑
h∈G

P (h)ρ(h)
∑

gh−1∈G

P (gh−1)ρ(gh−1)


=

(∑
h∈G

P (h)ρ(h)

) ∑
gh−1∈G

P (gh−1)ρ(gh−1)


=
(
P̂ (ρ)

)2
.

The proof then follows inductively. �

Now for a matrix A we define A∗ to be its conjugate transpose, or the matrix obtained
by taking the transpose and then replacing each entry with its complex conjugate. For a
real-valued Matrix, A∗ will just be the transpose.

Note that A∗A must be positive semi-definite, as for any nonzero vector z we have
z∗A∗Az = (Az)∗(Az) = |Az|2 ≥ 0. Thus we can let B be a matrix such that BB = A∗A, or

in bad notation B =
√
A∗A. We say the trace of B is the trace norm of A, denoted as ||A||.
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Theorem 1.11. There exists a function f : G→ C satisfying

1) f(g) =
1

|G|
∑
ρ

dim(V ) Tr
(
f̂(ρ)ρ(g−1)

)
2) ||f ||2 =

1

|G|
∑
ρ

dim(V )||f̂(ρ)||2.

Proof. I claim that we can find this function. Let

f(g) =

{
1 g = h

0 otherwise

for some h ∈ G. Taking the Fourier transform, we have f̂(g) = ρ(h), so

f(g) =
1

|G|
∑
p

dp Tr
(
ρ(hg−1)

)
.

Since the trace of the regular representation is |G| and 0 when hg−1 is the identity or not,
the sum evaluates to 1 when g = h and 0 otherwise, as desired.

We can think of f as a matrix corresponding to f(g) for all g ∈ G. Therefore the trace
norm is the trace of f ∗f , or just the sum of the products between elements and conjugates.
In other words,

||f(g)||2 =
∑

f1(g)f2(g)

where f1, f2 are permutations on f . Now fix f2 = f as defined above, so we want to prove

f1(h) =
1

|G|
∑
ρ

dρ Tr
(
f̂1(ρ)ρ∗(h)

)
which follows from the above equation. �

Using this theorem, we then prove an upper bound for the mixing time:

Corollary 1.12. For a probability distribution P on a finite group G,

4||P k − u||2 ≤
∑
ρ

dim(V )||P̂ (ρ)||2k.

Proof. From our definition and then Cauchy-Schwartz, we have

4||P k − u||2 =

(∑
g

∣∣P k(g)− u(g)
∣∣)2

≤ |G|
∑
g

∣∣P k(g)− u(g)
∣∣2 .

We can then substitute the above theorem and then apply Plancherel’s Theorem (integral is
taken over all elements of G) which gives us

4||P k − u||2 ≤
∑
ρ 6=1

dp Tr
(
P̂ (ρ)kP̂ (ρ)k∗

)
.

The proof then follows from noticing that ||AB|| ≤ ||A|| · ||B||. �
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We can now compute the mixing times of some Markov chains using this theorem. Suppose
we have the lazy random walk on Z /nZ where P (0) = 1

2
and P (k) = P (−k) = 1

4
for k, n

relatively prime. The irreducible representations are one-dimensional and must be given by
ρa(g) = e2πiag/nρ(e), so then the Fourier transform is

P̂ (ρa) =
∑
g

P (g)ρa(g) =
1

2
+

1

4
e2πiak/n +

1

4
e−2πiak/n =

1

2
+

1

2
cos(2πak/n).

Plugging in the above corollary, we have

4||P l − u|| ≤ 2−2l
n−1∑
a=1

(1 + cos(2πak/n))2l = 2−2l
n−1∑
a=1

cos4l(πak/n).

Approximating with cosx ≤ e−x
2/2 (which holds as long as k ≤ n

2
), we arrive at

4||P l − u|| ≤ 2−2l
∞∑
a=1

e−2π
2a2k2l/n2

= 2−2le−2π
2k2l/n2

∞∑
a=1

e−2π
2(a2−1)k2l/n2

≤ 2−2le−2π
2k2l/n2

∞∑
a=1

e−6π
2ak2l/n2

= 2−2le−2π
2k2l/n2 · e−6π

2k2l/n2

1− e−6π2k2l/n2 =
2−2le−8π

2k2l/n2

1− e−6π2k2l/n2 .

If l ≥ n2

k2
, then clearly this expression is less than 1. Therefore the walk becomes well-mixed

after at least n2

k2
steps.
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