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Abstract. In this paper we will talk about Brownian Motion and its relationship to Markov
Chains.

1. Introduction

Brownian motion, is the random motion of particles suspended in a medium.It is described
as random fluctuations in a particle’s partition which change the position of the particle and
further effects future fluctuations in the closed system. We will talk about stochastic calculus
which makes it possible to use calculus on stochastic processes like Brownian motion like
the Ito integral Then we will talk about some of the physical interpretations and usage of
stochastic and Brownian motion in physics.

2. Definitions

2.1. Probability Space. In probability theory, a probability space or a probability triple
(ω, α.β) is a mathematical construct that provides a formal model of a random process or
”experiment”. For example, one can define a probability space which models the throwing
of a die.

A probability space consists of three elements:
1). A sample space, Ω, which is the set of all possible outcomes.
2). An event space, which is a set of events α an event being a set of outcomes in the

sample space.
3). A probability function, which assigns each event in the event space a probability, which

is a number between 0 and 1.

2.2. Brownian Motion. Brownian motion, is the random motion of particles suspended
in a medium.

This pattern of motion typically consists of random fluctuations in a particle’s position
inside a fluid sub-domain, followed by a relocation to another sub-domain. Each relocation
is followed by more fluctuations within the new closed volume. This pattern describes a
fluid at thermal equilibrium, defined by a given temperature. Within such a fluid, there the
direction of flow for each particle is random.

2.3. Stochastic Differential Equations. A stochastic differential equation is a differential
equation in which one or more of the terms is a stochastic process, resulting in a solution
which is also a stochastic process. SDEs are used to model various phenomena such as
unstable stock prices or physical systems subject to thermal fluctuations. Typically, SDEs
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contain a variable which represents random white noise calculated as the derivative of Brow-
nian motion or the Wiener process.

2.4. Wiener Process. In mathematics, the Wiener process is a real valued continuous-
time stochastic process named in honor of American mathematician Norbert Wiener for his
investigations on the mathematical properties of the one-dimensional Brownian motion. It
is one of the best known Lévy processes ( stochastic processes with stationary independent
increments)

2.5. Martingale. In probability theory, a martingale is a sequence of random variables (i.e.,
a stochastic process) for which, at a particular time, the conditional expectation of the next
value in the sequence, regardless of all prior values, is equal to the present value.

2.6. Semimartingale. In probability theory, a real valued stochastic process X is called a
semimartingale if it can be decomposed as the sum of a local martingale and an adapted
finite-variation process. Semimartingales are ”good integrators”, forming the largest class of
processes with respect to which the Itô integral and the Stratonovich integral can be defined.

The class of semimartingales is quite large (including, for example, all continuously differ-
entiable processes, Brownian motion and Poisson processes).

3. Stochastic Calculus

It allows a consistent theory of integration to be defined for integrals of stochastic processes
with respect to stochastic processes. It is used to model systems that behave randomly.

The best-known stochastic process to which stochastic calculus is applied is the Wiener
process (named in honor of Norbert Wiener), which is used for modeling Brownian motion
and other physical diffusion processes in space of particles subject to random forces.

One of the main things used in stochastic calculus is the Ito Integral..

3.1. Ito Integral. Itô calculus, named after Kiyoshi Itô, extends the methods of calculus
to stochastic processes such as Brownian motion (see Wiener process).

The central concept is the Itô stochastic integral, a stochastic generalization of the Rie-
mann–Stieltjes integral in analysis. The integrands and the integrators are now stochastic
processes:

Yt =

∫ t

0

Hs dXs,

3.1.1. Integration with respect to Brownian Motion. The Itô integral can be defined in a
manner similar to the Riemann–Stieltjes integral, that is as a limit in probability of Riemann
sums; such a limit does not necessarily exist pathwise. Suppose that B is a Wiener process
(Brownian motion) and that H is a right-continuous , adapted and locally bounded process.
If {πn} is a sequence of partitions of [0, t] with mesh going to zero, then the Itô integral of
H with respect to B up to time t is a random variable∫ t

0

H dB = lim
n→∞

∑
[ti−1,ti]∈πn

Hti−1
(Bti −Bti−1

)..(3.1)
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It can be shown that this limit converges in probability.
For some applications, such as martingale representation theorems and local times, the

integral is needed for processes that are not continuous. The predictable processes form
the smallest class that is closed under taking limits of sequences and contains all adapted

left-continuous processes. If H is any predictable process such that
∫ H2

0
0tds < infinity

for every t0 then the integral of H with respect to B can be defined, and H is said to be
B-integrable. Any such process can be approximated by a sequence Hn of left-continuous,
adapted and locally bounded processes, in the sense that∫ t

0

(H −Hn)2 ds→ 0

in probability. Then, the Itô integral is∫ t

0

H dB = lim
n→∞

∫ t

0

Hn dB

where, again, the limit can be shown to converge in probability. The stochastic integral
satisfies the Itô isometry

E

[(∫ t

0

Hs dBs

)2
]

= E
[∫ t

0

H2
s ds

]
(3.2)

which holds when H is bounded or, more generally, when the integral on the right hand
side is finite.

4. Examples

4.1. Narrow Escape Problem. The narrow escape problem] is a ubiquitous problem in
biology, biophysics and cellular biology.

The mathematical formulation is the following: a Brownian particle (ion, molecule, or
protein) is confined to a bounded domain (a compartment or a cell) by a reflecting bound-
ary, except for a small window through which it can escape. The narrow escape problem is
that of calculating the mean escape time. This time diverges as the window shrinks, thus
rendering the calculation a singular perturbation problem.

When escape is even more stringent due to severe geometrical restrictions at the place of
escape, the narrow escape problem becomes the dire strait problem.

4.2. Ito Diffusion.
∂φ(r, t)

∂t
= ∇ ·

[
D(φ, r) ∇φ(r, t)

]
,

4.3. Diffusion Equation. The diffusion equation is a parabolic partial differential equation.
It describes the macroscopic behavior of many micro-particles in Brownian motion. The
equation desribes the random movements by the particles after collisions.
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4.4. Continuity Equation. In physicas is an equation that describes the transport of some
quantity. It is particularly simple and powerful when applied to a conserved quantity, but
it can be generalized to apply to any extensive quantity. Since mass, energy, momentum,
electric charge and other natural quantities are conserved under their respective appropri-
ate conditions, a variety of physical phenomena may be described using continuity equations.

Continuity equations are a generalization of conservation laws.For example, the law of
conservation of energy states that energy can neither be created or destroyed. This state-
ment does not rule out the possibility that a quantity of energy could disappear from one
point while simultaneously appearing at another point. A stronger statement is that energy
is locally conserved: energy can neither be created nor destroyed, nor can it ”teleport” from
one place to another—it can only move by a continuous flow. A continuity equation is the
mathematical way to express this kind of statement. For example, the continuity equation
for electric charge states that the amount of electric charge in any volume of space can only
change by the amount of electric current flowing into or out of that volume through its
boundaries.

Any continuity equation can be expressed in an integral form, which applies to any finite
region, or in a ”differential form” (in terms of the divergence operator) which applies at a
point.

Some examples of continuity equations in physics are the convection–diffusion equation,
Boltzmann transport equation, and Navier–Stokes equations. Continuity Equations are one
of many examples where Markov Chains and Brownian Motion can be applied.
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