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1 Abstract.

This paper explores the mixing times related to the riffle shuffle as explored by
Bayer and Diaconis. We define the riffle shuffle with the commonly-accepted
Gilbert–Shannon–Reeds model and follow the analysis of the mode, the major
conclusion of which is the following theorem.

Theorem 1. If n cards are riffled m times, then the probability that the deck
contains r rising sequences is

(
2m

+n−r
n
)

2mn
.

We then analyze the total variation distance between the probability distri-
bution effected by consecutive riffles and the uniform distribution, intending to
arrive at Bayer and Diaconis’s principal result.

Theorem 2. For m = 3
2

log2 n + θ riffles, then for large n,

∥Q(m) −U∥ = 1 − 2φ(−
2−θ
√

3
) +O (n−

1
4 )

where φ(x) = 1
√

2π ∫
x
−∞

e−
t2

2 dt.

Though we do not detail the complete proof, we outline the necessary simpli-
fications that reduce the proof of the above theorem to the collection of known
asymptotic bounding. We then interpret the theorem in more familiar terms.

We then demonstrate by calculation Bayer and Diaconis’s famed result that
approximately seven riffles provides an adequate mixing of a standard deck of
52 cards with respect to total variation.

2 Definitions.

2.1 The riffle

The first order of business is to define the model with which we work. We
represent decks of n cards as permutations of n elements, or the symmetric group
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Sn. We start with the identity permutation σ0 = (1,2, ..., n), an ordered deck,
and repeatedly apply a non-deterministic shuffle, thereby generating σi+1 from
σi. The particular shuffle we use is the Gilbert-Shannon-Reeds riffle, defined to
simulate the real-world riffle or dovetail shuffle:

Definition 1 (The Gilbert-Shannon-Reeds riffle). Consider a deck of n cards.
To perform the riffle,

1. Split the deck into a bottom packet Pbottom and top packet Ptop, select-
ing the size of the Ptop according to the binomial distribution. That is,
P(Ptop contains exactly k cards) = (n

k
)2−n.

2. Where B is the number of cards remaining in Pbottom and T is the number
of cards remaining in Ptop, with probability B

B+T
, remove the top card in

Pbottom and add it to the top of the new deck. Otherwise, remove the top
card in Ptop and add it to the top of the new deck. Repeat until the new
deck contains all n cards.

2.2 The a-shuffle

Critical to the analysis of the Gilbert-Shannon-Reeds model is the generalization
of the riffle to the generalized a-shuffle. While Bayer and Diaconis provide four
equivalent descriptions of the generalized a-shuffle, here we only present the
most relevant and useful of the four, describing the a-shuffle by its inverse:

Definition 2 (Inverse a-shuffle). Consider a deck of n cards. To perform the
inverse a-shuffle,

1. Take the top card of the original deck and place it into a uniformly-
randomly chosen packet Pi, where 1 ≤ i ≤ a. Repeat until the original
deck is empty.

2. When all the packets are filled, stack each packet in order so that P1 is
the bottom and Pa is on top.

It can easily be seen that the inverse 2-shuffle yields the inverse of the Gilbert-
Shannon-Reeds riffle, as expected. Note the implication that all sequential di-
visions into packets and interleavings are equally likely. The most important
revelation is that performing an a-shuffle followed by a b-shuffle is an equivalent
to performing a single ab-shuffle.

2.3 Total variation distance

The second order of business is to define our measure of success. In this case,
we consider metrics we use to declare when a deck has been properly shuffled.
Our first instinct is the total variation distance:
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Definition 3 (Total variation distance). The total variation distance between
probability distributions V1 and V2 on state space Ω is defined as

∥V1 − V2∥ = max
A⊆Ω
(V1(A) − V2(A)),

or, equivalently,
∥V1 − V2∥ = ∑

a∈Ω
V1(a)≥V2(a)

V1(a) − V2(a).

The equivalence of the two definitions is trivial to show. We let the probabil-
ity distribution generated by m riffles be Q(m) such that Q(m)(π) = P(σm = π).
As our standard of randomness, we compare Q(m) to the uniform distribution
U where U(σ) = 1

n!
(i.e. the probability distribution under which all permuta-

tions are equally likely). As an illustrative principle, we should expect that as
m increases, ∥Q(m) −U∥ approaches 0.

3 Results.

3.1 Gilbert-Shannon-Reeds model analysis.

An essential tool for characterizing card permutations is the notion of a rising
sequence.

Definition 4 (Rising sequence). A rising sequence r in a permutation of cards
is a maximal consecutively-increasing sequence.

For example, a deck (4,1,2,5,6,3) contains two rising sequences: 4,5,6 and
1,2,3. The key observation is that a rising sequence tells us where the start and
end of some packets must be. This logic yields the following:

Theorem 3 (Probability of a permutation in relation to the number of rising
sequences). Suppose permutation π has r rising sequences. Then the probability
that an a-shuffle will result in π is

(
a+n−r
n
)

ar
.

Proof. Note that a set of packets and a particular interleaving of those packets
identifies a (not-necessarily-unique) permutation. Note that for any packet divi-
sion, there is either one or no interleavings that yield the permutation π; thus it
suffices to simply count the number of packet divisions that could yield the per-
mutation π and divide by the total number of packet divisions and interleavings.
Also note that a rising sequence can only arise from the union of consecutive
packets. Clearly, there are a − 1 packet dividers in total. The location of r − 1
dividers are fixed by the specific rising sequences of π. However, the remaining
a− r dividers can be placed in n positions, lending to a total of (n+a−r

n
) possible

divisions into packets. It is easy to see through the inverse shuffle that the total
number of packet divisions and interleavings is an. Thus, the probability of the

a-shuffle result in π is
(
a+n−r

n
)

ar
, as desired.
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Theorem 1 easily follows by combining the above theorem to the equiva-
lence of an a shuffle followed by a b shuffle and an ab shuffle. For convenience,

we let Q
(m)
r = P(σm has r rising sequences) =

(
2n+n−r

n
)

2mn .

3.2 Asymptotic bounds on the mixing time.

Proposition 1. Let r = n
2
+h, where 1− n

2
≤ h ≤ n

2
. Let m = log2(n

3/2c), where
c > 0 is fixed and finite. Then

Q(m)r =
1

n!
exp(

1

c
√
n
(−h +

1

2
+Oc (

h

n
)) −

1

24c2
−

1

2
(
h

cn
)

2

+Oc (
1

n
))

Proof.

Q(m)r =
1

n!

n

∏
i=1

2n + i − r

2m

=
1

n!
exp(

n−1

∑
i=0

log (1 + xi))

where

xi =
n
2
− h − i

cn
3
2

.

The power series bounds log:

x −
x2

2
+
x3

3
−
x4

4
≤ log(1 + x) ≤ x −

x2

2
+
x3

3
.

Sum formulas over the sum of the appropriately weighted corresponding
powers of xi yields the proposition.

The following relationship is helpful for calculating the total variation dis-
tance:

Proposition 2. Let h∗ be the integer such that Q
(m)
n
2 +h

≥ 1
n!

if and only if h ≤ h∗.

Then, for any fixed c, as n→∞

h∗ =
−
√
n

24c
+

1

12c3
+B +Oc (

1
√
n
)

where ∣B∣ ≤ 1.

Proof. Note that Q
(m)
n
2 +h

≤ 1
n!

if and only if the power in the above expression is

non-negative. Setting the exponent to be 0 and solving for h yields the above
expression for h∗, corrected by B.

Theorem 4. Let r = n
2
+ h, where 1 − n

2
≤ h ≤ n

2
. Let m = log2(n

3/2c), where
c > 0 is fixed and finite. Then

∥Q(m) −U∥ = 1 − 2φ(−
1

4c
√

3
) +Oc (n

−
1
4 )

where φ(x) = 1
√

2π ∫
x
−∞

e−
t2

2 dt.
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Proof. We will not attempt here to prove this theorem in its entirety. However,
we can make the following simplifications with ease. Let Rn,h be the number of
permutations with r = n

2
+ h rising sequences. Then

∥Q(m) −U∥ = ∑
−

n
2 <h≤h

∗

Rn,h (Q
(m)
r −

1

n!
) .

Note the usage of h∗ to only select the range where the summand is non-negative.
Define a descent as a position i in a permutation π where π(i) > π(i+1). The

position of the value i in π is given by π−1(i), so a descent in π−1 corresponds
with the start of a new rising sequence in π. Thus a permutation π has r rising
sequences if and only if π−1 has r − 1 descents. The number of permutations of
n elements with exactly r − 1 descents is counted by the well-known Eulerian
numbers An,r−1, yielding

∥Q(m) −U∥ = ∑
−

n
2 <h≤h

∗

An,r−1 (Q
(m)
r −

1

n!
) .

Certain asymptotic bounds as well as explicit formulas for the Eulerian num-
bers are known, so we have tremendously simplified the problem of calculating
the total variation distance. The remainder of the proof combines the earlier
lemmas as well as the aforementioned bounds on the Eulerian numbers. For the
specifics, the curious can consult Bayer and Diaconis’s paper.

Theorem 2 easily follows by defining θ = log2 c, thus proving a main object
of interest in this paper while also providing a more precise behavioral descrip-
tion. Note that our result stands at time m = 3

2
log2 n + θ), where θ represents

the number of riffles after 3
2

log2 n riffles. It can be shown that

∥Q(m) −U∥ ≈ 1 − 2φ(−
−1

4c
√

3
) ∼

1

2c
√

6π

as c → ∞. In other words, with more steps beyond 3
2

log2 n steps, the shuffled
probability distribution approaches the uniform distribution exponentially fast.
Furthermore,

∥Q(m) −U∥ ≈ 1 − 2φ(−
−1

4c
√

3
) 1 −

4c
√

3
√

2π
exp
⎛

⎝
−

1

2
(−

1

4c
√

3
)

2
⎞

⎠

as c → 0. In other words, with more steps before 3
2

log2 n steps, the shuffled
probability distributions diverges from the uniform distribution exponentially
fast. One interpretation is that the transition experiences rapid cutoff.

3.3 Calculated example for standard 52-card deck.

The above theorem gives asymptotic bounds. However, our simplifications made
in our introduction to the proof of Theorem 4 makes calculating the total
variation distance simple for (small) values of n.
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n \ m 1 2 3 4 5 6 7 8 9 10
25 1.000 1.000 0.999 0.775 0.437 0.231 0.114 0.056 0.028 0.014
32 1.000 1.000 1.000 0.929 0.597 0.322 0.164 0.084 0.042 0.021
52 1.000 1.000 1.000 1.000 0.924 0.614 0.334 0.167 0.085 0.043
78 1.000 1.000 1.000 1.000 1.000 0.893 0.571 0.307 0.153 0.078
104 1.000 1.000 1.000 1.000 1.000 0.988 0.772 0.454 0.237 0.119
208 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.914 0.603 0.329
312 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.883 0.565

Table 1. Total variation distance calculated for for varying values of n and m.

For the standard 52-card deck, the steep drop at m = 7 leads to the famous
conclusion that seven riffles sufficiently shuffles the deck.
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