
MARKOV CHAIN MONTE CARLO

GRACE CAI

Abstract. Markov chain Monte Carlo is a modern method used to find information about
a distribution with random sampling. We will explore the theory behind MCMC and one of
its most popular algorithms, the Metropolis-Hastings algorithm, as well as look at a couple
of simple examples and real-life applications.

1. Introduction

Markov chain Monte Carlo (MCMC) is a computer-driven sampling method under the
Monte Carlo method that utilizes Markov chains. The Monte Carlo method came soon
after the invention of computers and it simulates complex models to approximate numerical
information about distributions by generating random samples from a distribution and using
numerical simulation repeatedly. The MCMC method was invented by Stanislaw Ulam
while working on nuclear weapons at the Los Alamos National Laboratory. His idea for
this method came from playing solitaire and trying to find a combinatorial way to calculate
the probability of winning, but ultimately being unable to and using simulations to model
solitaire instead. The name Monte Carlo comes from the Monte Carlo Casino in Monaco.
It is used for situations that demonstrate the Markov property so a Markov chain can be
created to model it. This means that each new sample taken is dependent only on the
previous sample. When using the MCMC method, not all mathematical properties of the
distribution must be known since it is taking random samples from the distribution. This
makes MCMC a powerful tool in many real-world situations where there is enough data for
many random samples to be drawn from and when the distribution’s equations can only be
easily handled with a computer.

2. Markov Chain Background for MCMC

In order to understand MCMC, we need to gain the necessary knowledge about Markov
chains and the Monte Carlo method separately. We will begin by defining Markov chains
and their properties.

Definition 2.1. A sequence X1, X2, . . . of random elements in some set Ω (a stochastic
process) is a Markov chain if the conditional distribution of Xn+1 given X1, . . . , Xn depends
on Xn only. The set in which the random elements take values is called the state space of
the Markov chain.

A probability distribution is a function that gives us the probability of different possible
outcomes of a certain event. Both the initial distribution—the marginal distribution of
Xi—and the conditional distribution of Xn+1 given Xn determine the joint distribution of a
Markov chain.

Date: November 23, 2020.
1



2 GRACE CAI

Definition 2.2. A Markov chain with transition matrix P is stationary if there exists a
stationary distribution π such that

π = πP.

This property is very important in MCMC because it samples the stationary distribution
regardless of the stationarity of the Markov chain. This property is also present in the
Markov chains used in the ordinary Monte Carlo method which we will describe in the next
section. We will also be working with Markov chains where the probability of transitioning
from state i to state j is equal to the probability of transitioning from state j to state i for
any two states i, j.

Definition 2.3. A Markov chain X1, X2, . . . with transition matrix P and stationary distri-
bution π is reversible if and only if, for all states i, j ∈ Ω, we have πipij = πjpji. This also
means that the distribution of any pairs (Xi, Xi+1) is exchangeable.

This property is used in the Metropolis-Hastings algorithm, a widely-used MCMC method,
which we will define later. Another property used in the Metropolis-Hastings algorithm is
ergodicity.

Definition 2.4. A Markov chain is said to be ergodic if it is aperiodic— meaning the process
does not return to the same state i at fixed intervals—and irreducible —it is possible to reach

any state i from some state j in some integer t number of steps so we have p
(t)
ij > 0.

An important theorem involved in the MCMC method (and probability theory in general)
is the law of large numbers (LLN). This theorem has a weak form and a strong form, but
we will only be using the strong form in this article:

Theorem 2.1. (The Strong Law of Large Numbers) Let X1, . . . , Xn be n identically and inde-
pendently distributed (iid) random variables such that each have defined and finite E[Xi] = µ.
We call Sn =

∑n
i=1Xi the sample sum and Yn = Sn

n
the sample average. Then, Yn almost

surely converges to µ. In mathematical terms, we have

P(ω ∈ Ω : lim
n→∞

[Yn(ω)] = µ) = 1,

Yn
a.s.−−→ µ, n→∞.

The ”a.s.” over the arrow means almost surely. This means that as our sample size grows
larger and larger, the sample average gets closer to the expected value. This theorem is
the reasoning behind using more samples in an MCMC algorithm. We will not prove this
theorem in this article. A proof can be found in [Rot20].

3. The Monte Carlo Method

Now, let’s look at the Monte Carlo method without the Markov chain aspect, sometimes
called ordinary Monte Carlo (OMC). Ordinary Monte Carlo is a special case of MCMC where
the random elements X1, X2, . . . are identically and independently distributed (iid). In this
case, the Markov chain modeling the situation must be stationary and reversible. The Monte
Carlo method can be used to sample from, or to estimate an expected value with respect to,
a high dimensional probability distribution. The method is generally described in [Has70]
as follows:

• To simplify the distribution, factorize it into the product of one-dimensional condi-
tional distributions and take samples from there.



MARKOV CHAIN MONTE CARLO 3

• Use importance sampling to possibly reduce variation. In other words, to evaluate
the integral

J =

∫
f(x)p(x)dx = Ep(f),

where p(x) is a probability density function (PDF), we obtain samples from a dis-

tribution q(x) and use the estimate Ĵ2 =
∑
{f(xi)p(xi)

q(xi)N
instead of taking independent

samples x1, . . . , xN from p(x) and using the estimate Ĵ1 =
∑
{f(xi)

N
. Doing this helps

when sampling from q(x) is easier than sampling from p(x). However, the weights

w(xi) = p(xi)
q(xi)

for reasonable values of N may all be either extremely small, or a few

could be extremely large. When we estimate the probability of an event A, this issue
has little effect because we only want the values w(x) such that x ∈ A.
• Use a simulation technique; if sampling directly from p(x) is difficult or p(x) is un-

known, sample from some distribution q(y) and get the corresponding x values as
a function of the y values. If we want samples from the conditional distribution of
x = g(y), given h(y) = h0, then the simulation technique will not be satisfactory if
Ph(y) = h0 is small, since the condition h(y) = h0 will be rarely if ever satisfied even
when the sample size from q(y) is large.

Example 3.1. A simple application of the Monte Carlo method is estimating π through
many random samplings. We can imagine a 1 × 1 square with a quarter circle with radius
1 aligned with the left and bottom sides of the square as shown in figure (1) and take our
random samples from any point (x, y) in the square where 0 ≤ x, y ≤ 1. From the area of the
quarter circle and the square, we have the ratio 1

4
π : 1 or π : 4 so if we have a large sample

size, the ratio of the number of points inside the quarter circle to the points in the square
should also have a π : 4 ratio. To tell whether the random point (x, y) is in the quarter
circle, we see if it satisfies the inequality x2 + y2 ≤ 1. We estimate π by multiplying this
ratio by 4.

Figure 1. Unit square with quarter of unit circle inscribed.



4 GRACE CAI

This is the psuedocode for our program which can be run using Python and graphed with
the Python library MatPlotLib:

(1) Generate random point (x, y), 0 ≤ x, y ≤ 1 and plot on graph
(2) If point is in quarter circle, x2 +y2 ≤ 1, add 1 to running total
(3) Repeat for sample size n
(4) Divide total by n and multiply by 4
(5) Result should be very close to π depending on n

Running this code with a sample size of 10,000 gives us a π estimation of 3.15052 and the
graph (2):

Figure 2. Graph of 10,000 random points to estimate π.

4. Markov Chain Monte Carlo

Now that we have the necessary background, we will introduce Markov Chain Monte Carlo
and look at one of its most useful algorithms, the Metropolis-Hastings (M-H) algorithm. This
method uses the Markov chain central limit theorem (CLT) which is similar to the classical
central limit theorem except for the fact that the sequence does not need to be independent
and it involves a real-valued function. This theorem describes the convergence of Markov
chains used in MCMC methods.

Theorem 4.1. (The Markov Chain Central Limit Theorem) If the sequence X1, X2, ... of
random elements of a Markov chain satisfies the following conditions:

• it has a stationary distribution,
• the distribution of X1 is the stationary distribution so the sequence is identically

distributed,
• and we have some real-valued function g such that var(g(X1)) <∞,

and we let

• µ = E(g(X1)),
• σ2 = var(g(X1)) + 2

∑∞
k=1 cov(g(X1), g(Xk+1)),

• µ̂n = 1
n

∑n
k=1 g(Xk),



MARKOV CHAIN MONTE CARLO 5

then as n approaches infinity, we have

µ̂n ≈ Normal

(
µ,
σ2

n

)
or

√
n(µ̂n − µ)

D−→ Normal

(
0,
σ2

n

)
where

D−→ denotes convergence in distribution.

We will not prove this theorem (a proof can be found in [Kur81]) but we can demonstrate
this with the Metropolis-Hastings algorithm in the next section.

5. The Metropolis-Hastings Algorithm

One popular algorithm that uses the MCMC method is the Metropolis-Hastings (M-H)
algorithm. The goal of this algorithm is to create a Markov chain based on a desired distri-
bution P (x). It works by running a Markov process which tends towards a unique stationary
distribution π(x) = P (x). A unique stationary distribution π(x) exists when the transition
x→ y is reversible and the Markov chain is ergodic. Therefore, we only consider reversible
and ergodic Markov chains for simplicity.

The M-H algorithm includes two steps: a proposal and an acceptance-rejection. The
proposal distribution q(y | x) is the conditional probability of proposing a state y given x,
and the acceptance distribution α(x, y) is the probability to accept the proposed state y.
Then, the algorithm works by initializing a starting point x0 and repeating the following
steps, each iteration being a M-H update, for n = 1, 2, ..., N :

(1) Proposal: Given state xn, generate random proposal state y according to q(xn|y),
the probability distribution.

(2) Calculate the acceptance probability of moving from xn to y

α(xnn, y) = min

{
1,

π(y)q(y, xn)

π(xn)q(xn, y)

}
and α = 1 if π(xn)q(xn, y) = 0. The fraction π(y)q(y,xn)

π(xn)q(xn,y)
is called the Hastings ratio.

(3) Acceptance-rejection: Generate a random u from the uniform distribution on [0,1],
U [0, 1]. If u ≤ α(xnn, y), accept the new state so xn+1 = y. Otherwise, reject y and
set xn+1 = xn.

(4) Return the values {x1, x2, ..., xN}
In other words, the M-H algorithm gets a proposal value y to jump to and either accepts
or rejects that value depending on how high the probability of moving to y is. The values
{x1, x2, ..., xN} return from the algorithm form a Markov chain whose empirical distribution
will approach P (x). An empirical distribution is a function used to describe a sample of
observations of a given variable. The number of steps N required to effectively estimate
P (x) depends on the relationship between P (x) and the proposal distribution and the desired
accuracy of estimation. Including more steps N results in a more accurate distribution of
the sample and lessens the effects of the starting position. This is a demonstration of the
SLLN. Now, we will go into the conditions of convergence for the M-H algorithm based on
the properties of certain distributions. We will prove two theorems in this area that result
from the M-H algorithm. First, we will state and prove the Metropolis-Hastings theorem



6 GRACE CAI

which says that a Markov chain produced using the M-H Algorithm is reversible with respect
to a distribution having an unnormalized density [BGJM11, section 1.12.2].

Theorem 5.1. (The Metropolis-Hastings Theorem) The Metropolis-Hastings update is re-
versible with respect to h, that is, the transition probability that describes the update is re-
versible with respect to the distribution having unnormalized density h.

Proof. Let xn be the current state and yn the proposal state so we have xn = xn+1 whenever
the proposal is rejected. Thus, the distribution of (xn, xn+1) given rejection is exchangeable
and the Markov chain is reversible. Then, we must show that (xn, yn) is exchangeable given
acceptance so

(1) E{f(xn, yn)a(xn, yn)} = E{f(yn, xn)a(xn, yn)}
for any function f that has expectation (we assume xn has the desired stationary distri-

bution). That is, we must show we can interchange arguments of f in

(2)

∫ ∫
f(x, y)π(x)a(x, y)q(x, y)dxdy

(with integrals replaced by sums if the state is discrete), and that follows if we can interchange
x and y in

(3) h(x)a(x, y)q(x, y)

because we can exchange x and y in (2), x and y being random variables. Clearly only
the set of x and y such that h(x) > 0 and q(x, y) > 0 and a(x, y) > 0 contributes to the
integral or (in the discrete case) sum (2), and these inequalities further imply h(y) > 0 and
q(y, x) > 0. Thus we may assume these inequalities, in which case we have

r(y, x) =
1

r(x, y)

for all such x and y. Suppose r(x, y) ≤ 1, so r(x, y) = a(x, y) and a(y, x) = 1. Then

h(x)a(x, y)q(x, y) = h(x)r(x, y)q(x, y)

= h(y)q(y, x)

= h(y)q(y, x)a(y, x)

Conversely, suppose r(x, y) > 1, so a(x, y) = 1 and a(y, x) = r(y, x). Then

h(x)a(x, y)q(x, y) = h(x)q(x, y)

= h(y)r(y, x)q(y, x)

= h(y)a(y, x)q(y, x)

In both cases we can exchange x and y in (3) and the proof is done. �

Depending on the properties of the Markov kernel—a map similar to a transition matrix
used for finite state spaces—q(x, y), we can also determine two other convergence properties
of the M-H algorithm. The conditions for convergence of the M-H algorithm that we will
prove are explained in [RS94].

Let q : D×D → R+, R+ being the positive real numbers, be a Markov chain kernel(with
respect to measure V ) with D = {x ∈ R+; π(x) > 0}. With α : D ×D → [0, 1] as described



MARKOV CHAIN MONTE CARLO 7

in the steps of the M-H algorithm. We also define KH : D × D → R+ by KH(x, y) =
q(x, y)α(x, y). This is a (substochastic) kernel governing moves of the chain X0, X1, · from x
to y which are ‘accepted’ according to the probability α(x, y) as previously explained in the
steps of the M-H algorithm. It is straightforward to check that π is an invariant distribution
of the chain defined by KH . For general measures V , the convergence properties of the M-H
algorithm are inherited from the properties of q as follows.

Theorem 5.2.

i If q is aperiodic; or P (X t = X t−1) > 0, for some t ≥ 1 then the Metropolis- Hastings
algorithm is aperiodic.

ii If q is π-irreducible and q(x, y) = 0 if and only if q(y, x) = 0, then the Metropolis-
Hastings algorithm is π-irreducible.

Proof.

i If the M-H chain is periodic then we cannot have P (X t = X t−1) > 0 for any t ≥ 1
because the chain can only come back to a certain state after its period k > 1. Therefore
the chain is aperiodic because of q.

ii The condition q(x, y) = 0 if and only if q(y, x) = 0 implies that α(x, y) > 0 for all

x, y ∈ D. Let K
(t)
H , q(t) be the iterated kernels obtained by setting K equal to KH and q,

respectively and define U
(t)
x = {y,K(t)

H (x, y) > 0}, V (t)
x = {y; q(t)(x, y) > 0}. We show by

induction that U
(t)
x ⊇ V

(t)
x for all t ≥ 1. Suppose, therefore, that U

(t)
x ⊇ V

(t)
x and consider

z ∈ V (t+1)
x , which implies that∫

q(t)(x, y)q(y, z)dv(y) > 0

However, if z /∈ U (t+1)
x the support of the function

q(t)(x, ·)q(·, z)α(·, z)

has v-measure 0, which implies that the support of the function

K
(t)
H (x, ·)q(·, z),

also has v-measure 0, contradicting the above inequality. Since U
(t)
x ⊇ V

(t)
x , the result

follows that the M-H algorithm is π-irreducible.

�

Now, let’s demonstrate the Markov chain CLT from the previous section.

Example 5.1. We model coin tosses with the following psuedocode that generates a prob-
ability density function (PDF) close to the normal distribution depending on the sample
size:



8 GRACE CAI

(1) Generate random starting point based on given parameters µ = 0 and σ = 1.
(2) Add current point to state space
(3) Generate probabilities of staying in current state or moving to next state from

normal distribution
(4) Use probabilities to find probability of accepting movement p
(5) Generate random probability µ ∈ (0, 1)
(6) If µ ≥ p then return false for tails
(7) Otherwise, return true for heads
(8) Repeat steps 2-7 for sample size N
(9) Return entire state space to graph distribution

(10) Graph normal distribution curve

This code draws the following graph (3) using MatPlotLib with 20 ”bins” to group our
data (increasing the number of bins will make the histogram closer to the normal distribution
graph):

Figure 3. The distribution of the coin tosses (blue) compared to the normal
distribution (orange).

The Metropolis-Hastings algorithm is a general MCMC methods, but there are others
such as the Metropolis algorithm and the Gibbs sampler both of which are special cases of
the M-H algorithm.

6. Modern Applications of MCMC

MCMC algorithms are often applied to solve integration and optimization problems in
large dimensional spaces. These two types of problem play a fundamental role in machine
learning, physics, statistics, econometrics and decision analysis. A substantial result found
in the study of MCMC comes from a paper which describes a general method, suitable for
fast electronic computing machines, of calculating the properties of any substance which
may be considered as composed of interacting individual molecules [MRR+53]. The method
described in this paper consists of a modified Monte Carlo integration over configuration
space.



MARKOV CHAIN MONTE CARLO 9

References

[BGJM11] Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng. Handbook of
markov chain monte carlo. CRC press, 2011.

[Has70] W Keith Hastings. Monte carlo sampling methods using markov chains and their
applications. 1970.

[Kur81] Thomas G Kurtz. The central limit theorem for markov chains. The Annals of
Probability, pages 557–560, 1981.

[MRR+53] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H
Teller, and Edward Teller. Equation of state calculations by fast computing
machines. The journal of chemical physics, 21(6):1087–1092, 1953.

[Rot20] Andrew Rothman. Proof of the law of large numbers part 2: The
strong law, Jun 2020. URL: https://towardsdatascience.com/

proof-of-the-law-of-large-numbers-part-2-the-strong-law-356aa608ca5d.
[RS94] G.O. Roberts and A.F.M. Smith. Simple conditions for the convergence of the

gibbs sampler and metropolis-hastings algorithms. Stochastic Processes and their
Applications, 49(2):207 – 216, 1994. URL: http://www.sciencedirect.com/

science/article/pii/0304414994901341, doi:https://doi.org/10.1016/

0304-4149(94)90134-1.

https://towardsdatascience.com/proof-of-the-law-of-large-numbers-part-2-the-strong-law-356aa608ca5d
https://towardsdatascience.com/proof-of-the-law-of-large-numbers-part-2-the-strong-law-356aa608ca5d
http://www.sciencedirect.com/science/article/pii/0304414994901341
http://www.sciencedirect.com/science/article/pii/0304414994901341
https://doi.org/https://doi.org/10.1016/0304-4149(94)90134-1
https://doi.org/https://doi.org/10.1016/0304-4149(94)90134-1

	1. Introduction
	2. Markov Chain Background for MCMC
	3. The Monte Carlo Method
	4. Markov Chain Monte Carlo
	5. The Metropolis-Hastings Algorithm
	6. Modern Applications of MCMC
	References

