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Abstract. We introduce Brownian motion as a physical process, and go over the definition
and basic properties of Brownian motion as a mathematical process, including nondifferen-
tiability. We explore the connections Brownian motion has to Markov chains, martingales,
and random walks, and conclude with an explanation of stochastic calculus and an applica-
tion of geometric Brownian motion to the Black-Scholes model for stock option pricing.

1. Introduction to Brownian Motion

Brownian motion is the random movement of particles in a liquid or gas. This phenome-
non was first observed by botanist Robert Brown in a sample of pollen particles suspended
in water. Later on, Albert Einstein modelled this motion with individual water molecules
moving these particles. The basic idea is that, due to random interactions with other par-
ticles, a particle in Brownian motion will take a series of steps, each in a random direction
independent from any of its past steps. This makes it essentially a random walk. In the
mathematical abstraction of this physical process, we will take the limit of the random walk
as the step size and the time interval between steps go to zero. (Of course, the ratio between
step size and time interval also matter; we shall see that in order to get Brownian motion we
must have step size vary with the square root of the time interval.) The resulting process of
mathematical Brownian motion has many of the properties of a random walk, but it is also
a continuous function of time, lending it many other interesting properties.

Figure 1. The motion of the blue particle follows a Brownian motion.
Image source: [DBS16].
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2. Modeling Brownian Motion

Before we introduce the mathematical definition of Brownian motion, we shall introduce the
notions of probability space and stochastic processes. Probability spaces are used to model
the outcomes of random processes.

Definition 2.1 (Probability Space). A probability space is a triple (Ω,F , P ), where Ω
denotes the sample space, F denotes the event space, and P denotes the probability function.

More formally, the sample space, Ω, can be any non-empty set. The event space, F , is a set
consisting of some (or all) subsets of Ω. The event space is modelled as a σ-algebra1 of the
power set2 of Ω, meaning it satisfies the following properties:

(1) Ω ∈ F .
(2) F is closed under set complements, so for all A ∈ F , we have Ω\A ∈ F .
(3) F is closed under countable unions, so for all A1, A2, . . . ∈ F , we have

⋃∞
i=1 Ai ∈ F .

In other words, for any events A and B in F , the events Ac and (A or B) must also be in
F . And the probability function, P , is a function P : F → [0, 1] such that the following
properties are satisfied:

(1) For all A ∈ F , P (A) ≥ 0.
(2) P (Ω) = 1.
(3) P is countably additive, so if A1, A2, . . . ⊆ F is a countable collection of pairwise

disjoint sets, then P (
⋃∞
i=1Ai) =

∑∞
i=1 P (Ai).

Definition 2.2 (Real-Valued Stochastic Process). Let (Ω,F , P ) be a probability space, and
the index set, T ⊂ R, be of infinite cardinality. Let X(t, ω) : T × Ω → R be a random
variable defined on (Ω,F , P ). The function X(t, ω) is a stochastic process with indexing set
T .

X(t, ω) can also be interpreted as a collection of random variables {X(t) : t ∈ T} on Ω
indexed by T . (Here, given some ti ∈ T , we let X(ti) be the random variable taking values
in the set {X(ti, ω) : ω ∈ Ω} according to P ). Note that what we have introduced is a
“real-valued stochastic process” because each random variable Xt takes values in R rather
than some other set (in which case it would be called simply a “stochastic process”). In this
paper, we will only use real-valued stochastic processes, and we’ll generally just call them
stochastic processes. The indexing set T ⊂ R is often considered to be time, which will be
especially relevant for Brownian Motion.

Definition 2.3 (Brownian Motion (Wiener Process)). Brownian motion is a stochastic pro-
cess B = {B(t) : t ∈ R≥0} on some probability space (Ω,F ,P), with the following proper-
ties [Dun16]:

1This is also known as a σ-field.
2The power set of Ω is the set P(Ω) containing all possible subsets of Ω, including the empty set and the

set Ω itself.
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(1) The random variable defined by B(t)−B(s) over an interval of length t−s is normally
distributed with mean 0 and variance3 t− s, that is

B(t)−B(s) ∼ N(0, t− s)
(2) For every pair of disjoint time intervals [t1, t2] and [t3, t4], with t1 < t2 ≤ t3 < t4, the

random variables B(t4)−B(t3) and B(t2)−B(t1) are independent, and similarly for
n disjoint time intervals where n is an arbitrary positive integer.

(3) B(t) is continuous for all t.

Definition 2.4 (Standard Brownian Motion (Standard Wiener Process)). A Standard Brow-
nian Motion is a Brownian motion B(t) where B(0) = 0.

Somewhat confusingly, “Brownian motion” is used to refer both to the physical process of
random motion that we described in the introduction and to the mathematical process we’ve
just defined. Those who care about the distinction will often call the mathematical process
the Wiener process instead, but we’ll just call it Brownian motion. We can think of the
first property of Brownian motion in terms of statistics. It says that E[W (t)] = 0, and that
the expectations of all other sums and differences of random variables will also be 0. Also,
Var(W (t)) = t for all t. Intuitively, the second property says that the movement of Brownian
motion over one interval is not related to its movement over any past interval. And of course,
the third property of continuity is what makes Brownian motion different from a random
walk and gives it some of its special characteristics.

Before we move on, we should note that it takes some nontrivial (more precisely, theorem-
level) work to prove that a stochastic process satisfying all the properties of Brownian motion
actually exists.

Theorem 2.5 (Wiener’s Theorem). Brownian motion exists.

The proof of this theorem is rather lengthy and has more to do with analysis than probability,
so we omitted it for the sake of brevity. A nice, self-contained proof can be found in [McK09].

3. Basic Properties of Brownian Motion

Here are some interesting properties of Brownian Motion that follow easily from the defini-
tion.

Proposition 3.1 (Time translation). If B(t) is a standard Brownian motion and h ≥ 0,
then W (t) = B(t+ h)−B(h) is also a Brownian motion.

Proof. W (t) is clearly still a continuous stochastic process. The expected value of W (t) is 0.
Moreover, for any t1, t2, we have Var(W (t2)−W (t1)) = Var(B(t2 +h)−B(t1 +h)) = t2− t1,
so we see that the variance property still holds. We can likewise show that the independence
property holds, and thus W (t) satisfies all the properties of a Brownian motion. Additionally,
W (0) = B(h)−B(h) = 0, so this is a standard Brownian motion. �

3The variance of a random variable X is Var(X) = E
[
(X − E[X])2

]
.
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Figure 2. Three standard Brownian motions.

Proposition 3.2 (Scaling invariance). If B(t) is a standard Brownian motion, then 1
a
B(a2t)

is also a standard Brownian motion.

Proof. Suppose B(t) is a standard Brownian motion. We wish to show that W (t) = 1
a
B(a2t)

also satisfies the properties of a standard Brownian motion. It is clear that W (t) is still a
stochastic process. Next, we wish to show that W (t) −W (s) is normally distributed with
mean 0 and variance t − s, for any t and s. By the definition of Brownian motion and the
properties of variance, we have

Var(W (t)−W (s)) = Var

(
1

a
B(a2t)− 1

a
B(a2s)

)
=

1

a2
Var(B(a2t)−B(a2s))

=
1

a2
(a2t− a2s)

= t− s
as desired. Clearly W (0) = 0, and the independence of time intervals and continuity are also
not changed by rescaling. Thus, W (t) is a standard Brownian motion. �

The scaling invariance property tells us that Brownian motion behaves and looks essentially
the same at every scale. It is sometimes said that Brownian motion is a fractal process, and
this is why. Next, we have one more invariance property.

Proposition 3.3 (Time inversion). If B(t) is a Brownian motion, then the following process
is also a Brownian motion:

V (t) =

{
0 t = 0

tB(1/t) t > 0
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To prove this, we need a lemma, and to explain the lemma, we need a definition:

Definition 3.4 (Covariance). The covariance of two random variables X and Y is

Cov(X, Y ) = E[(X − E(X))(Y − E(Y ))]

Note that Cov(X,X) = Var(X), the variance of X. Roughly, the covariance captures the
strength of the relationship between X and Y , and in fact the correlation coefficient of two
variables X and Y is just a normalized version of the covariance.

Lemma 3.5. Suppose X(t) is a stochastic process which is known to satisfy all properties of
Brownian motion except for the property that Var(X(t)−X(s)) = t− s for all t ≥ s. Then
X(t) is a Brownian motion if and only if Cov(B(t+ h), B(t)) = t.

Proof. We first wish to show that for a Brownian motion B(t) and any t > 0, h ≥ t, we have
Cov(B(t+ h), B(t)) = t. We have

Cov(B(t+ h), B(t)) = E[(B(t+ h)− E[B(t+ h)])(B(t)− E[B(t)])]

= E[B(t+ h)B(t)]

Next, we substitute B(t+ h) = B(t+ h)−B(t) +B(t):

E[B(t+ h)B(t)] = E[(B(t+ h)−B(t) +B(t))B(t)]

= E[(B(t+ h)−B(t))B(t)] + E[B(t)2]

By the definition of Brownian motion, B(t) = B(t)−B(0) is independent from B(t+h)−B(t).
Thus,

E[(B(t+ h)−B(t))B(t)] + E[B(t)2] = E[B(t+ h)−B(t)]E[B(t)] + E[B(t)2]

But, also by the definition of Brownian motion, E[B(t+h)−B(t)] = 0 and E[B(t)] = 0. So,
we have

Cov(B(t+ h), B(t)) = E[B(t)2] = Var(B(t)) = t

as desired. Next, suppose X(t) is known to satisfy all properties of Brownian motion except
for the property that Var(X(t)−X(s)) = t− s for all t ≥ s, and in addition, we know that
Cov(X(t + h), X(t)) = t for all t, h ≥ 0. We wish to show that Var(X(t) − X(s)) = t − s.
We have:

Var(X(t)−X(s)) = E
[
X(t+ h)2 − 2X(t+ h)X(t) +X(t)2

]
= E

[
X(t+ h)2

]
− 2E [X(t+ h)X(t)] + E

[
X(t)2

]
Recall that Cov(X(t+h), X(t)) = E[X(t+h)X(h)] and that Cov(X(t+h), X(t)) = t. Thus
we have

E
[
X(t+ h)2

]
− 2E [X(t+ h)X(t)] + E

[
X(t)2

]
= (t+ h)− 2(t) + (t) = h

So, Var(X(t+ h)−X(t)) = h and the proof is complete. �

Now we may prove the time inversion property.
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Proof. Suppose B(t) is a Brownian motion, and let V (t) be defined by

V (t) =

{
0 t = 0

tB(1/t) t > 0

We wish to show that V (t) is a Brownian motion. We can check most of the properties
fairly quickly. It is clear that tB(1/t) has expected value 0 and that the random variables
V (t4)− V (t3) and V (t2)− V (t1) are independent for t1 < t2 ≤ t3 < t4. Continuity is a little
trickier to prove because of the case t = 0. We will gloss over that issue here, but a rigorous
proof that V (t) is continuous at t = 0 can be found in the proof of time inversion given
in [MP10]. Next, we show that Cov(V (t+ h), V (t)) = t. Remembering that t and t+ h are
scalars in this situation, we have

Cov(V (t+ h), V (t)) = Cov ((t+ h)B(1/(t+ h)), tB(1/t))

= (t+ h)(t) Cov(B(1/(t+ h)), B(1/t))

= (t+ h)(t)
1

t+ h
= t

As desired. Thus, by Lemma 3.5, V (t) is a Brownian motion. �

Because of the scaling invariance property, we know that as we zoom in on Brownian motion
it stays bumpy instead of becoming smoother. This should make us suspect that Brownian
motion is nondifferentiable, and we’ll prove that next. To prove this, we need a few outside
results and definitions.

Definition 3.6 (Limit superior). The limit superior of a sequence (xn) is

lim sup
n→∞

xn = lim
n→∞

(
sup
m≥n

xn

)
where sup denotes the supremum.

The limsup can be thought of as the limiting upper bound of the sequence.

Definition 3.7 (Limit inferior). The limit inferior of a sequence (xn) is

lim inf
n→∞

xn = lim
n→∞

(
inf
m≥n

xn

)
where inf denotes the infimum.

This can be thought of as the limiting lower bound of the sequence. Note that the limsup
and liminf can also be defined for any partially ordered set, such as a set indexed by R.

Theorem 3.8 (Borel-Cantelli Lemma). Let {En : n ∈ N} be a countable set of events in a
probability space P such that

∑∞
n=1 P (En) <∞. Then

P (lim sup
n→∞

En) = P

(
∞⋂
n=1

∞⋃
k≥n

Ek

)
= 0
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lim supEn is the set of outcomes x in the probability space for which there exist infinitely
many Ek such that x ∈ Ek. So, the Borel-Cantelli lemma says that the probability of
infinitely many of the En’s happening is 0.

Proposition 3.9 (Nondifferentiability). Almost surely, Brownian motion is nowhere differ-
entiable.

Proof. We shall prove a stronger statement: for any t, at least one of the following holds:

lim sup
h→0

B(t0 + h)−B(t0)

h
=∞

lim inf
h→0

B(t0 + h)−B(t0)

h
= −∞

Suppose we have some t0 ∈ [0, 1] such that

lim sup
h→0

|B(t0 + h)−B(t0)|
h

= C <∞

Limit h to the range [0, 1]. Then, since Brownian motion is bounded on [0, 2], there exists
some constant M ≥ C such that

sup
h∈[0,1]

|B(t0 + h)−B(t0)|
h

≤M

Now, let M be any constant. We wish to show that for this fixed value of M , the probability
that there exists a t0 ∈ [0, 1] satisfying the above property is 0.

Letting M be any constant, suppose that there exists such a t0. In order to make some
conclusions using t0, we bound it within a specific interval. Let n > 2. We can say that
t0 ∈ [(k − 1)/2n, k/2n]. Next, let 1 ≤ j ≤ 2n − k. By the Triangle Inequality,

|B((k + j)/2n)−B((k + j − 1)/2n)| ≤ |B((k + j)/2n)−B(t0)|+ |B(t0)−B((k + j − 1)/2n)|

Let h = (k+ j)/2n− t0. We know that j/2n ≤ h ≤ (j + 1)/2n. By the assumption on t0, we
know that

|B((k + j)/2n)−B(t0)|
h

≤M

and so

|B((k + j)/2n)−B(t0)| ≤M(j + 1)/2n

We can show by a similar argument that

|B(t0)−B((k + j − 1)/2n)| ≤Mj/2n

and so, plugging these in to our original inequality, we get

|B((k + j)/2n)−B((k + j − 1)/2n)| ≤M(2j + 1)/2n

which will be true whenever t0 exists. Define the events

Ωn,k = {|B((k + j)/2n)−B((k + j − 1)/2n)| ≤M(2j + 1)/2n for j = 1, 2, 3}
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Because the increments of Brownian motion are independent, and then by the scaling in-
variance and time translation properties, we have

P (Ωn,k) =
3∏
j=1

P (|B((k + j)/2n)−B((k + j − 1)/2n)| ≤M(2j + 1)/2n)

=
3∏
j=1

P (|B(k + j)−B(k + j − 1)| ≤M(2j + 1)/
√

2n)

=
3∏
j=1

P (|B(1)−B(0)| ≤M(2j + 1)/
√

2n)

≤ P
(
|B(1)| ≤ 7M/

√
2n
)3

It is a fact that for a normally distributed random variable X with mean 0 and variance 1,
we have P (−c ≤ X ≤ c) = 2P (0 ≤ X ≤ c) ≤ c for all c. (To see this, observe that the slope
of the normal cumulative density function is always less than 1

2
.) Thus,

P
(
|B(1)| ≤ 7M/

√
2n
)
≤ 7M/

√
2n

and we conclude that P (Ωn,k) ≤ (7M/
√

2n)3. Thus, for a given n > 2, we can see that

P

(
2n−3⋃
k=1

Ωn,k

)
≤ 2n(7M/

√
2n)3

When we sum over all n > 2 on both sides, we get P (
⋃2n−3
k=1 Ωn,k for every n) on the left

and a convergent geometric series on the right. Thus, the sum of the probabilities of all⋃2n−3
k=1 Ωn,k is finite, so we can apply the Borel-Cantelli lemma: the probability of infinitely

many
⋃2n−3
k=1 Ωn,k’s happening is 0. However, recall that whenever t0 exists, each Ωn,k must

be true. Thus, the probability that t0 exists must also be 0, meaning that Brownian motion
is differentiable with probability 0. �

Thus, though Brownian motion is continuous everywhere, it is differentiable nowhere.

4. Markov Property

In this section we will explore higher dimensional Brownian Motion, which requires linear
Brownian Motion in every component.

Definition 4.1 (d-dimensional Brownian Motion). If B1, B2, ..., Bd are independent linear
Brownian motions started at x1, x2, ..., xd respectively, then B(t) : t ≥ 0 given by

B(t) = (B1(t), B2(t), ..., Bd(t))
T

is d-dimensional Brownian Motion started in (x1, x2, ..., xd)
T .
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The Markov Property on any stochastic process X(t) tells us that if we know the process
X(t) : t ≥ 0 up to some time s, in order to predict the future, we would have the same
information if we just knew the value at time s. This idea rings especially true for a time-
homogeneous Markov process, where the stochastic process starts over at any time s.

We will need the concepts of filtrations to better explore the markov properties of Brownian
Motion.

Definition 4.2 (Filtration). Let (Ω,F , P ) be a probability space. A filtration on this
probability space is a family ((t) : t ≥ 0) of σ-algebras such that F(s) ⊂ F(t) ⊂ F for all
s < t. A probability space with a filtration is called a filtered probability space.

A filtration F(t) represents the set of events that are observable at time t but nothing past
that time. There are two general types of filtration that can be defined on all spaces: the
standard filtration and the natural filtration. The natural filtration works on a process that
records and maintains all past information. This is a simple filtration that just records every
previous step. A standard filtration is right continuous and complete, so it is a natural
filtration that is also continuous as time increases.

We can definite a filtration for any Brownian Motion B(t) by letting F(t) be the σ-algebra
generated by random variables B(s) : 0 ≤ s ≤ t. This Brownian Motion is adapted to the
filtration, which contains all the information from the stochastic process until time t. We
can think of this as the Markov chain shifting after a certain amount of time. The process
X(s+ t) : t, s ≥ 0 has the same distribution as X(s) : s ≥ 0.

It is important to know whether the state Xt, so we define the concept of adaptation.

Definition 4.3 (Adapted). A stochastic process X(t) : t ≥ 0 on a filtered probability space
is adapted if X(t) ∈ F(t) for all t ≥ 0.

Definition 4.4 (Admissible). A filtration F(t) is admissible for Brownian motion B(t) if

(1) B(t) is adapted to F(t)
(2) for every t ≥ 0, Wt+s −Wts≥0 is independent of the σ-algebras.

The standard filtration is in any admissible filtration.

Proposition 4.5 (Markov Property). If B(t) is a standard Brownian motion, then the
standard filtration F(t) is admissible.

Proof. This proof is based on fact that Brownian motion has independent increments. Fix
a time s ≥ 0 and look at two events A,B where

A = ∩nj=1B(sj−1) ≤ xj ∈ F and

B = ∩mj=1B(tj + s)−B(tj + s)−W (tj−1 + s) ≤ yj.
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Figure 3. A single path for three-dimensional Brownian Motion. Shows the
Markov Property as the future displacements do not depend on past
displacements. Image source: [Wik13].

Because of the independent increments, events A and B are independent. A will generate the
σ-algebra F(s) and B will generate the smallest σ-algebra where B(t+s)−B(s) is measurable
after time s. Thus, Brownian motion after time s is independent of the σ-algebra F(s). �

For general Markov chains, the Strong Markov Property is a generalization of the Markov
Property that says that after each stopping time, the future states of the chain are indepen-
dent of anything else. For Brownian motion, the Strong Markov Property has to do with
stopping times of the filtration. For that we need to define another random variable τ .
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Definition 4.6 (Stopping Time). A non negative random variable τ , which can go up to
+∞ is a stopping time with respect to a filtration F(t) is for every t ≥ 0, the event
τ ≤ t ∈ F(t).

A stopping time is proper if is is always less that infinity on the state space. Each stopping
time has a stopping field which is a σ-algebra consisting of all events B ⊂ F(∞) such that
B ∩ τ ≤ t ∈ F(t) for every t ≥ 0.

For a fixed (F ):

(1) Every constant t ≥ 0 is a stopping time
(2) If τ and υ are stopping times, then τ ∧ υ and τ ∨ υ are also stopping times
(3) If τ and υ are stopping times and τ ≤ ∨ then F(τ) ⊂ F(∨)

Theorem 4.7 (Strong Markov Property). Let B(t) be a standard Brownian motion and τ
be a stopping time relative to the standard filtration which an associated stopping σ-algebra.
For t ≥ 0, define the post-τ process

B ∗ (t) = B(t+ τ)−B(τ),

and let F∗ be a standard filtration of this process. Then

(1) B ∗ (t) is a standard Brownian motion
(2) For each t > 0, the σ-algebra F ∗ (t) is independent of F (t)

5. Connection to Martingales

In this section, we will explore the martingale property of Brownian Motion. Intuitively, a
martingale is a stochastic process where the expected value at any future time is just equal to
the current value, creating a “fair” game. In real life, the gambling events that are modelled
using martingales have pretty uniform profit margins. Some examples of martingales are
random walks and the money a gambler has after a sequence of fair bets. The martingale
property refers to any stochastic process that behaves like a martingale.

Definition 5.1 (Martingales). A martingale is a stochastic process Xt : t ∈ T such that
E(Xt) < ∞ ∀t ∈ T , and for every t1 < t2 < ... < tn < tn+1 we have E(Xtn+1|Xtn , ..., Xt1) =
Xtn .

Life isn’t always perfect, so there are definitions of martingales to account for the situation
where the expected value in the future are larger or smaller than the current value.

Definition 5.2 (Submartingales). A submartingale is a stochastic process Xt : t ∈
T such that E(Xt) < ∞ ∀t ∈ T , and for every t1 < t2 < ... < tn < tn+1 we have
E(Xtn+1|Xtn , ..., Xt1) ≥ Xtn .

Definition 5.3 (Supermartingales). A supermartingale is a stochastic process Xt : t ∈
T such that E(Xt) < ∞ ∀t ∈ T , and for every t1 < t2 < ... < tn < tn+1 we have
E(Xtn+1|Xtn , ..., Xt1) ≤ Xtn .
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Here are some basic properties of martingales that are good to keep in mind:

(1) For any integrable random variable X. {E(X|F(t)) : t ≥ 0} is a martingale.
(2) If M(t) is a submartingale, then t→ E(M(t)) is nondecreasing.
(3) If M(t) is a martingale and φ is a convex function where E(|φ(M(t))|) < ∞ for all

t ≥ 0, then φ(M(t)) is a submartingale.

The first two properties are easy to check. From now on, we will keep the first property in
mind and just write E(X) instead of E(X|F(t).

Proof of the Third Property. For this proof, we will need Jensen’s Inequality, which says that
for a random variable X where E <∞ and a convex function φ,

φ(E(X)) ≤ E(φ(X)).

Basically, Jensen’s Inequality let’s us the switch the order of the expectation and the convex
function with the knowledge that putting the expectation on the outside might have more
variability. �

Wald’s Identity or Wald’s Lemma looks at a series of random variables χ1, χ2, ..., χn with
the same mean and random variable τ representing the stopping time where

E(χ1 + χ2 + ...+ χτ ) = E(X1)E(τ) holds.

Proposition 5.4. If B(t) is a Brownian motion with an admissible filter F(t): each of the
following are continuous martingale with respective to the admissible filtration:

(1) B(t)t≥0

(2) B(t)2 − tt≤0

Example. Brownian motion is a martingale for times s and t where s < t for

Es(Xt) = Es(Xs) + Es(Xt −Xs) = Xs.

Example. Another example of involves one-dimensional Brownian motion . A stochastic
process M(t) is a martingale for a Brownian motion B(t) and for times s and t where s < t
where

M(t) = B(t)2 − t.

Proof. We have Es(M(t)) = Es(B(s) + δB)2 − t where δB = B(t) − B(s). Using linearity
of expectation, we can split the expectation up. We can split the expectation up, getting
Es(δB) + Es(δB)2 − t. Es(δB) = 0 and Es(δB)2 = t − s. Thus, this whole equation equals
M(s), showing that this example is a martingale. �
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There are two important facts about martingales that help understand why gambling doesn’t
go on forever. There are discrete time equivalents to both of these facts.

First we have the optional stopping theorem, which shows how martingales can be extended
from fixed times 0 ≤ s ≤ t to stopping times 0 ≤ S ≤ T . For the example of a gambler in a
fair game, the optional stopping theorem reveals that nothing can be gained from stopping
without looking into the future.

For the optional stopping theorem we need the definition of continuous time martingales,
which is a stochastic process Y (t) with respect to another stochastic process X(t) where
E(Y (t)) <∞ and E(Y (t)|X(τ), τ ≤ s) = Y (s)∀s ≤ t.

Theorem 5.5 (Optional Stopping Theorem). Let Y (t) is a continuous martingale, and
0 ≤ S ≤ T are stopping times. If the process Y (t ∧ T ) : t ≥ 0 is dominated by an integrable
random variable X where |Y (t ∧ T )| ≤ X for all t ≥ 0, then

E(Y (T )|F(S)) = X(S)

almost surely.

The proof of this stopping theorem comes from the proof of the theorem for the discrete time
case and then using dominated convergence for conditional expectations to get the theorem
for continuous martingales. This proof can be seen in [MP10].

Next we have Doob’s maximal inequality gives a bound on the probability that a stochastic
process will be greater than a certain value in a certain interval of time.

Theorem 5.6 (Doob’s Maximal Inequality). If B(t) is a continuous submartingale and
p > 1, for any t ≥ 0

E(sup0≤s≤t |X(t)|p) ≤ ( p
p−1

)pE(|X(t)|p).

This theorem will also have to be proved for the discrete case first. Using monotone conver-
gence, we can generalize this inequality to continuous submartingales.

These two theorems and the martingale property can be used to prove Wald’s lemmas for
Brownian motion.

Lemma 5.7 (Wald’s Lemma for Brownian Motion). [Dur19] Let {B(t) : t ≥ 0} be a
standard linear Brownian motion and τ be a stopping them where either

E(τ) <∞ or

{B(t ∧ τ) : t ≥ 0} is L1-bounded.

Then E(B(τ)) = 0.
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Wald’s lemma can either be proved with an optional stopping argument or with the strong
Markov property and the law of large numbers. This proof will use the optional stopping
argument.

Proof. We first want to show that there exists a stopping time τ that satisfies both conditions.
Suppose E(τ) <∞. Define a new stochastic process M(k) where

M(k) = max0≤t≤1 |B(t+ k)−B(k)) and M =
∑|τ |

k=1 M(k)

for a Brownian motion B(t).

We can take the expectation of this process to check whether the expectation is less than
∞.

E(M) = E(

|τ |∑
k=1

M(k))

=
∞∑
k=1

E(1{τ ≥ k}M(k)

=
∞∑
k=1

((P ){τ ≥ k}E(M(k))

= E(M(0))E(τ)

<∞

To solve E(M(0)), we can use the fact that we have an upper bound for probabilities using
the tail estimate for the Gaussian distribution:

P0{M(t) > a} ≤
√

2t
a
√
π
e−

a2

2t .

We also have Fubini’s Theorem to place an upper bound on the probability, getting

E(M(0)) =

∫ ∞
0

{max
0≤t≤1

|B(t)| > x}dx

≤
∫ ∞

0

2
√

2

x
√
π
e−

x2

2t

<∞

|B(t∧ τ)| ≤M so part 2 of the theorem is true. Under the part 2, we can apply the optional
stopping theorem with S = 0, to get E(B(T )) = 0. �

There is a second, more general lemma about stopping times for Wald.
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Lemma 5.8 (Wald’s Second Lemma). Let τ be a stopping time for standard Brownian
motion such that E(τ) <∞. Then

E(B(τ)2) = E(τ).

Proof. We will first define stopping times for the martingale {B(t)2 − t : t ≥ 0}. We have

τn = inf(t ≥ 0 : |B(t)| = n).

This means that {B(t ∧ τ ∧ τn)2 − t ∧ τ ∧ τn : t ≥ 0} will always be less than the integrable
random variable n2 + τ . The optional stopping theorem gets

E(B(τ ∧ τn)2) = E(τ ∧ τn).

We know that E(B(τ)2) ≥ E(B(τ∧τn)2). We can take the limits as the value of the Brownian
Motion approaches infinity and use monotone convergence to show that

E(B(τ)2) ≥ limn→∞ E(B(τ ∧ τn)2) = limn→∞ E(τ ∧ τn) = E(τ).

To prove the inequality on the other side we need Fatou’s lemma, which says that for a
random variable Y where E(Y ) <∞ then if Y ≤ Xn for all n, then

E(lim infn→∞Xn) ≤ lim infn→∞ E(Xn).

We can take advantage of our construction of the stopping time and apply Fatou’s Lemma
to get

E(B(τ)2) ≤ lim infn→∞ E(B(τ ∧ τn)2) = lim infn→∞ E(τ ∧ τn) ≤ E(τ).

Thus, E(B(τ)2) = E(τ), completing the proof. �

6. Brownian Motion from Random Walks

Suppose we have a random walk on R, where for every interval of time of length 1/n we

take a step of length
√

1/n either up or down. We’ll represent the step taken at time k by

the random variable Z(k), which takes the values
√

1/n and −
√

1/n with equal probability.
Let Xn(t) be our position at time t. Then, since the expected value of Z(k) is always 0, the
expected value of Xn(t) is

E

[
tn∑
m=1

Z
(m
n

)]
= 0



16 EMMA CARDWELL, JOSHIKA CHAKRAVERTY, KATHERINE TAYLOR

We also have that the variance of Z(k) is always 1
n
, and thus the variance of Xn(t) is

Var

(
tn∑
m=1

Z
(m
n

))
= E

( tn∑
m=1

Z
(m
n

))2


= E

[
tn∑
m=1

Z
(m
n

)2

+ 2
n−1∑
j 6=m

Z

(
j

n

)
Z
(m
n

)]

=
tn∑
m=1

E
[
Z
(m
n

)2
]

+ 2
tn∑
j 6=m

E
[
Z

(
j

n

)
Z
(m
n

)]

=
tn∑
m=1

1

n
+ 2

tn∑
j 6=m

E
[
Z

(
j

n

)]
E
[
Z
(m
n

)]
= t

This is starting to look a lot like Brownian motion, and in factXn(t) satisfies all the properties
of Brownian motion except for continuity. Intuitively, if we take the limit of Xn(t) as n→∞
(i.e., taking smaller and smaller steps in shorter and shorter intervals of time), we expect to
reach Brownian motion, and as it turns out that is indeed what happens.

Theorem 6.1 (Donsker’s Invariance Principle). Suppose we have a random walk on R with

time interval 1/n and step length
√

1/n, with the position at time t given by the sequence
{Xn(t) : t = m

n
,m ∈ Z≥0}. Let X(n)(t) be the curve created by linearly connecting each

successive pair of points (Xn(t), Xn(t+ 1
n
)). Then the sequence {X(n)(t) : n ∈ Z>0} converges

in distribution4 to a standard Brownian motion.

Donsker’s invariance principle is also sometimes called the functional central limit theorem,
as it makes an analogous statement to the central limit theorem in statistics. For suppose we
ask what the sequence {X(n)(1) : n ∈ Z>0} converges to. Using the central limit theorem,
we conclude that limn→∞X

(n)(1) is a normally distributed random variable with mean 0
and variance 1, which is precisely B(1) for a standard Brownian motion. Thus, {X(n)(1) :
n ∈ Z>0} converges in distribution to B(1). Similarly, we can show using the central limit
theorem that {X(n)(s) : n ∈ Z>0} converges in distribution to B(s) for any s ≥ 0. What
Donsker’s invariance principle does is show that this convergence holds not just pointwise
but for the entire function at once.

Thus, Brownian motion is in a sense the functional analogue of the Gaussian distribution,
connected to random walks in much the same way that the Gaussian distribution is connected
to finite random variables with binomial distributions. This connection is important because
Brownian motion is more powerful than random walks, allowing us to use Brownian motion
to prove things about random walks.

Another example of the connection between Brownian motion and random walks is the law
of the iterated logarithm.

4A sequence of random variables {Xn} converges in distribution to a random variable X if the cdfs of the
Xn’s converge to the cdf of X, that is, if the distributions of the Xn’s converge to the distribution of X.
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Figure 4. Over many iterations of a Brownian motion, the bounds given by
the law of the iterated logarithm become more apparent. Image
source: [bml18].

The law of the iterated logarithm is an interesting intermediary between two other bounds on
the long-term behavior of random walks and Brownian motion. By the law of large numbers,
we have that

lim
t→∞

B(t)

t
= lim

t→∞

Xn(t)

t
= 0

almost surely. And by the properties of Brownian motion and the central limit theorem, we
have

lim
t→∞

B(t)√
t
∼ lim

t→∞

Xn(t)√
t
∼ N(0, 1)

That is, the limits do not converge to any single value, but instead approach the standard
normal distribution. While we will not prove this (or either of the preceding statements, for
that matter), it is a fact that follows relatively quickly from the above and Kolmogorov’s
zero-one law that

lim sup
t→∞

Xn(t)√
t

=∞, lim inf
t→∞

Xn(t)√
t

= −∞

and

lim sup
t→∞

B(t)√
t

=∞, lim inf
t→∞

B(t)√
t

= −∞

These two limits suggest that somewhere in between
√
t and t is a value where we can make

a more precise statement about the behavior of Brownian motion and random walks. As it
turns out, that value is

√
2t log log t.
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Theorem 6.2 (Law of the Iterated Logarithm for Brownian Motion). Let B(t) be a standard
Brownian motion. Then, almost surely,

lim sup
t→∞

B(t)√
2t log log t

= 1

and

lim inf
t→∞

B(t)√
2t log log t

= −1

This implies that for any ε > 0, there exists t such that for all s > t,

|B(s)| ≤ (1 + ε)
√

2s log log s

However, the law of the iterated logarithm also implies that for any ε > 0, there exists a
time s such that

|B(s)| ≥ (1− ε)
√

2s log log s

What this looks like in practice is that Brownian motion spends most of its time very close to
the bound given by ±

√
2t log log t, switching at random between the upper and lower bounds.

There is also a (very similar) version of the law of the iterated logarithm for random walks:

Theorem 6.3 (Law of the Iterated Logarithm for Random Walks). Let {Xn(t) : t = m
n
,m ∈

Z≥0} be a random walk with time interval 1/n and step length
√

1/n, and probability 1
2

each
of stepping up or down. Then, almost surely,

lim sup
t→∞

Xn(t)√
2t log log t

= 1

and

lim inf
t→∞

Xn(t)√
2t log log t

= −1

The law of the iterated logarithm for random walks can be proven from the law of the iterated
logarithm for Brownian motion using embeddings. [Str64]

A related and very interesting fact about Brownian motion is the following: the arcsine
distribution says that the cumulative distribution function of one-dimensional Brownian
Motion is

P{X ≤ x} =
2

π
arcsin

√
x

for x ∈ (0, 1). This distribution can be proved with Donksker’s Invariance Principle and
analysis of the extrema of the function.

7. Itô Calculus

Many stochastic processes are constructed with functions that are not differentiable. In
fact, we proved that a Brownian motion is not differentiable anywhere in Proposition 3.9.
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Furthermore, ordinary calculus cannot account for the random behavior of stochastic pro-
cesses. To extend the concepts of calculus to stochastic processes, we need to use stochastic
calculus5. Since we can’t differentiate, we can start by defining integration6.

Definition 7.1 (Itô Integral). An Itô integral of the function f = f(t) with respect to the
Brownian motion B on the finite interval [0, T ] is a function W = W (t), t ∈ [0, T ] given by:

W (t) =

∫ t

0

f(s)dB(s) = lim
N→∞

N∑
k=1

f(tk−1) (B(tk)−B(tk−1))

where tk = kt
N

.

What does this actually mean? W (t) is a random variable that can be approximated in the
same way that Riemann sums are used to approximate ordinary integrals. The difference
is, when f(t) is a non-random function, we use intervals of random width when evaluating
the Itô integral. Each f(tk−1)(B(tk) − B(tk−1) is a random variable, so their sum, W (t) is
a random variable. When f is a random process (meaning W is the integral of process f
with respect to Brownian motion B), then f(tk−1)(B(tk) − B(tk−1)) is the product of two
random variables. This results in another random variable, so the sum W (t) is also a random
variable.

If we were working with Riemann integrals, the fundamental theorem of calculus tells us
that the derivative of the W (t) (the integrated function) simply returns the original function.
Our intuition tells us that we should be able to take the derivative of W (t), the result of our
integration, just by reversing the process. Unfortunately, the process of taking the derivative
is a little more complicated in stochastic calculus.

The stochastic calculus analogue of the chain rule for evaluating derivatives is Itô’s Lemma:

Lemma 7.2 (Itô’s Lemma). Let f(Bt) be a twice-differentiable function and let Bt = B(t)
be a Brownian motion. Itô’s Lemma states that

df(Bt) = f ′(Bt)dBt +
1

2
f ′′(Bt)dt

Proof. Since the differentiation dBt

dt
doesn’t exist, we cannot use the chain rule. Instead, let’s

start by considering the Taylor expansion of f(Bt):

∆f(Bt) = f(Bt + ∆Bt)− f(Bt) = (∆Bt) · f ′(Bt) +
(∆Bt)

2

2
f ′′(Bt) +

(∆Bt)
3

3!
f ′′′(Bt) + . . .

5We will only briefly introduce concepts of stochastic calculus that are related to Brownian motion. A
more rigorous treatment of stochastic calculus would require more measure theory and more concepts that
cannot be adequately summarized so as to fit in a short paper such as this one.

6For a more detailed construction of the Itô Integral, see https://www.stat.cmu.edu/~cshalizi/754/

notes/lecture-19.pdf.

https://www.stat.cmu.edu/~cshalizi/754/notes/lecture-19.pdf
https://www.stat.cmu.edu/~cshalizi/754/notes/lecture-19.pdf
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Since Bt is a Brownian motion, Wald’s second lemma tells us that E[(∆Bt)
2] = ∆t. Substi-

tuting this into the previous equation, we get

∆f(Bt) = (∆Bt) · f ′(Bt) +
∆t

2
f ′′(Bt) +

(∆Bt)
3

3!
f ′′′(Bt) + . . .

= dBtf
′(Bt) +

dt

2
f ′′(Bt) +O(∆Bt∆t)

We can exclude the terms starting from (∆Bt)3

3!
f ′′′(Bt), as ∆Bt·∆t

3!
f ′′′(Bt) ≤ ∆Bt·∆t < ∆Bt,∆t.

Restating the previous equation in terms of infinitesimals, we get

∆f(Bt) = dBtf
′(Bt) +

dt

2
f ′′(Bt)

Rearranging this gives us Itô’s lemma:

df(Bt) = f ′(Bt)dBt +
1

2
f ′′(Bt)dt

�

The stochastic calculus equivalent of differential equations are stochastic differential equa-
tions.

Definition 7.3. Given thatX = X(t, ω) is a random variable with initial conditionX(0, ω) =
X0 with a probability of one, a stochastic differential equation (SDE) is an equation of
the form

dX(t) = f (t,X(t)) dt+ g (t,X(t)) dW (t)(7.1)

When f, g are real-valued functions on R2, the SDE above is equivalent to saying that X(t)
satisfies the following integral equation

X(t) =

∫ t

0

f
(
s,X(s)

)
ds+

∫ t

0

g
(
s,X(s)

)
dB(s)

8. Geometric Brownian Motion and the Black-Scholes Model

One application of Brownian motion can be found in financial mathematics. The Black-
Scholes model is the most commonly used stock price behavior estimation model, and it
relies on geometric Brownian motion. Broadly speaking, a geometric Brownian motion is a
stochastic process in which the logarithm of the variation in the quantity being modeled can
be described with a Brownian motion. The definition of geometric Brownian motion reflects
this, as it is based on an SDE.

Definition 8.1 (Geometric Brownian Motion). Let B(t) denote a Brownian motion. A
stochastic process S(t) is a geometric Brownian motion (GBM) if it satisfies

dS

S
= µdt+ σdB
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In the equation above, µ and σ are constants. µ is known as the percentage drift and σ is
known as the percentage volatility.

Figure 5. Geometric Brownian motions for different values of µ and σ.
Image source: [Wal17].

GBM is excellent for modeling stock prices for several reasons. GBMs are strictly positive,
just like real stock prices. Also, the expected return of a GBM process is independent from
the current value of the process. This reflects how the expected percentage return7 required
by investors is independent of the stock’s price [Hul08].

7The expected percentage return (also known as the expected rate of return) is the profit that an investor
expects to earn on an investment, represented as a percentage of the initial price of the investment.
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8.1. Black-Scholes Model for Stock Option Pricing. As this paper is primarily con-
cerned with the mathematical implications of Brownian motion, we shall largely skip over
the finance-related background and applications of the Black-Scholes model. However, we
will provide a brief explanation of the terms involved in the Black-Scholes equation.

Proposition 8.2. The Black-Scholes equation states that the option price C for a European-
style option8 can be described by

∂C

∂t
+

1

2
σ2S2∂

2C

∂S2
+ rS

∂C

∂S
− rC = 0

Proof Sketch. Our option price, C, is a function of time, t, and the asset, S (so we have
C = C(S, t)). We assume that S follows a GBM with drift rate µ and volatility σ. Applying
Itô’s lemma, we get

dC =
∂C

∂t
dt+

∂C

∂S
dS +

1

2

∂2C

∂S2
dS2(8.1)

Since S follows a GBM, we know that

dS

S
= µdt+ σdB

so we have

dS = µSdt+ σSdB(8.2)

Substituting Equation (7.2) into Equation (7.1), we get

dC =
∂C

∂t
dt+

∂C

∂S
(µSdt+ σSdB) +

1

2

∂2C

∂S2
(µSdt+ σSdB)2(8.3)

=

(
∂C

∂t
+ µS

∂C

∂S
+

1

2
σ2S2∂

2C

∂S2

)
dt+ σS

∂C

∂S
dB(8.4)

Now, consider a delta-hedged portfolio9. The value of its holdings is

Π = −C +
∂C

∂S
S

We want to know how much we’re making or losing over the time interval [t, t+ ∆t]:

∆Π = −∆C +
∂C

∂S
∆S(8.5)

8More specifically, a European-style call or put on an underlying stock without dividends. A European-
style call option is an agreement that gives the buyer the right to purchase the agreed-upon asset at a
specified price during a specified time period, while a European-style put option is an agreement that gives
the holder of an asset the right to sell it at a specified price during a specified time interval to the seller of
the put.

9A delta-hedged portfolio (also known as a delta neutral portfolio) evens out the response to market
movements for a certain range so that the net change in the portfolio’s value is near zero. For a more
detailed explanation of delta hedging, see [Che20].
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Taking the discrete version of Equations (7.2) and (7.4), we have

∆S = µSδt+ σS∆B

∆C =

(
∂C

∂t
+ µS

∂C

∂S
+

1

2
σ2S2∂

2C

∂S2

)
∆t+ σS

∂C

∂S
∆B

Substituting these into Equation (7.5), we get

∆Π = −

((
∂C

∂t
+ µS

∂C

∂S
+

1

2
σ2S2∂

2C

∂S2

)
∆t+ σS

∂C

∂S
∆B

)
+
∂C

∂S
(µSδt+ σS∆B)(8.6)

=

(
−∂C
∂t
− 1

2
σ2S2∂

2C

∂S2

)
∆t(8.7)

The rate of return on this portfolio must be equivalent to the rate of return on any other
riskless investment. This means that if we denote the continuously compounding risk free
rate of return as r, we must have

rΠ∆t = ∆Π

Substituting Equation (7.7) into the equation above, we get

r

(
−C +

∂C

∂S
S

)
∆t =

(
−∂C
∂t
− 1

2
σ2S2∂

2C

∂S2

)
∆t

This simplifies to the Black-Scholes equation:

∂C

∂t
+

1

2
σ2S2∂

2C

∂S2
+ rS

∂C

∂S
− rC = 0

�

There is an exact formula that gives the solution to the Black-Scholes equation for European
options. For an explanation of its derivation and usage, see [Cha].

9. Conclusion

This paper focused on the probabilistic aspects of Brownian Motion and their connections
to Markov Chains. There are several more interesting crossovers from other branches of
mathematics, like connections to harmonic analysis, which investigates Brownian Motion
on a two-dimensional lattice and the Dirichlet problem and applications of the Hausdorff
dimension, which is a measure of fractal dimension of sample paths of Brownian motion.
This paper doesn’t address the most important invariance property: conformal invariance,
which allows angle-preserving linear mappings. Brownian motion also has applications in
physics through statistical mechanics. Current research using Brownian motion focuses on
dynamics and creating better models of moving particles.
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