
CENTRAL LIMIT THEOREM

DHRUV RAGHAVAN

In this paper, we will explore discrete probability spaces, stating and proving some prelim-
inary results concerning probability distributions and random variables. We then introduce
Moment Generating Functions, a crucial tool in proving the Central Limit Theorem. Next,
we will prove Markov’s Inequality and Chebyshev’s Inequality, leading to the proof of the
Weak Law of Large Numbers, another fundamental theorem in probability. Lastly, we use
these ideas to prove the Central Limit Theorem, and conclude with some computational
examples.

1. Discrete Probability spaces

Definition 1.1. A (discrete) probability space is a pair (Ω,P), where Ω is a set and P : Ω→
[0, 1] is a function such that

∑
ω∈Ω P(ω) = 1.

Alternatively, if we list out Ω = (ω1, . . . , ωn) where Ω is finite, then we can represent P as
a vector v = (v1, . . . , vn), where vi = P(ωi). Each vi ∈ [0, 1], and the entries sum to 1.

If E ⊆ Ω is an event, then the probability of E is

P(E) =
∑
ω∈E

P(ω).

We are often interested in considering multiple outcomes of an experiment. For instance,
we might be interested in the number of odd results from rolling three dice. In this example,
we would be interested in multiple outcomes: the probability of the first die being odd, the
probability of the second die being odd and the probability of the third die being odd. To
work with multiple outcomes, we define a random variable.

Definition 1.2. Suppose we have a discrete probability space (Ω,P) and a set E. A random
variable is a function X : Ω → E. Given a subset S ⊆ E, we can ask for the probability
that X is in S. That is, P(X ∈ S), by which we mean more formally

P(X ∈ S) =
∑

ω:X(ω)∈S

P(ω).

We say that n events A1, . . . , An are independent if, for any subset S ⊆ {1, 2, . . . , n}, we
have

P

(⋂
i∈S

Ai

)
=
∏
i∈S

P(Ai).

Events that are not independent are said to be dependent.

Definition 1.3. For a random variable that can take on at most a countable number of
possible values, a probability mass function p(a) is defined by

p(a) = P (X = a)
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Definition 1.4. For a random variable X, the distribution function F is defined by

F (x) = P (X ≤ x)

Definition 1.5. Let F : R→ R be a function with the following properties:

• F is monotonically increasing, i.e. if a ≤ b, then F (a) ≤ F (b).
• limx→−∞ F (x) = 0 and limx→+∞ F (x) = 1.
• F is continuous on the right, i.e. for all a ∈ R, limx→a+ F (x) = F (a).

Such a function is called a cumulative density function, or CDF. Then we can use F to define
a probability on R by specifying that P(x ≤ a) = F (a).

When the CDF is differentiable, its derivative f(x) = F ′(x) is called the probability density
function or PDF. When the PDF exists, it determines the CDF, so it suffices to describe
the distribution in terms of the PDF. An important distribution is the normal distribution,
which is a continuous probability distribution that is symmetrical on both sides of the mean,
The area under this bell-curve represents probability and sums to one. It the most important
probability distribution, and comes up quite often in statistics.

Definition 1.6. X is a normal random variable with parameters µ and σ2 if the density of
X is given by

f(x) =
1√
2πσ

e−(x−µ)2/2σ2

Whenever µ = 0 and σ2 = 1 we get a simplified equation:

f(x) =
1√
2π
e−x

2/2

We can see that f(x) is indeed a distribution function since integrating it from−∞ to∞ gives
1 and hence the sample space has probability 1, as required by the axioms of probability. We
are now interested in the properties of random variables, namely their average and spread.

Definition 1.7. If X is a discrete random variable having the probability mass function
p(x), the expected value, denoted by E[X], is defined as

E[X] =
∑

x:p(x)>0

xp(x)

In other words, the expected value is a weighted average of all possible values of X, where
the weights are the probabilities that X takes those values.

Example. If X is the number showing on a fair, standard die, then

E[X] =
1

6
· 1 +

1

6
· 2 +

1

6
· 3 +

1

6
· 4 +

1

6
· 5 +

1

6
· 6 = 3.5 .

Definition 1.8. If X is a random variable with mean µ, where µ = E[X], then the variance
of X, denoted by V ar(X), is defined as

V ar(X) = E
[
(X − µ)2

]
. The standard deviation of X is

√
V ar(X).

Variance helps us determine the expected deviation from µ.
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Example. Going back to our dice example, the expected value µ = 3.5, so its variance is

V ar(x) =
1

6
(1− 3.5)2 +

1

6
(2− 3.5)2 +

1

6
(3− 3.5)2 +

1

6
(4− 2.5)2 +

1

6
(5− 3.5)2 +

1

6
(6− 3.5)2

=
1

6

(
25

4
+

9

4
+

1

4
+

1

4
+

9

4
+

25

4

)
=

35

12
.

Now we will prove a few basic properties of expected value and variance.

Lemma 1.9. If X is a discrete random variable that takes on one of the values xi, i ≥ 1,
with respective probabilities p(xi), then for any real-valued function g

E[g(X)] =
∑
i

g(xi)p(xi)

Proof. We start by grouping together all the terms having the same value of g(xi). Thus, let
yj j ≥ 1 represent the different values of g(xi), i ≥ 1. Then:∑

i

g (xi) p (xi) =
∑
j

yj
∑

i:g(xi)=yj

p (xi)

=
∑

yjP (g(X) = yj) = E[g(X)].

�

Lemma 1.10. (Linearity of Expectation) Let X and Y be two random variables on a sample
space Ω, and let c ∈ R. Then we have

E(X + Y ) = E(X) + E(Y ) and E[aX + b] = aE[X] + b.

Proof. Let the sample space of X = x1, x2, . . . and the sample space of Y = y1, y2, . . . Then,
we can write the random variable X + Y as a result of applying a function g(x, y) = x + y
to the joint random variable (X, Y )

E[X + Y ] =
∑
j

∑
k

(xj + yk)P (X = xj, Y = yk)

=
∑
j

∑
k

xjP (X = xj, Y = yk) +
∑
j

∑
k

ykP (X = xj, Y = yk)

=
∑
j

xjP (X = xj) +
∑
k

ykP (Y = yk)

= E[X] + E[Y ]

Here, step 1 follows by lemma 1.9. Step 3 follows since
∑

k P (X = xj, Y = yk) = P (X = xj)
As for the second part of the lemma,

E[aX + b] =
∑

x:p(x)>0

(ax+ b)p(x) = a
∑

x:p(x)>0

xp(x) + b
∑

x:p(x)>0

p(x) = aE[X] + b.

�

Linearity of Expectation is quite useful when solving expected value problems.
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Example. Suppose we flip a fair coin n times. What is the expected number of heads? To
do this, we let X be the number of heads in n flips. Now, break up X into a sum of random
variables. For 1 ≤ i ≤ n, let Xi = 1 if the ith flip is heads, and Xi = 0 if the ith flip is tails.
Then we get X = X1 +X2 + · · ·+Xn. For each i, we have

E(Xi) = 1 · P(Xi = 1) + 0 · P(Xi = 0) =
1

2
.

Thus we have E(X) = 1
2
· n = n

2
.

We can apply this to get a similar lemma concerning variance.

Lemma 1.11. If a and b are constants, then

V ar(aX + b) = a2V ar(X).

Proof. Using linearity of expectation and letting µ = E[X], we have

V ar(aX + b) = E[(aX + b− aµ− b)2] = E[a2(X − µ)2] = a2E[(X − µ)2] = a2V ar(X).

�

Lastly, we have property of expected value and variance for independent random variables.

Lemma 1.12. If X and Y are independent random variables, then

E[X · Y ] = E[X]E[Y ]

and

V ar(X + Y ) = V ar(X) + V ar(Y )

Proof. Let the sample space of X = x1, x2, . . . and the sample space of Y = y1, y2, . . .

E[X · Y ] =
∑
j

∑
k

xjykP (X = xj)P (Y = yk) =

(∑
j

xjP (X = xj)

)(∑
k

ykP (Y = yk)

)
= E[X]E[Y ]

Next, let E[X] = a and E[Y ] = b.

V ar(X + Y ) = E
[
(X + Y )2

]
− (a+ b)2

= E
[
X2
]

+ 2E[XY ] + E
[
Y 2
]
− a2 − 2ab− b2

= E
[
X2
]
− a2 + E

[
Y 2
]
− b2

= V ar(X) + V ar(Y )

Here, step 1 follows from the definition of independence,

P (X = xj, Y = yk) = P (X = xj)P (Y = yk) .

Step 6 follows from the other definition of independence,

E[XY ] = E[X]E[Y ] = ab

. �
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2. Moment Generating Functions

So far, we have encountered two important attributes of a random variable, namely the
expected value and variance. However, they do not contain all the available information
about the density function. For example, suppose X and Y are random variables with
distributions

px =

(
1 2 3 4 5 6
0 1

4
1
2

0 0 1
4

)
,

py =

(
1 2 3 4 5 6
1
4

0 0 1
2

1
4

0

)
. Then we have E[X] = E[Y ] = 7

2
and V (X) = V (Y ) = 9

4
, while px and py are clearly

different density functions. What else must we know to determine p? This brings us to the
moments of a random variable.

Definition 2.1. The kth moment of a random variable X is E[Xk] =
∑∞

j=1(xj)
kp(xj),

provided the sum converges.

We define the Moment Generating Function to compute the moments of a random variable.

Definition 2.2. The Moment Generating Function (MGF) M(t) of a discrete random vari-
able X is defined for all real t by

M(t) = E[etX ] =
∑
x

etXp(x)

where p(x) is the mass function.

If we differentiate M(t) n times and then set t = 0, we have

dn

dtn
g(t)

∣∣∣∣
t=0

= g(n)(0)

=
∞∑
k=n

k!µkt
k−n

(k − n)!k!

∣∣∣∣∣
t=0

= µn

It is easy to calculate the moment generating function for simple examples.

Example. (Grinstead and Snell) Suppose X has range {1, 2, 3, . . . , n} and pX(j) = 1/n for
1 ≤ j ≤ n (uniform distribution). Then

g(t) =
n∑
j=1

1

n
etj =

1

n

(
et + e2t + · · ·+ ent

)
=
et (ent − 1)

n (et − 1)

Using the previous equation, we see that

µ1 = g′(0) =
1

n
(1 + 2 + 3 + · · ·+ n) =

n+ 1

2
µ2

= g′′(0) =
1

n

(
1 + 4 + 9 + · · ·+ n2

)
=

(n+ 1)(2n+ 1)

6
,

and that µ = µ1 = n+1
2

and σ2 = µ2 − µ2
1 = n2−1

12
.

Moment Generating Functions will be crucial in the upcoming proof of the Central Limit
Theorem. Thus, we compute the MGF of the Normal/Gaussian distribution.



6 DHRUV RAGHAVAN

Example. Let Z be a unit normal random variable with mean 0 and variance 1.

MZ(t) = E
[
etZ
]

=
1√
2π

∫ ∞
−∞

etxe−x
2/2dx

=
1√
2π

∫ ∞
−∞

exp

(
−x

2 − 2tx

2

)
dx

=
1√
2π

∫ ∞
−∞

exp

(
−(x− t)2

2
+
t2

2

)
dx

= et
2/2

∫ ∞
−∞

1√
2π
e−(x−t)2/2dx

= et
2/2

Step 2 follows from substituting a normal random variable for Z and taking the expected
value, and step 6 uses the fact that the distribution function is equal to one.

3. Probability Bounds

As determining probabilities of certain outcomes of a random variable become more diffi-
cult only with mean and variance, exact probabilities are impossible to find, but bounds can
be calculated. One of these is given by Markov’s Inequality.

Lemma 3.1. (Markov’s Inequality) If X is a random variable that takes only nonnegative
values, then for any value a > 0,

P (X ≥ a) ≤ E[X]

a
.

Proof. We have

E[X] =

∫ ∞
0

xP (x)dx

=

∫ u

0

xP (x)dx+

∫ ∞
a

xP (x)dx.

Since P (X) and X are nonnegative, we have

E[X] =

∫ u

0

xP (x)dx+

∫ ∞
a

xP (x)dx

≥
∫ ∞
a

xP (x)dx

≥
∫ ∞
a

aP (x)dx

= a

∫ ∞
a

P (x)dx

= aP (x ≥ a)

.

�

With Markov’s Inequality, we can create a bound on the probability given only the mean.
It will help us prove Chebyshev’s Inequality, leading us closer to the Law of Large Numbers.
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Lemma 3.2. (Chebyshev’s Inequality) If X is a discrete random variable with finite mean
and variance, for any a > 0,

P (|X − E[X]| ≥ a) ≤ V ar(X)

a2
.

Proof. Let Y = (X −E[X])2. Then Y is a nonnegative random variable with expected value
E[Y ] = V ar(X). By Markov’s inequality,

P
(
Y ≥ a2

)
≤ E[Y ]

a
=
V ar(X)

a2
.

Notice that the event Y ≥ a2 is the same as |X − E[X]| ≥ a, so we can conclude that

P (|X − E[X]| ≥ a) ≤ V ar(X)

a2
.

�

Theorem 3.3. (The Weak Law of Large Numbers) Let X1, X2, . . . be a sequence of indepen-
dent and identically distributed random variables, each having finite mean E [Xi] = µ and
variance σ2. Then, for any ε > 0,

P

(∣∣∣∣X1 + . . .+Xn

n
− µ

∣∣∣∣ ≥ ε

)
→ 0 as n→∞.

Proof. We see that

E
[
X1 + . . .+Xn

n

]
=

1

n
· E [X1] + . . .+ E [Xn] =

nµ

n
= µ.

Furthermore,

V ar

(
X1 + . . .+Xn

n

)
= V ar

(
X1

n

)
+ . . .+ V ar

(
Xn

n

)
.

We can see that V ar
(
X1

n

)
= E

[(
X1−µ
n

)2
]

=
(

1
n2

)
· E
[
(X1 − µ)2] , and therefore we get:

V ar

(
X1 + . . .+Xn

n

)
=

n times︷ ︸︸ ︷
σ2

n2
+ . . .+

σ2

n2
=
σ2

n
.

Let
(
X1+...+Xn

n

)
be a new random variable X. It clearly satisfies the conditions for Cheby-

shev’s Inequality. Hence, we apply the lemma to get

P (|X − µ| ≥ ε) ≤ V ar(X)

ε2
=

σ2

nε2
.

As n→∞, it then follows that

lim
n→∞

P (|X − µ| ≥ ε) = 0.

�

The Law of Large Numbers essentially states that as a sample size grows, its mean gets
closer to the average of the whole population
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4. Central Limit Theorem

In essence, the theorem says that as the sample size expands, the distribution of the mean
among multiple samples will come closer and closer to the Gaussian distribution, commonly
known as a bell curve. What’s astonishing is that no matter the initial distribution, the
normal distribution arises. That means that we can use the CLT to examine things like
income, height, weight, and political forecasts. Investors of all types rely on the CLT to ana-
lyze stock returns, construct portfolios, and manage risk. One just needs 30 random samples
for the CLT to hold, and one can have as many pieces of data as one wants. Furthermore,
previously-selected stocks must be swapped out with different names, to help eliminate bias.
Although this concept was first developed by Abraham de Moivre in 1733, it wasn’t formally
named until 1930, when noted Hungarian mathematician George Polya officially dubbed it
the Central Limit Theorem. Note that the LLN is different from the CLT, as the LLN relies
on the size of a single sample, while the CLT relies on the number of samples. Furthermore,
the CLT shows the the distribution of the difference between the sample means and the
value, rather than showing that the sample means converge to a single value. Now, we will
prove it. First, note the following lemma.

Lemma 4.1. Let Z1, Z2, ... be a sequence of random variables having distribution functions
FZn and moment generating functions MZn such that n ≥ 1. Furthermore, let Z be a
random variable having distribution function FZ and moment generating functions MZ. If
MZn(t)→MZ for all t, then FZn(t)→ FZ(t) for all t at which FZ(t) is continuous.

The proof of this lemma is left as an exercise for the reader. To see its importance, let
Zn =

∑n
i=1

Xi√
n

where Xi are i.i.d random variables, and let Z be a normal random variable.

Then, if we show that the MGF of Zn approaches the MGF of Z (Which we previously

showed is et
2/2) as n → ∞. we are also showing that the probability distribution of Zn

approaches the normal distribution as n → ∞. Consequently, we are going to prove the
Central Limit Theorem as such.

Theorem 4.2. (Central Limit Theorem) Let Sn = X1 +X2 + ...+Xn be the sum of n i.i.d
random variables with expected value µ and variance σ2. Then, for −∞ < a <∞,

lim
n→∞

P

(
Sn − nµ
σ
√
n
≤ a

)
=

1√
2π

∫ a

−∞
e−x

2/2dx.

Proof. (Krokhmal) We begin the proof with the assumption that µ = 0, σ2 = 1 and that the
MGF of the Xi exists and is finite. We already know the MGF of a normal random variable,
but we still need to compute the MGF of the sequence of random variables we are interested

in:
∑n

i=0Xi/
√
n. By definition of MGF, we can see that M

(
t√
n

)
= E

[
exp

(
tXi√
n

)]
. However,
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we are interested in the MGF of E
[
exp

(
t
∑n

i=1
Xi√
n

)]
. Here is how we find it:

E

[
exp

(
t

n∑
i=1

Xi√
n

)]
= E

[
exp

(
n∑
i=1

Xi ·
t√
n

)]

= E

[
n∏
i=1

exp

(
Xi ·

t√
n

)]

=
n∏
i=1

E
[
exp

(
Xi ·

t√
n

)]

=
n∏
i=1

M

(
t√
n

)
=

[
M

(
t√
n

)]n
Step 3 relies on the fact that theXi s are independent and therefore the E and the

∏
operators

are interchangeable. Now we define L(t) = log M(t) and evaluate L(0), L′(0), L′′(0). We have

L(0) = logM(0) = logE
[
e0·Xi

]
= logE[1] = log 1 = 0

L′(0) = M ′(0)
M(0)

= M ′(0) = E
[
Xe0·Xi

]
= E[X] = µ = 0

L′′(0) =
M(0)M ′′(0)− [M ′(0)]2

[M(0)]2
=

1 · E [X2]− 02

12
= E

[
X2
]

= σ2 = 1

Now we are ready to prove the theorem by showing that limn→∞

[
M
(

t√
n

)]n
= et

2/2. By

taking the natural logarithm of both sides, we can see that this is equivalent to showing
limn→∞ nL(t/

√
n) = t2/2. Hence, we compute:

lim
n→∞

L(t/
√
n)

n−1
= lim

n→∞

−L′(t/
√
n)n−3/2t

−2n−2

= lim
n→∞

−L′(t/
√
n)t

−2n−1/2

= lim
n→∞

−L′′(t/
√
n)n−3/2t2

−2n−3/2

= lim
n→∞

L′′
(

t√
n

)
t2

2

=
t2

2

Here, step 1 and 3 are justified by L’Hopital’s rule since both the top and the bottom of the
original fraction equaled 0. Having shown this, we can now apply the lemma to prove the
Central limit theorem for the case where µ = 0 and σ2 = 1.

�
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5. Examples and Applications

In this section, we will delve into the usefulness of the theorem, discussing how to use it
using sample problems.

Example. A die is rolled 420 times. What is the probability that the sum of the rolls lies
between 1400 and 1550? The sum is a random variable

S420 = X1 +X2 + · · ·+X420

where each Xj has distribution

mX =

(
1 2 3 4 5 6

1/6 1/6 1/6 1/6 1/6 1/6

)
We have seen that µ = E(X) = 7/2 and σ2 = V (X) = 35/12. Thus, E (S420) = 420 · 7/2 =
1470, σ2 (S420) = 420 · 35/12 = 1225, and σ (S420) = 35. Therefore

P (1400 ≤ S420 ≤ 1550) ≈ P

(
1399.5− 1470

35
≤ S∗240 ≤

1550.5− 1470

35

)
= P (−2.01 ≤ S∗420 ≤ 2.30)

≈ NA(−2.01, 2.30) = .9670

We’ll now look at grading, which at a first glance, might seem completely unrelated to the
normal distribution.

Example. A student’s GPA is the average of his grades in 30 courses. The grades are based on
100 possible points and are recorded as integers. Assume that, in each course, the instructor
makes an error in grading of k with probability |p/k|, where k = ±1,±2,±3,±4,±5. The
probability of no error is then 1− (137/30)p. (The parameter p represents the inaccuracy of
the instructor’s grading.) Thus, in each course, there are two grades for the student, namely
the ”correct” grade and the recorded grade. So there are two average grades for the student,
namely the average of the correct grades and the average of the recorded grades.

We wish to estimate the probability that these two average grades differ by less than .05
for a given student. We now assume that p = 1/20. We also assume that the total error is
the sum S30 of 30 independent random variables each with distribution

mX :

{
−5 −4 −3 −2 −1 0 1 2 3 4 5

1
100

1
80

1
60

1
40

1
20

463
600

1
20

1
40

1
60

1
80

1
100

}
One can easily calculate that E(X) = 0 and σ2(X) = 1.5. Then we have

P

(
−.05 ≤ S30

30
≤ .05

)
= P (−1.5 ≤ S30 ≤ 1.5)

= P

(
−1.5√
30 · 1.5

≤ S∗30 ≤
1.5√

30 · 1.5

)
= P (−.224 ≤ S∗30 ≤ .224)

≈ NA(−.224, .224) = .1772

This means that there is only a 17.7% chance that a given student’s grade point average is
accurate to within .05.
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These examples involved discrete independent trials, but the CLT also holds for continous
distributions with finite mean and variance.

Example. (Grinstead and Snell) Suppose a surveyor wants to measure a known distance, say
of 1 mile. She knows that because of possible motion of her car, atmospheric distortions, and
human error, any one measurement is apt to be slightly in error. She plans to make several
measurements and take an average. She assumes that her measurements are independent
random variables with a common distribution of mean µ = 1 and standard deviation σ =
.0002 (so, if the errors are approximately normally distributed, then her measurements are
within 1 foot of the correct distance about 65% of the time ). What can she say about the
average?

She can say that if n is large, the average Sn/n has a density function that is approximately
normal, with mean µ = 1 mile, and standard deviation σ = .0002/

√
n miles.

How many measurements should she make to be reasonably sure that her average lies
within .0001 of the true value? Here’s where we can use the Law of Large Numbers, which
we previously proved. The Chebyshev inequality says

P

(∣∣∣∣Snn − µ
∣∣∣∣ ≥ .0001

)
≤ (.0002)2

n (10−8)
=

4

n

so that we must have n ≥ 80 before the probability that his error is less than .0001 exceeds
.95.

We have already noticed that the estimate in the Chebyshev inequality is not always a
good one, and here is a case in point. If we assume that n is large enough so that the density
for Sn is approximately normal, then we have

P

(∣∣∣∣Snn − µ
∣∣∣∣ < .0001

)
= P

(
−.5
√
n < S∗n < +.5

√
n
)

≈ 1√
2π

∫ +.5
√
n

−.5
√
n

e−x
2/2dx

and this last expression is greater than .95 if .5
√
n ≥ 2. This says that it suffices to take

n = 16 measurements for the same results. This second calculation is stronger, but depends
on the assumption that n = 16 is large enough to establish the normal density as a good
approximation to S∗n, and hence to Sn. The Central limit Theorem here says nothing about
how large n has to be. In most cases involving sums of independent random variables, a
good rule of thumb is that for n ≥ 30, the approximation is a good one. In the present case,
if we assume that the errors are approximately normally distributed, then the approximation
is probably fairly good even for n = 16.

Now suppose a different surveyor is measuring an unknown distance with the same instru-
ments under the same conditions. He takes 36 measurements and averages them. How sure
can he be that his measurement lies within .0002 of the true value? Again using the normal
approximation, we get

P

(∣∣∣∣Snn − µ
∣∣∣∣ < .0002

)
= P

(
|S∗n| < .5

√
n
)

≈ 2√
2π

∫ 3

−3

e−x
2/2dx

≈ .997
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This means that the surveyor can be 99.7 percent sure that his average is within .0002 of
the true value. To improve his confidence, he can take more measurements, or require less
accuracy, or improve the quality of his measurements (i.e., reduce the variance σ2 ). In each
case, the Central limit Theorem gives quantitative information about the confidence of a
measurement process, assuming always that the normal approximation is valid.

Even if he doesn’t know the mean or variance, he can make several measurements of a
known distance and average them. As before, the average error is approximately normally
distributed, but now with unknown mean and variance.

We have seen thus how the Central Limit Theorem has numerous applications, given a
variety of parameters. Here are a few exercises for the reader.

Exercises

(1) A random walkers starts at 0 on the x-axis, and every second, they move 1 step to
right or 1 step to the left with probability 1

2
. Estimate the probability that, after 400

steps, the walker is more than 16 steps from the start.
(2) The probabilities of error are probably too low in the example concerning GPAs.

Find a more reasonable estimate for m(x), and determine the probability that the
GPA is accurate to within 0.05, 0.1, and 0.5.

(3) Prove Lemma 4.1.
(4) A surveying instrument makes an error of −5,−1, 0, 1, or 5 feet with equal proba-

bilities when measuring the height of a 100 foot tower. Find the expected value and
variance for the height obtained using this instrument once. Estimate the probability
that in 41 independent measurements, the average of the measurements is between
99 and 101, inclusive.

(5) The price of a share of stock at the Markov Book Store is given by An on the nth
day of the year. The differences Xn = An+1 − An are i.i.d. random variables with
µ = 0 and σ2 = 1

4
. If A1 = 100, estimate the probability that A365 is greater than

100, greater than 110, and greater than 150.
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