
A GENTLE INTRODUCTION TO THE CENTRAL LIMIT THEOREM

BOHONG SU

Abstract. Normal distribution, also know Gaussian distribution, is one of the most well-studied
distribution function in statistics. Its bell-shape curve is ubiquitous in many statistical reports,
from the simple survey analysis to resource allocation. All of these consequences directly come
form the central limit theorem, which we will study in this paper.

General Idea: Regardless of the population distribution model, as the sample size increases,
the sample mean tends to be normally distributed around the population mean, and its standard
deviation shrinks as n increases.

1. The Law of Large Numbers

When we perform statistics, the amount of data must be large, so that the frequency of events
in the sample is close to the probability of the event itself. When the sample size tends to infinity,
the frequency of random events tends to a stable value, and this stable value is the theoretical
probability of occurrence of the event.

This is also the basis of big data. Internet companies often use big data as samples to predict
user preferences. When the sample size is large enough, the user preferences of various age groups
or men and women inferred from the sample can reflect the preferences of everyone. So if the
sample is small, how much error is there in the result we calculated based on this?

Take the coin toss as an example. Suppose I tossed 10 times, 7 times facing up, and 3 times
facing down. For these samples, I can estimate the probability of the coin’s front and back. How
to calculate it? Assuming that the probability of the head of the coin is a, the probability of the
back is 1� a. Then the probability of occurrence of the above event

P = C
7
10a

7(1� a)3.

We ask for a such that the probability of the above event (7 upwards, 3 downwards) is the largest,
that is, P is the largest. Similarly, if we toss a coin 1000 times, 620 times face up and 380 times
face down. then

P = C
620
1000a

620(1� a)380.

It can be seen that the highest point of the curve for coin toss 10 times is approximately at
a = 0.7, and the curve for coin toss 1000 times is approximately at a = 0.62, which is more
consistent with our sample data.

In other words, the distribution parameter an estimated from the sample is the highest. This is
also called maximum likelihood estimation (MLE). P is called the maximum likelihood function,
and the value of a when the maximum likelihood function takes the maximum value is called the
maximum likelihood estimation.

So what is the di↵erence between 10 data and 1000 data?
It can be seen from the figure that when there are 10 data, the likelihood function is relatively

flat, that is, the probabilities of various possibilities are not much worse. When there are 1000
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Figure 1. The one on the left is the plot with 10 throws; the one on the right is
the plot with 1000 throws.

data, the likelihood function is relatively steep, that is, the probability is relatively concentrated,
and the probability near the maximum likelihood estimation drops sharply.

This also gives an explanation mathematically. When we toss the coin 10 times and face up 7
times, we give the probability that the coin is up 0.7. However, when the probability of going up
is 0.7, the probability that we toss up 7 times for 10 times is about 0.27 When the probability of a
coin going up is 0.5, the probability that we toss 10 times and going up 7 times is about 0.12, and
the probability is about half lower. Therefore, when we give the probability that the coin is facing
upwards of 0.7, this result is unreliable, because many values near 0.7 may have the phenomenon
of tossing 10 times and going upwards 7 times. We can say that the reliability of the result of 0.7
is relatively low.

Similarly, after we toss 1000 times, the probability that the coin will face up is 0.62, which is
the highest, which is equal to about 0.025. If the probability of the coin facing upward is 0.6, the
probability is about 0.01. If the probability of the coin going up is 0.5, it can be seen from the
curve that the probability of going up 1000 times and 620 times is basically 0. That is to say, the
data of 0.62 is still very reliable, even if it is bad, it is not much di↵erent. 0.6 is possible, but if the
probability is 0.5, it is basically impossible.

If thrown infinitely, the peak of the curve will approach a constant value, and the shape is similar
to a pulse, which is a vertical line. After an infinite number of trials, except for the pulse point
with the highest probability, other values are unreliable, because the probability of other points
will quickly become zero. In other words, the frequency measured by the sample is the same as the
expectation of the event itself. This is also a graphical interpretation of the law of large numbers.

2. Central Limit Theorem

The normal distribution is very common in our lives. Why are there so many normal distributions
in the real world? Before, let us introduce the principle of maximum entropy.

The entropy here:

• Thermodynamics is the degree of chaos of objects.
• The degree of uncertainty is used to describe information in information theory.

In thermodynamics, the principle of entropy increase is that the entropy of an isolated ther-
modynamic system does not decrease, but always increases or does not change. Used to give the
evolution direction of an isolated system. It shows that an isolated system cannot develop towards
a low-entropy state or become orderly.

For example, if you pour half a cup of hot water into a half cup of cold water, after a long time,
the water in the cup must be evenly hot and cold. And if a cup of warm water is left there, it will
not become hot on the top and cold on the bottom. Because the top and the bottom are orderly,
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that is, the degree of chaos is low, that is, the entropy is low. An isolated system can only change
in the direction of entropy, that is, mixing hot and cold water together.

In information theory, entropy is used to describe the degree of uncertainty of information, which
is actually the degree of confusion of information. The principle of maximum entropy is to keep
the uncertainty of the information to the maximum when the maximum entropy is satisfied under
the given constraints, that is, the most reasonable estimation is made, and the cost is the least
when the estimation is wrong. For example, if we roll a dice, when we don’t know any information,
we will predict that the probability of any point is 1

6 . Before we know it, we use the principle
of maximum entropy, that is, when we don’t know any information, equal probability is the best
assumption. What is the best assumption is that the cost function is the smallest.

What is the cost function? For example, I roll the dice to gamble, and I lose the least money
for the same amount of money for each point. Otherwise, if I throw more money at 1 point, the
final result must be more losses than the average throw (assuming the dice are even). From the
above description of entropy, you can roughly experience the feeling of entropy, which represents
the degree of uncertainty and confusion.

The universe must be more and more chaotic, and finally silent. If nature does not interfere, it
must eventually exist in the form of maximum entropy. After talking for a long time, what is the
relationship between maximum entropy and the central limit theorem?

In real life, the distribution of various events is unknown, but generally the mean µ and variance
� are fixed. Then, under the premise that these two values are determined, what distribution is
the largest? The answer is the normal distribution.

y

fY (u)

u

Figure 2. This is an illustration of the normal curve.

3. The Central Limit Theorem

Before we introduce the central limit theorem, we. will talk about the MGF.

Definition 3.1. (Moment Generating Function). The moment generating function M(t) of a
random variable X is defined for all real values of t by

M(t) = E
⇥
e
tX
⇤
=

⇢ P
x e

tX
p(x) if X is discrete with mass function p(x)R1

�1 e
tX

f(x)dx if X is continuous with density f(x)

Theorem 3.2. (The Central limit Theorem)
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Let X1, X2, . . . be a sequence of independent and identically distributed random variables each
having mean µ and variance �2

. Then the distribution of X1+...+Xn�nµ
�
p
n

tends to the standard normal

as n ! 1. That is, for �1 < a < 1

P

✓
X1 + . . .+Xn � nµ

�
p
n

 a

◆
! 1p

2⇡

Z a

�1
e
�x2/2

dx as n ! 1.

Proof. We begin the proof with the assumption that µ = 0,�2 = 1 and that the MGF of the Xi

exists and is finite. We already know the MGF of a normal random variable, but we still need
to compute the MGF of the sequence of random variables we are interested in:

Pn
i=0Xi/

p
n. By

definition of MGF, we can see that M

⇣
tp
n

⌘
= E

h
exp

⇣
tXip
n

⌘i
. However, we are interested in the

MGF of E
h
exp

⇣
t
Pn

i=1
Xip
n

⌘i
. Here is how we find the MGF:
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Now we define L(t) = logM(t) and evaluate L(0), L0(0), L00(0)

L(0) = logM(0) = logE
⇥
e
0·Xi
⇤
= logE[1] = log 1 = 0.

L
0(0) =

M
0(0)

M(0)
= M

0(0) = E
⇥
Xe

0·Xi
⇤
= E[X] = µ = 0.

L
00(0) =

M(0)M 00(0)� [M 0(0)]2

[M(0)]2
=

1 · E
⇥
X

2
⇤
� 02

12
= E

⇥
X

2
⇤
= �

2 = 1.

Now we are ready to prove the Central limit theorem by showing that
h
M

⇣
tp
n

⌘in
! e

t2/2 as n !
1. By taking the log of both sides, we can see that this is equivalent to showing nL(t/

p
n) ! t

2
/2

as n ! 1. Hence, we compute:

lim
n!1

L(t/
p
n)

n�1
= lim

n!1

�L
0(t/

p
n)n�3/2

t

�2n�2

= lim
n!1

�L
0(t/

p
n)t

�2n�1/2

= lim
n!1

�L
00(t/

p
n)n�3/2

t
2

�2n�3/2

= lim
n!1

L
00
✓

tp
n

◆
t
2

2

=
t
2

2
.
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4. Application of the Central Limit Theorem in Baseball

Before we talk about the application of the CLT, let us introduce some terms related to the CLT.

Definition 4.1. A conjecture concerning one or more populations is known as a statistical hypoth-
esis.

Definition 4.2. A null hypothesis is a hypothesis that we wish to test and is denoted H0.

Definition 4.3. An alternative hypothesis represents the question to be answered in the hypothesis
test and is denoted by H1.

REMARK. The null hypothesisH0 opposes the alternative hypothesisH1.H0 is commonly seen as
the complement of H1. Concerning our problem, the null hypothesis and the alternative hypothesis
are:

H0 : There is no home-field advantage,

H1 : There is a home-field advantage.

When we do a hypothesis test, the goal is to determine if we will reject the null hypothesis or if
we fail to reject the null hypothesis. If we reject H0, we are in favour of H1 because of su�cient
evidence in the data. If we fail to reject H0, then we have insu�cient evidence in the data.

Definition 4.4. A test statistic is a sample that is used to determine whether or not a hypothesis
is rejected or not.

Definition 4.5. A critical value is a cut o↵ value that is compared to the test statistic to determine
whether or not the null hypothesis is rejected.

Definition 4.6. The level of significance of a test statistic is the probability that H0 is rejected,
although it is true.

Definition 4.7. A z-score or z-value is a number that indicates how many standard deviations an
element is away from the mean.

Definition 4.8. A confidence interval is an interval that contains an estimated range of values in
which an unknown population parameter is likely to fall into.

Definition 4.9. A p-value is the lowest level of significance in which the test statistic is significant.

Now let us talk about the example problem: is there such thing as a home-field advantage? How
can we test this notion? In the 2013 Major League Baseball season, there were 2431 games played,
and of those games, 1308 of them were won at home. This indicates that approximately 53.81% of
the games played were won at home. We will let our observed value be this value, so p̂ = 0.5381.
It seems as though there is such thing as a home-field advantage, but we must test this notion
to be certain. To do this, we will test the hypothesis that there is no such thing as a home-field
advantage, so our null hypothesis will be

H0 : p = 0.50.

That is, 50% of the Major League Baseball games are won at home, hence, there is no home-field
advantage. Our alternative hypothesis will be H1 : p > 0.50. If there is no home-field advantage,
then we would expect our proportion to be 0.50 , since half of the games would be won at home
and the other half on the road.

Before we begin to compute if there is such thing as a home-field advantage we must first
satisfy four conditions; independence assumption, random condition, 10% condition, and the suc-
cess/failure condition. These conditions will assure that we can test our hypothesis.
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Each game is independent of one another and one game does not e↵ect how another game is
played. Although in some cases when a key batter or pitcher is injured, the team may not do
as well in the immediate upcoming games, but roughly speaking, the games played are generally
independent of one another, and so our independence condition holds.

Since there have been many games played over the years, each year having roughly 2430 games,
it can be seen that taking just one year to observe the data will account for our randomization
condition.

Also, as stated above, we can see that the 2431 games played in the 2013 season, are less than
10% of the total games played over the years that Major League Baseball has been around, so our
10% condition also holds true, that is, the sample size is no more than 10% of the population.

Finally we must check that the number of games multiplied by our proportion of 0.50 , is larger
than 10. So we have

np = 2431(0.50) = 1215.5.

which is larger than 10, so our success / failure condition holds as well. since all of these conditions
are met, we are now able to use the Normal Distribution model to help us test our hypothesis.
We will test our hypothesis using two di↵erent methods: the first by using a confidence interval,
and the second using a p-value. First, we will test our hypothesis using a confidence interval. For
testing

H0 : p = 0.50 vs. H1 : p > 0.50.

at the 0.05 level of significance, we may construct a right-sided 95% confidence interval for p. If our
test statistic of p = 0.50 is in the interval, then we fail to reject H0 at the 0.05 level of significance.
If p = 0.50 is not in the interval, we reject H0. The right-sided 100(1� ↵)% confidence interval for
p for a large sample is given by

p̂� z↵

r
p̂(1� p̂)

n
< p  1.

where ↵ is the level of significance. since n = 2431, p̂ = 0.5381, and ↵ = 0.05, we see from the
Normal Distribution table in the Appendix that z0.05 = 1.645. So a right-sided 95% confidence
interval for p is

0.5381� 1.645
q

(0.5381)(1�0.5381)
2431 < p  1.

0.5381� 1.645(0.0101114) < p  1.
0.5215 < p  1.

since 0.50 /2 (0.5215, 1], we reject H0 : p = 0.50 in favour of H1 : p > 0.50 at the 0.05 level of
significance, that is, we have enough evidence to support that there is a home-field advantage, and
the home team wins more than 50% of the games played at home.

Now we will use the p-value approach to test our hypothesis. We must find the z-value for testing
our observed value. We use the following equation to do so;

z =
(p̂� po)q

poqo
n

.

Now, with p = 0.50, p̂ = 0.5381, and n = 2431, we have

z =
(p̂� po)q

poqo
n

=
0.5381� 0.5q

0.5·0.5
2431

=
0.0381

0.010140923
= 3.76.

This results in a p-value < 0.0001. So we can conclude, since the p-value < 0.0001 is less than 0.05,
we reject H0. That is, the data seems to support that the home field team wins more than 50% of
the time, and hence there is such thing as a home-field advantage in Major League Baseball.

We have shown that taking all of the games played in the 2013 Major League Baseball season,
that there is a home-field advantage, but is there a di↵erence between the American League and
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the National League? Do both leagues have a home-field advantage? We will test this notion using
a 100(1 � ↵)% confidence interval at the 0.01 level of significance. This will allow us to be 99%
confident of our results.

In the 2013 season, the National League played 1211 games, and won 660 of those games at home.
So this indicates that approximately 54.5% of the games were won at home. As we calculated above,
we will let the observed value be p̂ = 0.545 and we will test the same hypothesis, that is,

H0 : p = 0.50 vs. H1 : p > 0.50.

since n = 1211, p̂ = 0.545 and ↵ = 0.01, we can see from the Normal Distribution table in the
Appendix that z0.01 = 2.33. So a right-sided 99% confidence interval for p is

0.545� 2.33
q

(0.545)(1�0.545)
1211 < p  1.

0.545� 2.33(0.014309744) < p  1.
0.5117 < p  1.

since 0.50 /2 (0.5117, 1], we reject H0 : p = 0.50 in favour of H1 : p > 0.50. So we can conclude that
the National League has a home-field advantage. Will the same be true for the American League?
We will again test the same hypothesis, using a 99% confidence interval for the American League.

In the 2013 season, the American League played slightly more games than the National League.
They played 1220 games and of those games, 648 of them were won at home. So this indicates that
approximately 53.11% of the games played were won at home. Once again, let our observed value
be p̂ = 0.5311, and testing the same hypothesis above, we see that a 99% confidence interval for p
is

0.5311� 2.33
q

(0.5311)(1�0.5311)
1220 < p  1.

0.5311� 2.33(0.01428724) < p  1.
0.4978 < p  1.

since 0.50 2 (0.4978, 1], we fail to reject H0 : p = 0.50. That is, we do not have enough evidence to
support that there is a home-field advantage in the American League.

We can see that by testing these hypotheses for the National League and the American League,
that we can confidently state that there is a home-field advantage in the National League, but
we cannot say the same thing for the American League based on the 2013 Major League Baseball
season.

5. Standard Normal Distribution Table.

It might sounds old fashion, but this is very useful when you don’t have a computer with you.
The following table gives the proportion of the standard normal distribution to the left of a z-score.
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0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009
0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
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