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1 Introduction

A significant result frequently used in probability is Pólya’s Recurrence
Theorem, which goes as follows:

Theorem 1. A random walk is recurrent in 1 and 2-dimensional lattices and
it is transient for lattices with more than 2 dimensions.

The initial problem that sparked this theorem, occurred to Pólya in the
early 1900’s when he crossed the same couple multiple times while taking a
walk in the park. Both seemed to be taking random walks.

In this paper, we look at a proof of this theorem that incorporates random
walks on electric networks. More specifically, we will investigate the proof
provided by Peter Doyle that involves the use of Rayleigh’s short-cut method.

Before jumping into the details, we can start by understanding some of
the basic intuition. When studying a random walk on a 1-dimensional lattice,
one can observe that the probability of returning to the starting point at the
second step is simply 1

2
. However, when looking at 2 and 3 dimensional

lattices, the probability decreases significantly to 1
4

and 1
6
. Hence, as the

number of points increase, it naturally becomes more challenging for a walker
to return to their starting point since there are more paths available. A less
intuitive aspect of the recurrence theorem is why there is such a drastic
change at d = 2. To this day, a more intuitive answer for why random walks
become transient for dimensions greater than 2 is yet to be found, however
a general explanation can be found in Doyle’s [1] work.
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2 Preliminary Details

Before proceeding to the main details, it’s important that we define cer-
tain preliminary terms especially those regarding the physics aspect of this
paper.However, please keep in mind that the terms we define today, will be
defined mostly within the mathematical context that they will be used for.
For more physical definitions, please refer to other sources.

An electric network, is simply a finite connected graph with two disjoint
sets of vertices: vertices grounded and connected to the negative pole of a
battery and vertices connected to the positive pole. Some basic physics in-
tuition can provide with the fact that having such connected vertices allows
for the flow of electricity. Networks also have the following few important
properties as defined below:

• Voltage: Voltage is a harmonic function v : V (G) → R+ that assigns
a positive number to each vertex x in a network G.

• Current: Current is the function i : E(G)+ → R that assigns a number
to each ”oriented edge” (x, y) ∈ E(G)+. Usually denoted as ixy , current
also follows the following property: ixy = −iyx, which is why we have
the current pay attention to the orientation of edges.

• Resistance:Resistance is a function E(G) → R+ that assigns a pos-
itive number (in ohms, Ω ) to each unoriented edge {x, y} ∈ E(G),
denoted as Rxy

• Conductance For now we will define conductance as the reciprocal
of resistance i.e. Cxy = 1/Rxy,. Additionally, we will define the con-
ductance of a vertex x to be the sum of the conductances of the edges
leaving it: i.e. Cx =

∑
y∈N(x)Cxy.

• Effective Resistance The effective Resistance of a two points in a
circuit, is the ratio between the total voltage and the total current
flowing between the two points. We will denote this as Reff

3 Implementing Random Walks on Networks

In order to prove Pólya’s Theorem [theorem 1], we need to find a rela-
tionship between escape probabilities and effective resistance through the use

2



of random walks. To symbolise a simple random walk on a graph, we can
simply use an electric circuit with a 1V battery applied between the starting
point, a, and end point b. Additionally we place a 1Ω resistor at each edge.
(Applying a battery creates a flow of electricity, and resistors simply resists
flow, meaning it slows down or terminates flow in sections of the circuit).

When implementing random walks on a circuit, it is fair for us to use
the voltage as the probability of a walker reaching a point 1V before a point
0V. Now, we can express the escape probability (the probability the walker
starting at point a reaches point b) as:

pescape = 1− preturn = 1−
∑
x

Paxpx

where preturn is the probability that the walker returns to point a. This is
equivalent to the sum of the probability that the walker reaches point a before
point b from a point x, provided that the walker reached x from point a.

As we defined earlier, the effective resistance between two points is the
ration between the total voltage and total current. In calculating the amount
of current flowing between point a and b, we can notice that there is only
current flow from point a to b so we get Iab = Ia. Then, when we calculate
this value, we get:

Ia =
∑
x

(Va − Vx)Cax

= Va

∑
x

Cax −
Ca

Ca

∑
x

CaxVx

= Ca − Ca

∑
x

Cax

Ca

Vx

= Ca

(
1−

∑
x

PaxVx

)
=⇒ Ia = Capescape

Using this result, combined with the fact that Vx = px we have:

Reff =
Vab

Iab
=

Vab

Capescape
=⇒ pescape =

Vab

CaReff

Hence, we now have the relationship we were looking for between escape
probabilities and effective resistance.
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4 Proof of Pólya’s Theorem

To begin our proof, we want to start by taking an infinite lattice and
converting it into a finite graph G(r) with radius r, by doing the following:
Mark the starting point of the random walk as the origin and then proceed to
get rid of all edges that are more than r edges away from the origin. Taking
our graph, G(r) we can denote the points that are r edges away from the origin
(the points at the extremities) as S(r). Now, as we increase r to infinity, we
turn our finite graph into an infinite one. A random walk on such graph G(r)

begins at the origin and ends when a point in Sr is reached (refer to figure 1

for an example). We can then denote the escape probability of G(r) as p
(r)
escape

and the escape probability of the infinite graph as limr→∞ p
(r)
escape.

Figure 1: example of G(3)

Now, if we proceed to turn G(r) into an electric circuit as we described
earlier, we will attach our 1V battery such that the origin will have a voltage
of 1V, and the points in S(r) have a voltage of 0V. Using our previously
derived equation, we can then see that:

p(r)escape =
1

CaR
(r)
eff

=
1

2dR
(r)
eff

where Ca is the total conductance at the origin. Now if we were to take the
limit of this equation to find the escape probability for the infinite graph (as
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well as the effective resistance of an infinite circuit) we get the following:

pescape =
1

2dReff

.

Now, looking at what we get for the escape probability, it is clear that in
order to have pescape = 0 our effective resistance must be infinity. Hence, it
suffices to show that if the effective resistance of a lattice is infinity, then the
random walk is recurrent.

4.1 Recurrence in 1 and 2 Dimensions

First we will show that the effective resistance for a 1D circuit is ∞.
An infinite 1D circuit is simply formed by a chain of resisters for which it

can be seen that the effective resistance to infinity is in fact infinity. This can
be seen, because of the rotational symmetry of the lattice. However, since
2D lattices are not rotationally symmetric, it is not as simple to deduce the
effective resistance for them.

For a 2D lattice, we must use Rayleigh’s law of monotonicity, which in
essence is equivalent to the shorting and cutting law. The laws go as follows:

• Shorting Law Shorting certain sets of nodes together can only de-
crease the effective resistance of the network between two given nodes.

• Cutting Law Cutting certain branches can only increase the effective
resistance between two given nodes.

• Monotonicity Law The effective resistance between two given nodes
is monotonic in the branch resistances.

If we short the edges of a 2-D lattice, we can easily compute the resistance to
infinity as follows. Resistors between two levels are in parallel and would give
one resistor of value 1

8n+4
Ω where n is the value of the lower level (refer to

figure 2). Hence, the resistance to infinity is
∑∞

n=0
1

8n+4
=∞. Since shorting,

as stated in the law, on decreases the effective resistance, the actual resistance
to infinity of the 2D lattice is ∞.
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Figure 2: levels in 2D lattice

4.2 Transience in 3 dimension

Now, we want to show that pescape > 0 =⇒ Reff <∞ in order to prove
that a walk on a 3D lattice is transient. We will use a similar approach as we
did for the 2D lattice, however, since we want to calculate an upper bound,
we will use the cutting theorem instead of the shorting theorem.

Figure 3: NT3

In order to construct a model we can work with, we will use a tree that
grows as slowly as the 3D lattice. Instead of dividing the tree into branches
at the edge, we will allow the tree to branch each time the radius doubles in
size and since in 3D lattice size of sphere quadruples, we make four branches.
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We call this tree NT3 (refer to figure 3). Now, when computing Reff for NT3,
we use the fact that by symmetry, the voltage at each level in the tree is the
same. So if we cut these points we can calculate the resistance to infinity of
NT3 as 1

2
.

Now, when we try to embed NT3 back into a 3D lattice, the tree that we
actually end up embedding, is NT2.5849, meaning it is of the 2.5849 dimension
(details on embedding trees are available in [2] Doyle and Snell). We say this
is because the number of nodes in a ball of radius r for this tree is proportional
to r2.5849. The Reff for NT2.5849 is 1. What this means, is that we have a
graph from a 3D resistance to infinity, which in fact is finite, and is equal
or larger than that of a 3D lattice. Hence, it is in fact fair to say, that
the resistance to infinity of an infinite 3D lattice, is finite, and therefor the
random walk on the 3D lattice must be transient.

Remark. Another related proof that one could study, is the one provided
by [3] Prasad Tetali. Tetali also looks at the recurrence problem as as an
electric circuit problem problem. However, in his proof, instead of applying a
1V voltage to the circuit as Doyle did, Tetali instead passes a 1 amp current
through the circuit. The only difference that doing this will provide to the
proof, is how to form the connection between effective resistance and random
walks.

Remark. It’s only natural to be curious, as to how the use random walks
can connect back to Pólya’s question regarding see the couple walking in the
park. If one were to use Pólya’s theorem, they could show that two walkers
taking a random walk on a 2D lattice are certain to meet, by combing the
two random walks into one. Then, this combined random walk takes two
steps each time, and it suffices to show that the random walk crosses the
origin.

References

[1] Peter G Doyle. Application of Rayleigh’s short-cut method to Polya’s
recurrence problem. PhD thesis, Dartmouth, 1982.

[2] Peter G. Doyle and J. Laurie Snell. Random Walks and Electric Networks.
Mathematical Association of America, 1984.

7



[3] Prasad Tetali. Random walks and the effective resistance of networks.
Journal of Theoretical Probability, 4(1):101–109, 1991.

8


	Introduction
	Preliminary Details
	Implementing Random Walks on Networks
	Proof of Pólya's Theorem
	Recurrence in 1 and 2 Dimensions
	Transience in 3 dimension


