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Abstract

In this paper, we state and prove the Central Limit Theorem. The approach we have taken is to as-
sume little prior knowledge, and review the basics and main results of probability and random variables
from first axioms and definitions. We construct the preparatory concepts necessary for our proof, such as
moments and moment-generating functions, as these are central to the approach of the proof. We prove
most – but not all – results that we state. We also give where possible practical insights, and describe
some real-world applications of this very pervasive result.

1. INTRODUCTION

Many things that can be measured in Nature and Society appear to be distributed according to a
“bell-shaped curve”, formally known as the Normal or Gaussian distribution. This prompts us to
investigate why this probability distribution appears so pervasively across so many domains.

We start by reviewing some of the basic definitions and results of probability and random variables. We
then describe the standard normal distribution, which is central to the CLT. Before heading into the
general proof, we illustrate a special case of the Bernoulli distribution converging to a standard normal.

We then approach the proof of the CLT by introducing moment generating functions (MGF) of random
variables and reasoning on their convergence, and we will ”accept” – but not prove – the ability to
reason back on the convergence of the probability distributions themselves from the convergence of
their MGFs.

We follow the proof with a few entertaining examples of the CLT, and we end the paper by mak-
ing a final point on the various modes of convergence of random variables, in order to put the mode of
convergence at play in the CLT in that broader context.

2. DEFINITIONS AND GENERAL RESULTS

In this section, we will recall a few definitions and results pertaining to probability spaces, events
and independence, the axioms of probability, random variables, probability density or mass functions,
cumulative distribution functions, expectations and variances of random variables and of combinations
or functions of random variables. We will also quickly cover the concept of convolution of distributions,
as the distribution of a sum of independent random variables.

2.1. PROBABILITY SPACES

When an experiment results in uncertain outcomes, probability theory quantifies the likelihood of
occurrence of outcomes in the following sense: we want to measure the limit of the frequency of
appearance of an outcome as a fraction of the total, if the experiment is repeated a large number
of times tending to infinity. Probability theory builds on set theory by mapping experimental
outcomes to sets, and by attributing to each set a non-negative ”measure” P() that captures its

1



expected frequency of occurrence as a fraction of the total occurrences in an infinitely large num-
bers of runs of the experiment.

Sample Space. The sample space of an experiment is the set of all possible outcomes, and
we can denote it by Ω. An event E in the sample space is a subset of the set of all possible
outcomes. Since a set can be the union of other sets, or the intersection of other sets, or the
complement of another set, we naturally want to define some algebraic rules governing the prob-
ability measures P(E) attributed to events such as E, when the events are made of intersections
or unions or complements of other events.

Disjoint or Mutually Exclusive Events. As a definition, we say that two events are mu-
tually exclusive or disjoint if the occurrence of one excludes the occurrence of the other in the
same experimental run, i.e., E and F are mutually exclusive if E ∩ F = ∅. We would intuitively
want the probability of their simultaneous occurrence to be 0, i.e.:

E ∩ F = ∅ =⇒ P(E ∩ F ) = 0

Also, if the sample space Ω captures the exhaustive set of all possible outcomes of a run of the
experiment, then we would want the probability measure associated with Ω to correspond to
”certainty”, as – by definition – some event E is bound to be the result of each experimental run.
We therefore expect to have:

P(Ω) = 1

2.2. AXIOMS OF PROBABILITY

The axioms of probability were defined by Kolmogorov, and there are a few variations to picking
which rules are made axioms, so we choose the following:

• 0 ≤ P(E) ≤ 1, for any event E in Ω.

• P(Ω) = 1.

• For any sequence of countably many mutually exclusive events E1, E2, . . . , we have:

P

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

P(Ei)

It can be shown that the following properties are consequences of the Kolmogorov axioms above:

• P(Ω \ E) = 1− P(E).

• P(∅) = 0.

• E ⊆ F =⇒ P(E) ≤ P(F ).

• P(E ∪ F ) = P(E) + P(F )− P(E ∩ F )

• P(E ∪ F ) = P(E) + P(F ) for disjoint events E and F .

2.3. INDEPENDENCE AND CONDITIONAL PROBABILITY

• Independent Events. We define two probability events E and F to be independent if the
probability of their simultaneous occurrence during a run of the experiment is equal to the
product of their individual probabilities of occurrence:

P(E ∩ F ) = P(E) · P(F )

• Conditional Probability. We define the conditional probability of an event E given another
event F as:

P(E|F ) =
P(E ∩ F )

P(F ))
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• We note that if two events E and F are independent, then we have:

P(E|F ) =
P(E ∩ F )

P(F ))
=

P(E) · P(F )

P(F ))
= P(E)

This is consistent with the intuition we might have of independence, i.e., the fact that event
F has occurred does not change the probability of the event E occurring, and vice-versa.

2.4. RANDOM VARIABLES

• A random variable is a function X with domain Ω and co-domain R, i.e., it assigns a real
value to any event in the sample space of the probability space.

For a simple example, in an experiment of flipping coins, a random variable might assign
the value 1 to an outcome of Heads and 0 to an outcome of Tails. In this case, the range of
X is the set {0, 1} ⊂ R.

• Discrete Random Variable. A random variable is discrete if it takes on at most countably
many real values.

Some common examples of discrete random variables are the sum of the numbers from two
die rolls, whose image is {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, or the number of coin flips until
the first Head appears, whose image is N.

• Continuous Random Variable. A random variable is continuous if it takes on uncount-
ably many real values.

Examples of continuous random variables would be measurements of continuous physical
quantities, such as heights of trees, or intensity of electric currents, or time duration between
successive random events such as particle emissions by radioactive materials.

2.5. DISTRIBUTION FUNCTIONS

• Probability Mass Function. For a discrete random variable, the probability mass function
(PMF) is a function that attributes to each value x that the random variable can take the
probability that the random value takes that value x. This corresponds to the probability of
the event in Ω whose occurrence results in the random variable X taking that value x. We
note this as:

pX(x) = P(X = x) ≥ 0.

In the example of rolling two dice, with X being the random variable equal to their sum, we
have the following:

pX(4) = P(X = 4) = P((1, 3) ∪ (2, 2) ∪ (3, 1)) =
1

36
+

1

36
+

1

36
=

1

12
.

• Probability Density Function. For a continuous random variable, the probability density
function (PDF) is a function fX(x) that attributes – via integration – to each ”measurable”
subset B ⊆ R the probability that the random variable X takes values that fall within that
subset B. We note this as:

P(X ∈ B) =

∫
B

fX(x)dx ≥ 0

While the concepts of measures and measurable subsets are left out as the topics of a more
advanced paper describing Lebesgue integration on possibly non-continuous functions, we will
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stick in this paper with the simple notion of fX(x) being a Riemann-integrable function, and
the sets B over which we seek probabilities of X falling being intervals or unions of intervals
of R.

• Cumulative Distribution Function. A cumulative distribution function (CDF) of a ran-
dom variable X is defined as:

FX(x) = P(X ≤ x)

In the case of a continuous random variable, we have:

FX(x) =

∫ x

−∞
fX(t)dt

In this continuous case, we see that the probability density function is the derivative of the
cumulative distribution function.

The CDF of a random variable is the function which – measured at specific values – gives
statistical insights into the shape of the distribution via quantiles.

• Quantiles. A quantile of a CDF distribution FX(x) is the value of x at which the probability
of the random variable being less than or equal to a specified quantity is achieved. These are
sometimes expressed as percentiles, when the desired probability is expressed as a percentage.
Notable examples of quantiles are:

– Median: The median is the point m such that P(X ≤ m) = 0.5.

– First Quartile: The first quartile is the point q1 such that P(X ≤ q1) = 0.25.

– Third Quartile: The third quartile is the point q3 such that P(X ≤ q3) = 0.75.

– Inter-Quartile Range: The inter-quartile range is the difference between the third and
the first quartiles, i.e., IQR = q3 − q1. It is one of the measures of spread of the distribution
of a random variable.

– Ninth Decile: The ninth decile is the point P90 such that P(X ≤ P90) = 0.90.

– Ninety-Ninth Percentile: The ninety-ninth percentile is the point P99 such that P(X ≤
P99) = 0.99.

• PMF or PDF of Sums of Independent Random Variables - Convolution. We ex-
amine the PMF or PDF pZ(z) of the sum Z = X + Y of two independent random variables
X and Y , as a function of the PMFs or PDFs pX(x) and pY (y) of the individual random
variables X and Y . For a given z we have:

pZ(z) = P(Z = z) = P(X + Y = z)

– Discrete Case:

P(X + Y = z) =

∞∑
n=∞

P(X = n, Y = z − n)

By independence of X and Y , we have:

P(X = n, Y = z − n) = P(X = n) · P(Y = z − n) = pX(n) · pY (z − n),
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so that:

pZ(z) =

∞∑
n=−∞

pX(n) · pY (z − n)

The sum above is defined as the convolution of the two PMFs pX and pY , and is denoted as:

pZ(z) =

∞∑
n=−∞

pX(n) · pY (z − n) = (pX ∗ pY )(z).

A simple illustrative case of convolution of distributions is calculating the PMF of Z = X+Y
where X and Y are the readings of two six-sided dice thrown independently of each other.
We have:

pX(x) =
1

6
for x ∈ {1, 2, 3, 4, 5, 6}

pY (y) =
1

6
for y ∈ {1, 2, 3, 4, 5, 6}

pZ(7) =

6∑
i=1

pX(i)pY (7− i)

= pX(1)pY (6) + pX(2)pY (5) + pX(3)pY (4) + pX(4)pY (3) + pX(5)pY (2) + pX(6)pY (1)

=
1

6
· 1

6
· 6

=
1

6
.

– Continuous Case:

We have a similar concept of convolution defined as follows for two functions f and g that
are integrable over R:

(f ∗ g)(x) =

∫ ∞
−∞

f(t) · g(x− t)dt =

∫ ∞
−∞

f(x− t) · g(t)dt

And there is a similar result that we will not prove here, that the PDF PZ(z) of Z = X + Y ,
with X and Y continuous independent random variables, is given by the convolution of the
PDFs pX and pY , respectively of X and Y :

fZ(z) = (fX ∗ fY )(z) =

∫ ∞
−∞

fX(t) · fY (z − t)dt

2.6. EXPECTATION, VARIANCE, MOMENTS

• Expected Value or Mean. We define the Expected Value or Mean E(X) of a random
variable X – also denoted as µX – as the weighted sum of the values that X can take, with
the weights representing the respective probabilities that X can take the given values. In the
continuous case, the definition is a little more delicate since positive probabilities are only
assigned to sets of positive measure, i.e., to intervals of non-zero length. So the expected
value is defined as the integral of the product of the variable x by the PDF value pX(x) at x.
Specifically, we have:

– Discrete Case:

E(X) = µX =

∞∑
x=−∞

x · pX(x) =
∑

x:pX(x)>0

x · pX(x)
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– Continuous Case:

E(X) = µX =

∫ ∞
−∞

x · fX(x)dx

• ”Distributive” Property of Expectation. It is straightforward to show from the defini-
tions that the expected value satisfies the following property. If a and b are real constants,
then aX + b is a random variable that takes value ax+ b whenever X takes value x, and we
have:

E(aX + b) = µaX+b = aE(X) + b = aµX + b

We therefore define the following:

• Variance. The variance of a random variable is the expected value of the squared difference
of the random variable and its mean.

Var(X) = E[(X − µX)2]

• Alternative Expression of Variance. We have:

Var(X) = E[(X − µX)2]

= E(X2 − 2µXX + µ2
X)

= E(X2)− 2µXE(X) + µ2
X

= E(X2)− µ2
X .

= E[X2]− [E(X)]2

• Effect on Variance of Translation and Scaling. It is easy to see that for a and b real
constants we have:

Var(aX + b) = E[(aX + b− aµX − b)2]

= E[(aX − aµX)2]

= E[a2(X − µX)2]

= a2E[(X − µX)2]

= a2 Var(X).

The variance is therefore indifferent to a uniform translation of the random variable by a
constant b, and when the random variable is scaled by a constant a, the variance is scaled by
a2, i.e., by the square of the scaling constant.

• Standard Deviation. We define the standard deviation σX of a random variable X as the
square root of its variance.

σX =
√

Var(X)

We then have:
σaX+b =

√
Var(aX + b) = |a| · σX

We note that, unlike the variance, the standard deviation and the mean are measured in the
same units as those of the random variable itself. When they are well defined (i.e., finite),
the variance and the standard deviation are key measures of dispersion of the distribution
around the mean.

• Expected Value of a Function of a Random Variable. We have seen that the vari-
ance is the expected value of a particular transformation of the random variable (namely the
square of the difference between the random variable and its mean), and we can generalize
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this concept to expected values of any function g of a random variable as follows:

– Discrete Case: if X takes values in {xi}, i ∈ N, then

E[g(x)] =
∑
i

g(xi)pX(xi)

Proof. We group together all the values xi that share a common value g(xi), and we let gj
be the discrete set of values in the image of the function g when its domain is the support of
the random variable X, {x1, . . . , xi, . . . }. We therefore have:∑

i

g(xi)pX(xi) =
∑
j

gj
∑

i:g(xi)=gj

pX(xi)

=
∑
j

gjP(X = gj)

= E[g(X)]

– Continuous Case:

E[g(X)] =

∫ ∞
−∞

g(x)fX(x)dx

• Moments of a Random Variable. Moments are an important building block towards our
upcoming proof of the Central Limit Theorem. First off, some of the regularity conditions
that determine applicability of the CLT are expressed as conditions on some of the moments.
Futhermore, we will be using in our proof a concept of Moment Generating Function, whose
name refers to the moments that we will define and explore here.

We define the kth moment, with k ∈ N, of a random variable X as follows:

Mk(X) = E[Xk]

With this definition, we see that:

– The expected value of a random variable is also its first moment.

E[X] = µX = M1(X)

– The variance of a random variable relates to its first two moments as follows:

Var(X) = E(X2)− µ2
X = M2(X)−M2

1 (X)

• Central Moments of a Random Variable. We define the kth central moment, with k ∈ N,
of a random variable X as:

µk(X) = E[(X − E[X])k]

We see in particular that:
Var(X) = µ2(X).

• Standardized Moments of a Random Variable. We define the kth standardized moment,
with k ∈ N, of a random variable X with mean µX and standard deviation σX as:

µ̃k(X) = E

[(
X − µX
σX

)k]
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• Sknewness of a Random Variable. The sknewness of a random variable is the third
standardized moment of the random variable, i.e.:

µ̃3(X) = E

[(
X − µX
σX

)3
]

=
µ3(X)

σ3
X

The skewness is significant because when a distribution is unimodal, i.e., when it has a single
peak in the shape of the PDF, then the skewness measures the asymmetry in the shape of
the distribution about the mode of the random variable, with a skewness of 0 indicating a
perfectly symmetric distribution about the mode, a positive (or right) skew indicating a right
tail that tapers off more slowly than the left tail, and a negative (or left) skew indicating the
opposite.

When a distribution is symmetric, then the mean is equal to the median (50th percentile),
and the skewness is 0. In addition, if the distribution is also unimodal as well as symmetric,
then the mean, the mode, and the median are all equal. We will see later on that the normal
distribution satisfies the conditions of unimodality and symmetry, and has skewness of 0.

• Kurtosis of a Random Variable. The kurtosis of a random variable is the fourth stan-
dardized moment of the random variable, i.e.:

µ̃4(X) = E

[(
X − µX
σX

)4
]

=
µ4(X)

σ4
X

The kurtosis is significant because it measures the extent to which a distribution has prob-
ability still concentrated at the outlying ends of the support (i.e., values with large absolute
values), versus having more of the probability concentrated in the central part of the support
of the random variable.

We will see in the section on the normal distribution that its kurtosis (equal to 3) is used as
a standard against which to measure other distributions. Distributions with kurtosis higher
than 3 have ”heavier tails” than the normal distribution, i.e., they tend to have more mass
or density at the outlier values. Conversely, distributions with kurtosis less than 3 have less
mass or density at the outlier values (with large absolute values).

2.7. LINEAR COMBINATIONS AND PRODUCTS OF RANDOM VARIABLES

We examine a few key results relative to the expected value or the variance of linear combi-
nations or of products of random variables.

• Expected Value of a Linear Combination. We have the following result for the linear
combination of two random variables X and Y with α and β being two real constants, and
we prove it for the discrete case although it is also true in the continuous case.

E(αX + βY ) = αE(X) + βE(Y )

Proof. Let {x1, . . . , xi, . . . } be the support of X and {y1, . . . , yj , . . . } be the support of Y .
We look at the expected value of the random variable αX + βY as the expected value of
the bi-variate function g(x, y) = αx+ βy applied to the joint random variable (X, Y ) whose
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support is the Cartesian product of the supports of X and of Y , and we have:

E(αX + βY ) =
∑
xi, yj

(αxi + βyj)P(X = xi, Y = yj)

=
∑
xi

∑
yj

(αxi + βyj)P(X = xi, Y = yj)

=
∑
xi

∑
yj

αxiP(X = xi, Y = yj) +
∑
xi

∑
yj

βyjP(X = xi, Y = yj)

= α
∑
xi

xi
∑
yj

P(X = xi, Y = yj) + β
∑
yj

yj
∑
xi

P(X = xi, Y = yj)

= α
∑
xi

xiP(X = xi) + β
∑
yj

yjP(Y = yj)

= αE(X) + βE(Y )

• Expected Value of Sample Mean. We frequently encounter experimental situations in
which we collect a sample of n random variables X1, X2, . . . , Xn and we are interested in
various statistical measures related to the sample. We define the sample mean as:

X̄ =
X1 + · · ·+Xn

n

Our previous result on linear combinations of random variables lets us derive the following
result:

E(X̄) =
1

n

n∑
i=1

E(Xi)

In the special case where all the random variables Xi have a common expected value µX ,
we have the following result that states that the average of the sample mean is equal to the
common average of the random variables in the sample:

E(X̄) =
1

n

n∑
i=1

µX = µX

• Expected Value of Product of Independent Random Variables. We have the follow-
ing result when X and Y are independent random variables, and we prove it for the discrete
case:

E(X · Y ) = E(X) · E(Y )

Proof.

E(X · Y ) =
∑
xi

∑
yj

xiyjP(X = xi, Y = yj)

=
∑
xi

∑
yj

xiyjP(X = xi) · PY = yj)

=

(∑
xi

xiP(X = xi)

)
·

∑
yj

yjP(Y = yj)


= E(X) · E(Y )

This lets us prove the following important result.
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• Variance of Linear Combination of Independent Random Variables. We state and
prove for the discrete case the following general result, with the key step in the proof being
the use of the result that the expected value of the product of independent random variables
is equal to the product of their respective expected values.

Var(αX + βY ) = α2 Var(X) + β2 Var(Y )

Proof. We let µX = E(X) and µY = E(Y ), an we have:

Var(αX + βY ) = E[(αX + βY )2]− (αµX + βµY )2

= E[α2X2 + 2αβXY + β2Y ]− (α2µ2
X + 2αβµXµY + β2µ2

Y )

= α2E(X2) + 2αβE(XY ) + β2E(Y 2)− α2µ2
X − 2αβµXµY − β2µ2

Y

= α2E(X2) + 2αβE(X)E(Y ) + β2E(Y 2)− α2µ2
X − 2αβµXµY − β2µ2

Y

= α2E(X2) + 2αβµXµY + β2E(Y 2)− α2µ2
X − 2αβµXµY − β2µ2

Y

= α2[E(X2)− µ2
X ] + β2[E(Y 2)− µ2

Y ]

= α2 Var(X) + β2 Var(Y )

2.8. INDEPENDENT, IDENTICALLY DISTRIBUTED RANDOM VARIABLES – i.i.d.

As mentioned during the definition of the sample mean above, it is a frequent experimental
setup to be gathering a sample of n random variables X1, . . . , Xn. It is also common for the ran-
dom variables to all be drawn from the same probability distribution with mean µX and variance
V ar(X) and standard deviation σX , and in a manner that makes their draws independent of each
other. We refer to this situation as having a sequence X1, . . . , Xn of independent, identically
distributed (i.i.d.) random variables.

Based on the results we have stated and proven in Section 2.7 above, we have the following
for a sequence of i.i.d. random variables X1, . . . , Xn:

E(X1) = · · · = E(Xn) = µX

E(X̄) = E
(
X1 + · · ·+Xn

n

)
= µX

E(XiXj)i 6=j = 0

E(X2
1 ) = · · · = E(X2

n) = V ar(X) + µ2
X

Var(X̄) = Var

(
X1 + · · ·+Xn

n

)
=

1

n2
Var(X1) + · · ·+ 1

n2
Var(Xn) = n · 1

n2
Var(X) =

Var(X)

n

We can also state the last result as:

σ2
X̄ =

σ2
X

n

σX̄ =
σX√
n

The results above are significant and commonly used. They tell us in particular that the expected
value of the sample mean of an i.i.d. sample is equal to the common mean, but that the standard
deviation of that sample mean gets asymptotically close to 0 as the sample size n gets large.

3. NORMAL N (µ, σ2) AND STANDARD NORMAL N (0, 1)
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3.1. NORMALLY DISTRIBUTED RANDOM VARIABLE

We now describe the normal distribution for a continuous random variable, and we examine
a few of its important properties in order to be come familiar with the ”destination object” of the
Central Limit Theorem. We say that a random variable X is distributed according to a normal
distribution with mean µ and standard deviation σ, and we note this as X ∼ N (µ, σ2), if its
probability density function is:

fX(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 ,

and its cumulative distribution function is:

P(X ≤ x) =

∫ x

−∞

1

σ
√

2π
e−

(t−µ)2

2σ2 dt.

It can be shown that the PDF of the normal distribution integrates to 1 when taken over (−∞, ∞),
and we sketch the proof here, which relies on Fubini’s Theorem for integration of non-negative
functions, and converting from integration in Cartesian coordinates to integration in polar coor-
dinates: ∫ ∞

−∞

1

σ
√

2π
e−

(t−µ)2

2σ2 dt =
1

σ
√

2π

∫ ∞
−∞

e−
x2

2σ2 dx

=
1√
2π

∫ ∞
−∞

e−
u2

2 du

=

√(
1√
2π

∫ ∞
−∞

e−
u2

2 du

)
·
(

1√
2π

∫ ∞
−∞

e−
v2

2 dv

)

=
1√
2π

√∫ ∞
−∞

∫ ∞
−∞

e−
(u2+v2)

2 dudv

=
1√
2π

√∫ ∞
0

∫ 2π

0

e−
r2

2 r · dr · dθ

=
1√
2π

√
2π

∫ ∞
0

re−
r2

2 dr

=

√
−e− r

2

2

∣∣∞
0

= 1.

We will not show the proof here, but it can be shown using integration by parts that when
X ∼ N (µ, σ2), then it is the case that:

E(X) = µ

Var(X) = σ2

µ̃3(X) = 0

µ̃4(X) = 3

3.2. SHAPE OF THE NORMAL PDF

The normal distribution is unimodal and symmetric, and it has a measure of skewness of 0.
In fact, given that the function is even around its mean, all of its odd standardized moments are
equal to 0.

In addition, the kurtosis (standardized fourth moment) of any normally distributed random vari-
able is equal to 3. This number is used as a benchmark against which other distributions are
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compared for insights into whether they are ”heavier tailed” (kurtosis greater than 3) or ”thinner
tailed” (kurtosis less than 3) than a normal distribution.

3.3. STANDARD NORMAL

The standard normal distribution N (0, 1) is the special case of the normal distribution when
the parameters are µX = 0, and σ2

X = 1. Its PDF is therefore:

fN (0, 1)(x) =
1√
2π
e−

x2

2

Some of the well-known statistics of the standard normal distribution are the probabilities of
the random variable falling within one, two, or three units from its zero mean, and these are
approximately 0.68, 0.95, and 0.999, respectively. The same probabilities apply for any normally
distributed random variable falling within one, two, or three standard deviations from its mean.

3.4. MOMENTS OF THE STANDARD NORMAL

The kth moment of a standard normal is given by:

Mk = E[Xk]

=
1√
2π

∫ ∞
−∞

xke−
x2

2

=
1√
2π

xk+1

k + 1
e−

x2

2

∣∣∞
−∞ −

1√
2π

∫ ∞
∞

xk+1

k + 1

(
−xe− x

2

2

)
dx

=
1√
2π

1

k + 1

∫ ∞
−∞

xk+2e−
x2

2 dx

=
1

k + 1
· E[Xk+2]

=
Mk+2

k + 1

So we have a recurrence relation:
Mk+2 = (k + 1)Mk

With M0 = 1, M1 = 0, and M2 = 1, it is easy to see by induction that we also have for all k ∈ N:

M2k+1 = 0,

M2k+2 = (2k + 1)M2k = (2k + 1)(2k − 1) . . . 1 =
(2k + 1)!

2kk!
Indeed, we expect all the odd moments to be equal to 0 because we are integrating an odd function
over R.
We also retrieve from the formula for even moments the value of the kurtosis for the standard
normal:

M4 = µ4 =
3!

21 · 1!
= 3.

3.5. THE SUM OF INDEPENDENT NORMAL r.v.’s IS A NORMAL r.v.

A significant result is that if X and Y are normally distributed with X ∼ N (µX , σ
2
X) and

Y ∼ N (µY , σ
2
Y ), then X + Y is also normally distributed with X + Y ∼ N (µX + µY , σ

2
X + σ2

Y ).
We sketch the proof using the concept of convolution that we described in Section 2 above.

12



Proof. We know that X + Y will have mean E(X + Y ) = µX + µY and variance V ar(X + Y ) =
σ2
X + σ2

Y , by linearity of the expectation operator, on the one hand, and by independence of the
variables X and Y , on the other hand.

As calculations are less tedious, we first show that the sum of two standard normal random
variables is also a normal random variable, with mean 0 and variance 2:∫ ∞

−∞

1√
2π
e−

t2

2 · 1√
2π
e−

(x−t)2
2 dt =

1√
2π
· 1√

2π

∫ ∞
−∞

e−
(2t2−2tx+x2)

2

=
1√
2π
· 1√

2π

∫ ∞
−∞

e−

[
2(t− x2 )

2
−2 x

2

4
+x2

]
2 dt

=

(
e−

x2

4

√
2π

)
· 1√

2π

∫ ∞
−∞

e−
1
2 [
√

2(t− x2 )]
2

dt

We perform the change of variables u =
√

2
(
t− x

2

)
in the integral, which implies that dt = 1√

2
du,

and the integration bounds are still from −∞ to ∞, so our integral becomes:(
1√

2 ·
√

2π

)
e
− 1

2

(
x√
2

)2

· 1√
2π

∫ ∞
−∞

e−
1
2u

2

du =
1√

2 ·
√

2π
e
− 1

2

(
x√
2

)2

where the next to last expression simplifies because the right-hand operand of the product is
simply the integral over R of the PDF of the standard normal distribution, which is of course
equal to 1.

We recognize in the final expression the PDF of N (0, 2), which shows that the sum of two
independent, and standard normally distributed random variables is also a normally distributed
random variable with mean 0 and with standard deviation

√
2, i.e., with variance 2.

This result can be generalized (by affine variable transformation of scaling and shifting) to the
sum of two independent, non-standard normally distributed random variables being a normally
distributed random variable with mean equal to the sum of the two means, and variance equal to
the sum of the two variances.

The result can also be generalized by induction to a sum of any finite number of independent,
normally distributed random variables being normal with mean equal to the sum of the means
and variance equal to the sum of the variances. Similarly, the result generalizes to any linear
combination of independent, normally distributed random variables, whose distribution is also
normal, and whose mean and variance are derived by following the rules of additivity and scaling
for means and variances that we saw in Sections 2.7− 2.8.

4. CENTRAL LIMIT THEOREM (CLT).

4.1. CONTEXT

We have seen in the previous section that a sum – or in fact any linear combination – of in-
dependent, normally distributed random variables, is also normally distributed. In particular, we
have the case of a sample mean when dealing with i.i.d. random variables. If X1, . . . , Xn are
i.i.d. with Xi ∼ N (µX , σ

2
X) for all i : 1 ≤ i ≤ n, and we let Sn = X1 + · · ·+Xn, then the sample

mean is distributed exactly as follows:

X =
X1 + · · ·+Xn

n
=
Sn
n
∼ N (µX ,

σ2
X

n
)

13



The Central Limit Theorem constitutes an asymptotic generalization of the result above to a
sample mean of i.i.d. random variables that may not be normally distributed, but whose sample
mean will have a distribution that approaches a normal distribution as n gets large. Specifically,
we have the following statement.

4.2. STATEMENT OF THE CENTRAL LIMIT THEOREM

Let X1, . . . , Xn be n independent and identically distributed random variables, all distributed
according to a common distribution with mean µX and with finite standard deviation σX , and
let Sn = X1 + · · ·+Xn and X = Sn

n . Then, the cumulative distribution function (CDF) of their
standardized sum

Zn =
X1 + · · ·+Xn − nµX

σX
√
n

=
Sn − nµX
σX
√
n

=
X − µX

σX√
n

approaches a standard normal distribution as n→∞. This is formally stated as:

P
(
Zn =

X1 + · · ·+Xn − nµX
σX
√
n

≤ x
)
→ 1√

2π

∫ x

−∞
e−

x2

2 dx as n→∞.

We note that the CLT is a statement about the convergence of a sequence of functions to a limit
function, with these functions being CDFs of random variables. As such it is an example of
convergence in distribution, which in general states the convergence of the CDFs of a sequence of
random variables to a limit CDF.

Under stronger conditions of the common distribution of the Xi having finite third absolute
moment (i.e., if E(|Xi|3 <∞), then the probability density function (or probability mass function
for the discrete case) of the standardized sum also converges to the probability density function
of the standard normal N (0, 1).

4.3. HISTORY

Historically, it is Abaraham De Moivre who, in 1738 first stated the result and proved it for
the special case of Bernoulli distributed random variables in his The Doctrine of Chances, and
with the parameter p = 1

2 making the distribution symmetric (equal odds of success and failure
of the binary experiment). Laplace subsequently generalized the theorem to p 6= 1

2 and his result
was published in 1812 in Théorie Analytique des Probabilités. He also stated the more general
(non-Bernoulli) form of the CLT, but didn’t give a rigorous proof, and Gauss further improved
on Laplace’s results.

The first rigorous proof of the CLT was published by Alexander Liapunov in 1901 − 1902, and
the theorem is occasionally referred to as Liapunov’s Theorem. The designation of Central Limit
Theorem is due to George Pólya who used it in a paper he published in 1920.

4.4. REMARK

The CLT is a remarkable result in its generality, as it applies to discrete as well as continuous
random variables, and almost regardless of the shape of the individual random variables’ common
distribution, as long as the mean and variance are finite (for the CDF convergence result), and
additionally the third absolute moment is finite (for the PDF convergence result).

It is important to note that the main condition that causes the CLT to fail to apply is when
the individual random variables’ common distribution has too high kurtosis (”too heavy-tailed”)

14



which in practice translates to a variance not being finite, or sometimes even a mean being unde-
fined. This is the case for the Cauchy distribution, for instance, whose PDF and CDF are given
by:

fX, x0, γ(x) =
1

πγ

γ2

(x− x0)2 + γ2

FX, x0, γ(x) =
1

π
arctan

(
x− x0

γ

)
+

1

2

A Cauchy-distributed random variable has undefined mean and undefined variance. It also has
undefined sknewness and undefined kurtosis! The paramater x0 is called a location parameter
and it specifies both the median and the mode of the distribution. The parameter γ is the scale
parameter, which specifies the half-width at half-maximum from the peak.

4.5. SPEED OF CONVERGENCE

Practice of Statistics. In applied statistics, the question of ”how large does n need to be
for good approximations” is a very important one to decide on minimum sample sizes needed to
achieve results at desired tolerance levels for the error in the approximation of the distribution.

In addition to the heavy tailed considerations mentioned above, another one of the main hur-
dles to rapid convergence towards the standard normal asymptotic distribution, is the skewness
of the original common distribution of the Xi. When the individual random variables have a
distribution that is fairly symmetric around a point (where the mean, median, and mode would
all be concentrated), then convergence happens rather quickly.

If, however, the original distribution has a high amount of sknewness, then ”the memory of
that sknewness” lasts through quite large sample sizes even when the averaging from the sample
mean is taking place. The distribution of the sample mean in these cases can continue to exhibit
asymmetry in its tails even with large sample sizes. Additionally, lack of unimodality (i.e., mul-
tiple peaks) in the original distribution can be another source of slow convergence towards the
target standard normal distribution.

Theoretical Bounds on Speed of Convergence. More formally than the heuristics and
qualitative observations above, there are formal results for bounds on the rate of convergence of
the CDF of the standardized sample mean towards the CDF of the standard normal distribution,
under additional conditions. With no added conditions besides those of the CLT, convergence of
the CDFs is not uniform, i.e., it occurs more slowly for the tails of the distribution than for its
center.

Berry-Esseen Theorem. The best known result for rate of convergence, with additional con-
ditions to those of the CLT but still fairly broad applicability, is the following:

If X1, . . . , Xn are i.i.d. with E[Xi] = 0, with E[X2
i ] = σ2

X < ∞, and with E(|Xi|3) = ρX < ∞,
and if we designate by Zn the standardized sum of the Xi, i.e.:

Zn =
X1 + · · ·+Xn − nµX

σX
√
n

=
X1 + · · ·+Xn

σX
√
n

,

then, with FZn(x) being the CDF of Zn, and FN (0, 1)(x) being the CDF of the standard normal
N (0, 1), we have:

|FZn(x)− FN (0, 1)(x)| ≤ CρX
σ3
X

√
n
, with 0.4 ≤ C ≤ 0.48.
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4.6. BERNOULLI CASE - DE MOIVRE-LAPLACE THEOREM

The De Moivre Laplace Theorem is simply the application of the Central Limit Theorem to
the specific case of the sample mean of a set of Bernoulli distributed, i.i.d. random variables, with
Pn, pX(k) = pk(1− p)n−k, and 0 ≤ k ≤ n.

4.7. DISCRETE CASE - DE MOIVRE-LAPLACE 1/2 CORRECTION

In the case of discrete random variables with discrete PMFs and CDFs, the standard normal
CDF provides a good approximation of the sample sum’s CDF for large n, but the standard nor-
mal PDF can be off from the sample sum’s PMF. This is because the sum Sn only takes integer
values, so P(Sn ≤ k) = P(Sn < k+1), but this does not translate to the equivalent inequalities for
the normal PDF, which is of course a continuous PDF that puts zero probability on any specific
point on the real line.

The idea behind the 1
2 correction, therefore, is to improve the quality of the approximation of

the sample sum’s PMF at a particular discrete value k through the use of the following ”trick” of
stating that:

P(Sn = k) = P
(
k − 1

2
≤ Sn ≤ k +

1

2

)
= P

(
k − 1

2 − nµX
σX
√
n

≤ Sn − nµX
σX
√
n
≤
k + 1

2 − nµX
σX
√
n

)
for which we can get an estimate from the CDF of the continuous standard normal N (0, 1):

P(Sn = k) = P
(
k − 1

2 − nµX
σX
√
n

≤ Sn − nµX
σX
√
n
≤
k + 1

2 − nµX
σX
√
n

)
≈ FN (0, 1)

(
k + 1

2 − nµX
σX
√
n

)
− FN (0, 1)

(
k − 1

2 − nµX
σX
√
n

)

This correction considerably improves the error on the approximation of individual probability
masses for a discrete random variable’s sample sum, from the use of the CDF of the standard
normal distribution according to the CLT. This addresses an issue that is specific to discrete
random variables and is not needed for continuous random variables and their sample sums.

4.8. SUMMARY

In summary, the scope of applicability of the CLT is quite broad as it applies whenever the
distribution of the i.i.d. random variables has finite means and variances. It allows us to approx-
imate the sample mean CDF which is possibly very complicated or intractable to calculate in
closed form, by a CDF for which there are readily available precise calculations.

A slightly stronger condition on the third absolute moment being finite also lets us approxi-
mate the PDF of the sample mean, and – with the 1

2 Correction – get good approximations for
the PMF in the discrete case.

In all cases, symmetry (i.e., low absolute sknewness), unimodality, and absence of heavy tails
(i.e., low to medium kurtosis) contribute to much faster convergence towards the asymptotic dis-
tribution N (0, 1).

5. DISTRIBUTION-SPECIFIC PROOF – CLT FOR BERNOULLI
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For the case of Bernoulli distributed i.i.d. random variables X1, . . . , Xn ∼ Bernoulli(p), the sam-
ple sum Sn is distributed as a Binomial B(n, p), with mean np and with variance np(1− p) and with
PMF:

P(Sn = x) =

(
n

x

)
px(1− p)n−x, for 0 ≤ x ≤ n.

We can sketch the proof of convergence of the PMF towards the PDF of a standard normal using
the Stirling approximation of the factorial function, and some Taylor expansion but with no need for
the mechanics of MGFs which we will use for the general case in the next section.

Proof. With the Stirling approximation:

n! ≈ nn

en

√
2πn

we have:

P(Sn = x) ≈
√
n√

2π
√
x(n− x)

(np
x

)x(n(1− p)
n− x

)n−x
=

1√
2πnp(1− p)

(
x

np

)−x− 1
2
(

n− x
n(1− p)

)−(n−x)− 1
2

We now take natural logarithms on both sides, and we get:

logP(Sn = x) ≈ −1

2
log[2πnp(1− p)]− (x+

1

2
) log

(
x

np

)
− (n− x+

1

2
) log

(
n− x
n(1− p)

)
We now let Zn = Sn−np√

np(1−p)
and zn = x−np√

np(1−p)
, our approximation becomes:

logP(Zn = z) ≈ −1

2
log[2πnp(1− p)] + Ln(z, p) + Ln(−z, p)

where:

Ln(z, p) = −(np+ z
√
np(1− p) +

1

2
) ln

(
1 + z

√
1− p
np

)
With n large, we can use a Taylor expansion of the logarithm and approximate Ln(z, p) as follows:

Ln(z, p) = −(np+ z
√
np(1− p) +

1

2
)

[
z

√
1− p
np

− z2(1− p)
2np

+
z3(1− p) 3

2

3(np)
3
2

− ...

]
After simplification, the expressions become:

Ln(z, p) = −z
√
np(1− p)− (1− p)z

2

2
+O(

1√
n

)

Ln(−z, p) = z
√
np(1− p)− pz

2

2
+O(

1√
n

)

So their sum becomes:

Ln(z, p) + Ln(−z, p) = −z
2

2
+O(

1√
n

)

and our logarithm of the approximated PMF becomes:

logP(Zn = z) ≈ −1

2
log[2πnp(1− p)]− z2

2
+O(

1√
n

)

After going back from the logarithm, our approximation becomes:

P(Zn = z) ≈ 1√
2π
e−

z2

2 dz
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where we have written 1√
np(1−p)

= ∆n ≈ dz, which goes to 0 as n→∞.

Going back to Sn, we have shown that:

P(Sn = x) ≈ 1√
2π
√
np(1− p)

e−
(x−np)2

2[np(1−p)]

and its standardized form Zn = Sn−np√
np(1−p)

has a distribution that approaches the standard normal

N (0, 1).

6. GENERIC PROOF OF CLT — MOMENT-GENERATING FUNCTIONS

In this section, we first introduce and prove the Markov and Chebyshev inequalities, as these proofs
are short yet informative, then derive the Weak Law of Large Numbers (WLLN).

We then introduce the concept of moment-generating functions (MGF) corresponding to random vari-
ables, and how they relate to sums and scalings of random variables. We then explore the MGF of
the standard normal N (0, 1), then we show how the MGFs of unspecified — but sufficiently regularly
distributed — independent random variables result in MGFs for their sample means that converge to
the MGF of N (0, 1).

We will rely on a particularly important lemma which we will not prove, however: the result that
if a sequence of random variables have their MGFs converging to a limit MGF, then their cumulative
distribution functions also converge to the cumulative distribution function that corresponds to the
limit MGF. Under certain additional conditions, the probability density functions of these random
variables also converge to the probability density function that corresponds to the limit MGF.

This ability to ”walk back” from convergence of MGFs to convergence of CDFs and PDFs is criti-
cal to ”sealing the proof” of the CLT, but proving it relies on the theory of Fourier Transforms, which
would be a subject for its own paper...

6.1. MARKOV’S INEQUALITY

Markov’s Inequality is a stepping stone towards proving Chebyshev’s Inequality, which is needed
to prove the Weak Law of Large Numbers. That law in turn will be needed for the proof of the
Central Limit Theorem.

For a random variable X that takes only non-negative values, and with finite mean E(X), and
for any positive real constant a, the following inequality holds:

E[X]

a
≥ P(X ≥ a).

Proof. For any event E, the indicator random variable 1E of the event E is the random variable
that takes value 1 when the event E occurs, and the value 0 otherwise. Using this notation, we
consider the indicator random variable 1{X≥a} and we have:

1{X≥a} = 1 if X ≥ a

1{X≥a} = 0 if X < a

Multiplying the equalities by a > 0, we have:

a · 1{X≥a} = a if X ≥ a

a · 1{X≥a} = 0 if X < a
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These two equalities make it clear that:

a · 1{X≥a} ≤ X

Indeed, when X ≥ a, the left-hand side is equal to a and – by assumption of this case – X ≥ a, so
we have a · 1{X≥a} = a ≤ X. And when X < a, the left-hand side is equal to 0, and the random
variable X is given as always taking non-negative values, so a · 1{X≥a} = 0 ≤ X in this case too.

We now take expectations on both sides of the inequality, which preserves the inequality:

E[a1{X≥a}] ≤ E[X]

The left-hand side random variable takes value a with probability equal to P(X ≥ a) and it takes
value 0 with probability equal to P(X < a), so its expected value is equal to:

E[a1{X≥a}] = a · P(X ≥ a) + 0 · P(X < a) = a · P(X ≥ a)

We therefore have, by replacement into our inequality with E[X]:

a · P(X ≥ a) ≤ E[X]

. Dividing boths sides by a > 0 preserves the inequality and we get:

P(X ≥ a) ≤ E[X]

a
.

6.2. CHEBYSHEV’S INEQUALITY

Chebyshev’s Inequality is important for the derivation of the Weak Law of Large Numbers. It
consists of applying Markov’s Inequality to the specific non-negative random variable (X−E[X])2

whose expected value is the variance Var(X) of the random variable.

Specifically, letting X be a random variable with finite mean and variance, we have:

P (|X − µX | ≥ kσX) ≤ 1

k2
.

Proof. We apply Markov’s Inequality to the non-negative random variable (X − µX)2, and using
a = k2σ2

X > 0 as the positive constant, and we have:

P[(X − µX)2 ≥ k2σ2
X ] ≤ E[(X − µX)2]

k2σ2
X

=
Var(X)

k2σ2
X

=
σ2
X

k2σ2
X

=
1

k2

We now note that:
P[(X − µX)2 ≥ k2σ2

X ] = P(|X − µX | ≥ kσX)

Our inequality therefore becomes:

P(|X − µX | ≥ kσX) ≤ 1

k2
.

The significance of Chebyshev’s Inequality is that it puts an upper bound on the probability of
a random variable deviating from its mean, in a general way that applies to all random variables
with finite mean and variance. When the deviation from the mean is measured in multiples of
the standard deviation, the bound is the squared inverse of the multiple.
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While the bound appears very generic in its form, the shape of the distribution still implic-
itly appears in the tightness of the bound. Indeed, if σX is very large, then for a given k, kσX will
also be very large, so the interval within which Chebyshev’s Inequality concentrates the random
variable with high probability is very wide, i.e., not that precise. Conversely, if σX is very small,
then the inequality tells us that the probability of X being outside of a rather narrow interval is
small, which is useful in practice.

While we can achieve better bounds for specific distributions, we show one example where Cheby-
shev’s Inequality is sharp, i.e., it cannot be improved upon. The example is the following:

Let k ≥ 1 be a real constant and let X be a discrete random variable distributed as follows:

X = −1 with probability
1

2k2
,

X = 0 with probability 1− 1

k2
,

X = +1 with probability
1

2k2
.

We can calculate that for this distribution, the mean muX = 0 and the standard deviation
σX = 1

k . This implies the following equality:

P(|X − µX | ≥ kσX) = P(||X| ≥ 1) =
1

2k2
+

1

2k2
=

1

k2
.

6.3. WEAK LAW OF LARGE NUMBERS – WLLN

The Weak Law of Large Numbers (WLLN) is a very important result in the context of a sample
of i.i.d. random variables with finite mean µX , and where we are interested in characterizing
whether and how the sample mean X = X1+···+Xn

n approaches µX as n gets asymptotically large.

We have seen in Section 2.7 that E[X] = µX . We are now interested in probabilities of the
random variable X being at some distance or greater from its own mean µX .

Unlike the CLT which is an illustration of convergence in distribution, i.e., of convergence of
a sequence of CDF functions towards a limit CDF function, the WLLN illustrates a different con-
cept of convergence known as convergence in probability, and which is stronger than convergence
in distribution in that it implies it.

We now state and prove the WLLN, which is sometimes referred to as Khinchin’s Law.

For any positive real number ε,

lim
n→∞

P
(
|X − µX | > ε

)
= 0.

Proof. We recall that:

Var(X) =
σ2
X

n

which, equivalently, means:

σX =
σX√
n

We have:

P
(
|X − µX | > ε

)
= P

(
|X − µX | >

(
ε

σX

)
σX

)

20



By Chebyshev’s Inequality applied to X, and with the positive constant k = ε
σX

, we have:

P
(
|X − µX | > ε

)
≤
σ2
X

ε2
=
σ2
X

ε2n
→ 0 as n→∞.

The interpretation of the WLLN is that if we set ourselves a given tolerance band of ±ε around
µX , then for any desired small positive number η > 0, there is a value Nη after which the sample
size n being ≥ Nη makes the sample mean X have all of its probability except η, i.e., probability
1− η of falling inside the band of width 2ε centered at µX , i.e., in [µX − ε, µX + ε].

Said otherwise, having chosen our tolerance band ε on either side of µX , if we pick a sample
size n ≥ Nη, and generate a very large number of samples of that size ≥ Nη and measure their
sample means, we will see a fraction 1 − η of these sample means falling inside the interval
[µX − ε, µX + ε]. And we can make η as small as we want, and we’ll find an Nη as a sample size
that bunches a fraction 1− η of the sample means in our desired interval.

6.4. MOMENT-GENERATING FUNCTIONS

The moment-generating function of a random variable will play a critical in the upcoming proof
of the CLT, so we introduce it here and we examine its most important properties.

We recall that we defined in Section 2.6 the expected value of a function g of a random vari-
able X, and we showed that this is a well-defined operator with:

E[g(X)] =
∑
x

pX(x) · g(x)

for a discrete r.v. with PMF pX(x),
and

E[g(X)] =

∫ ∞
−∞

fX(x) · g(x)dx

for a continuous r.v. with PDF fX(x).

We also recall that the kth moment of a random variable X, with k ∈ N, is defined as:

Mk(X) = E[Xk]

6.4.1. DEFINITION OF MGF

We define the moment-generating function ϕX(t) of a random variable X as the following
function of a real variable t ∈ R:

ϕX(t) = E[etX ]

It is therefore equal to:

ϕX(t) =
∑
x

etxpX(x) (discrete case).

ϕX(t) =

∫ ∞
−∞

etxfX(x)dx (continuous case).
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6.4.2. GENERATION OF MOMENTS

The reason this function is called moment-generating is that we can retrieve all the mo-
ments of a random variable by successive derivatives with respect to the variable t of the
function, and evaluating the derivatives at t = 0.

More specifically, we retrieve the kth moment Mk(X) of the random variable X as follows:

Mk(X) = E[Xk] = ϕ
(k)
X (0) = ϕ

(k)
X (t)

∣∣
t=0

We see this by noting that:

ϕ′X(t) =
d

dt
ϕX(t) = E[XetX ]

and more generally that, for k ∈ N:

ϕ
(k)
X (t) =

dk

dtk
ϕX(t) = E[XketX ]

Proof. We show this by induction, and we accept the fact – without proving it – that we can
swap the expectation operator (over the distribution of X) with the differentiation operator
(with respect to t):

– Base Case:

ϕ′(t) =
d

dt
E[etX ] = E[

d

dt
etX ] = E[XetX ].

– Induction Step:

We assume that ϕ(k)(t) = E[XketX ], and we have:

ϕ(k+1)(t) =
d

dt
ϕ(k)(t) =

d

dt
E[XketX ] = E[

d

dt
XketX ] = E[Xk+1etX ].

We now see that when we evaluate these derivatives of the function ϕ(t) with respect to t at
the point t = 0, we get:

ϕ′(0) =
d

dt
ϕ(t)

∣∣
t=0

= E[Xe0·X ] = E[X].

ϕ(k)(0) =
dk

dtk
ϕ(t)

∣∣
t=0

= E[Xke0·X ] = E[Xk].

6.4.3. MGF OF SUMS AND AFFINE TRANSFORMS

Affine Transformation. If ϕX(t) is the MGF of the random variable X, and if Y = aX+ b
is an affine transformation of X, we calculate the MGF of Y as follows:

ϕY (t) = E[et(aX+b)] = E[ebte(at)X ] = ebtϕX(at).

Sum of Independent Random Variables. Let X and Y be independent random variables,
with MGFs ϕX(t) and ϕY (t), respectively. We note that for a given value of the parameter
t, the random variables etX and etY are independent too, and we have:

ϕX+Y (t) = E[et(X+Y )] = E[etX · etY ] = E[etX ] · E[etY ] = ϕX(t) · ϕY (t).
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6.4.4. MGF OF STANDARD NORMAL r.v. N (0, 1)

We now calculate the MGF of a standard normally distributed random variable, as this
will also come into the proof of the CLT. We have:

ϕN (0, 1)(t) = E[et(X∼N (0, 1))]

=
1√
2π

∫ ∞
−∞

etx · e− x
2

2 dx

=
1√
2π

∫ ∞
−∞

e−
1
2 (x2−2xt)dx

=
1√
2π

∫ ∞
−∞

e−
1
2 (x2−2xt+t2) · e t

2

2 dx

= e
t2

2 · 1√
2π

∫ ∞
−∞

e−
1
2 (x−t)2dx

= e
t2

2 · 1

= e
t2

2

We have therefore established that the MGF of the standard normal random variable is:

ϕN (0, 1)(t) = e
t2

2 .

6.4.5. MGF OF NORMAL r.v. N (µX , σ
2
X)

If X ∼ N (µ, σ2), then Z = X−µ
σ ∼ N (0, 1) and ϕZ(t) = e

t2

2 .

We have:

Z =
X − µ
σ

⇐⇒ X = σZ + µ

We apply the result from Section 6.4.3 for the MGF of an affine transformation of a random
variable, and we have:

ϕX(t) = eµtϕZ(σt)

= eµte
σ2t2

2

= e
σ2t2+2µt

2

= e−
µ2

2σ2 e
(σt+µσ )

2

2

6.5. GENERAL PROOF OF THE CENTRAL LIMIT THEOREM

We now move to the final part of the proof of the CLT. We start with a Lemma which we
will accept without proof, but whose result is critical to the CLT. We then state the CLT and
show a result which – combined with the result of the Lemma – give a proof of the CLT.

6.5.1. LEMMA ”ON GOING BACK FROM MGF TO CDF”

Let X1, . . . , Xn, . . . be a sequence of random variables having CDFs FXn(x) and MGFs
ϕXn(t), and let Z be a random variable having CDF FZ(x) and MGF ϕZ(t). Then:
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If limn→∞ ϕXn(t) = ϕZ(t) for all t, then limn→∞ FXn(x) → FZ(x) for all x at which FZ(x)
is continuous.

The importance of this lemma is that it allows us to derive convergence of Cumulative Dis-
tribution Functions from convergence of Moment Generating Functions. Notably for the case
where Z is normally distributed, its CDF is continuous everywhere, which means that the
CDFs of the Xn will converge to the CDF of Z at all points.

6.5.2. THE THEOREM AND ITS PROOF

Let X1, . . . , Xn, . . . be a sequence of i.i.d. random variables each having mean µ and variance

σ2. Then the CDF of X1+···+Xn−nµ
σ
√
n

=
X1+···+Xn

n −µ
σ√
n

tends to the CDF of the standard normal

as n→∞. That is, ∀x ∈ R,

lim
n→∞

P
(
X1 + · · ·+Xn − nµ

σ
√
n

≤ x
)

=
1√
2π

∫ x

−∞
e−

t2

2 dt.

Proof. In order to simplify notation, we show the proof for the case where µ = 0 and σ = 1,
and we know how to generalize since we know how to handle affine transformations of random
variables. With this simplifying assumption, we have:

X1 + · · ·+Xn − nµ
σ
√
n

=
X1 + · · ·+Xn√

n
=

n∑
i=1

Xi√
n

We now calculate the MGF of this random variable, using the rules for MGFs of scalings of
random variables, and of sums of independent random variables from Section 6.4.3 above.

Let us designate by ϕXi(t) = ϕX(t) the common MGF of the i.i.d. random variablesX1, . . . , Xn.
We have:

ϕ(∑n
i=1

Xi√
n

)(t) =

n∏
i=1

ϕ Xi√
n

(t) (1)

=

n∏
i=1

ϕXi

(
t√
n

)
(2)

=

n∏
i=1

ϕX

(
t√
n

)
(3)

=

[
ϕX

(
t√
n

)]n
(4)

where (1) above is derived from calculating the MGF of a sum of independent random vari-
ables, (2) is because the Xi are identically distributed and have a common MGF ϕX(t), and
(3) is derived from calculating the MGF of an affine transformation (here a simple scaling)
of a random variable.

Now we proceed to prove that the MGF above tends to e
t2

2 , the MGF of the standard
normal, as n → ∞. To do so, it will be easier to first prove that the logarithm of the MGF

converges to the exponent t2

2 , then raise the result as an exponent of e, so we start by letting:

Λ(t) = logϕX(t)

In the final step of the proof, we will be using l’Hôpital’s rule for limits of ratios that look
undefined (e.g., ∞∞ or 0

0 ), so we start by calculating the quantities Λ(0), Λ′(0), Λ′′(0):

Λ(0) = logϕX(0) = logE[e0·Xi ] = logE[1] = log 1 = 0
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Λ′(0) =
d

dt
logϕX(t)

∣∣
t=0

=
ϕ′X(0)

ϕX(0)
= ϕ′X(0) = E[X] = µ = 0

Λ′′(0) =
d2

dt2
logϕX(t)

∣∣
t=0

=
Λ′′(0)Λ(0)− [Λ′(0)]2

[Λ(0)]2
=

E[X2]− (E[X])2

12
= σ2 − µ2 = 1− 0 = 1

We have therefore established that:
Λ(0) = 0,

Λ′(0) =
d

dt
Λ(t)

∣∣
t=0

= µ = 0,

Λ′′(0) =
d2

dt2
Λ(t)

∣∣
t=0

= σ2 − µ2 = 1.

Finally, we prove that limn→∞

[
ϕX( t√

n
)
]n

= e
t2

2 by first taking logarithms on both sides

and proving that limn→∞ log{
[
ϕX( t√

n

]n
} = t2

2 , i.e., that limn→∞ nΛ
(

t√
n

)
= t2

2 .

We note that in the calculations below, we will be using l’Hôpital’s rule for asymptotics
when n → ∞, so we will be replacing ratios by ratios of their derivatives with respect to n,
which we will express as derivatives of composite functions that will exhibit the derivatives
with respect to t which we calculated above.

We first observe that Λ
(

t√
n

)
= logE

(
e
tX√
n

)
and:

lim
n→∞

tX√
n

= 0 =⇒ lim
n→∞

e
tX√
n = 1 =⇒ lim

n→∞
E
(
e
tX√
n

)
= E[ lim

n→∞
e
tX√
n ] = 1 =⇒ lim

n→∞
lnE

(
e
tX√
n

)
= 0

This shows that:

lim
n→∞

Λ

(
t√
n

)
= 0

We can similarly show that:

lim
n→∞

Λ′
(

t√
n

)
= 0

We will use these two results in the calculation of the limit below, where we will replace ratios
of quantities tending to 0 as n→∞ with ratios of their derivatives with respect to n:
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lim
n→∞

nΛ

(
t√
n

)
= lim
n→∞

Λ
(

t√
n

)
1
n

(5)

= lim
n→∞

d
dnΛ

(
t√
n

)
d
dn

(
1
n

) (6)

= lim
n→∞

−t
2 n
− 3

2 Λ′
(

t√
n

)
−1
n2

(7)

= lim
n→∞

tΛ′
(

t√
n

)
2√
n

(8)

= t lim
n→∞

d
dnΛ′

(
t√
n

)
d
dn

(
2√
n

) (9)

= t lim
n→∞

t
(
− 1

2

)
n−

3
2 Λ′′

(
t√
n

)
(−1)n−

3
2

(10)

=
t2

2
lim
n→∞

Λ′′
(

t√
n

)
(11)

=
t2

2
Λ′′(0) (12)

=
t2

2
· 1 (13)

=
t2

2
(14)

In the sequence above, step (6) is using l’Hôpital after we’ve shown that numerator and de-
nominator both have a limit of 0 as n→∞, step (7) takes the derivative with respect to n by
expressing it for the numerator via the derivative with respect to t, step (8) is a regrouping
of terms, step(9) is again using l’Hôpital after we’ve shown that numerator and denominator
both have a limit of 0 as n→∞, step (10) is similar to step (7), step (12) is simply recognizing
that limn→∞

t√
n

= 0, and step (13) recalls the previously calculated value of Λ′′(0).

We have therefore shown that:

t2

2
= lim
n→∞

nΛ

(
t√
n

)
= lim
n→∞

n logϕX

(
t√
n

)
= lim
n→∞

log

[
ϕX

(
t√
n

)]n
= lim
n→∞

log

[
ϕ(∑n

i=1
Xi√
n

)(t)

]
By continuity of the exponential function, the limit of the exponential of the right hand side
is equal to the exponential of the limit, and we have:

lim
n→∞

[
ϕ(∑n

i=1
Xi√
n

)(t)

]
= e

t2

2

We have shown that the MGF of the normalized sum of a sequence of i.i.d. random variables
converges to the MGF of a standard normal as n → ∞. The proof above showed the result
for the case µ = 0, σ2 = 1, and using the results for the MGF of affine transformations of
random variables generalizes the result to the case of arbitrary E[X] = µ and Var[X] = σ2.

We now invoke the Lemma ”On Going Back from MGF to CDF”, and we can state that
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the CDF of the standardized sum of i.i.d. random variables with finite mean and variance
converges as n → ∞ to the CDF FN (0, 1)(x) =

∫ x
−∞

1√
2π
e−

t2

2 dt of the standard normal

N (0, 1).

With the extra condition of finite absolute third moment of the i.i.d. random variables, we can
also state (but have not proven) that the PDF of the standardized sum of i.i.d. random vari-

ables converges as n→∞ to the PDF fN (0, 1)(x) = 1√
2π
e−

x2

2 of the standard normal N (0, 1).

7. FUN EXAMPLES OF THE CLT

We look at two tangible, entertaining, examples of the CLT in action.

Galton Board. The Galton Board, also known as the Quincunx or ”Bean Machine” is a game
that illustrates the CLT in action (specifically, the De Moivre-Laplace Theorem) by means of the con-
vergence of the sum of Binomially distributed random variables to a Normal distribution.

The game has a vertical board with a lattice of pegs inserted in a pattern of interleaved rows, in
such a way that an object dropped from above and hitting a peg has a given chance of being deflected
to the left or to the right of the peg. Counting from the top, the first row needs to have one peg, the
second row needs two pegs disposed below and on either side of the top peg, the third row needs three
pegs, and so on until a last row of n pegs at the bottom.

Little beads or beans are dropped down a vertical chute located above the top row’s peg, and at
each peg they hit, they get deflected left or right with a pre-set probability p, where p is typically equal
to 1

2 , although one can also have asymmetric pegs that bias the deflection to one side, the way a biased
coin would.

At the end of their drop, the beans gather at the bottom in one of n + 1 narrow bins. The left-
most bin #0 gathers the pile of balls that have bounced 0 times to the right of the n pegs they have
hit on their way down (i.e., they have had n left-side bounces), bin #1 gathers the balls that have
bounced once to the right and n − 1 times to the left, and – for 0 ≤ i ≤ n – bin #i gathers the balls
that have experienced i right-side deflections and n− i left-side deflections.

The outcome (bin number where it landed) for each bean follows a Binomial B(n p) distribution,
and when we consider the total of a large number of beans, we are in effect looking at the distribution
of a sum of Binomials.

Repeating the large-count drop several times exhibits a large majority of the times a bell shape for the
vertical pilings of beans, characteristic of a normal distribution!

Depressed Stair Steps. Old and highly visited monuments such as centennial temples or muse-
ums, especially those with narrow stairs or entrance stepping stones, show a smooth pattern of wear
where the central part of the stone is at a vertical depression from the sides of the stone.

It turns out that a careful look at the shape of the stone reveals an inverted (upside down) bell
shape characteristic of the normal distribution, showing the CLT in action!

If a person stepping on the stone has a few grains of sand attached to their soles, then the grind
from the sand grains attached to a shoe sole causes some wear of the stone at the point where the
footstep landed.

We can model each visitor’s footstep as following a uniform distribution over the width of the stepping
stone, so that if each footstep erodes its landing spot by a few microns, the total erosion at a given
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point of the stone is the sum of the effects from all the footsteps that have landed at that spot after
centuries of visitors stepping in and out. In particular, we expect the erosion to be proportional to
the footsteps that have landed there (we could make the model more complex by modeling another
independent variable for the amount of sand on a person’s sole, but we won’t...).

We overlay a one-dimension coordinate system on the lateral dimension of the stone, with the midpoint
at 0 and the ends at ±L, where 2L is the lateral dimension of the stone. The uniform distribution over

that interval [−L, L] has PDF f(x) = 1
2L , mean µ = 0, and variance σ2 =

∫ L
−L

1
2Lx

2dx = L2

3 .

By the CLT, we expect the standardized sum:

X1 + · · ·+Xn − µ
σ√
n

=
X1 + · · ·+Xn

L√
3n

to converge in distribution towards a standard normal N (0, 1). The sum X1 + · · ·+Xn would therefore

follow a normal distribution N (0, L
2

3n ), i.e., with standard deviation σ = L√
3n

.

The height of a normal distribution at its mode is given by 1√
2πσ

, which in our case, would be:

H =
1√

2π L√
3n

=

√
3n√

2πL

We see that the maximal erosion is proportional to the square root of the number of visitors over the
centuries. It is also inversely proportional to the lateral width of the stone, which makes sense as the
narrower the stone, the more concentrated the steps will laterally be, and the higher the ”hit rate” on
the central part of the stone.

8. A FINAL POINT ON CONVERGENCE OF RANDOM VARIABLES

We saw different modes of convergence of random variables through two examples in this paper.

Convergence in Distribution. The Central Limit Theorem is an example of convergence in distri-
bution, which is in fact a weak form of convergence. We have seen that this form of convergence makes
a statement about the CDFs of a sequence of random variables converging to a target CDF.

Notably, convergence in distribution does not guarantee uniform convergence over the entire domain
of the reals, but it does state convergence at each point on the real line at which the target (limit)
CDF is continuous. This leaves room for convergence to happen at different rates at different points
on the real line, and – in the case of the CLT – it is indeed the case that the tails may converge more
slowly than the center part of the distributions.

Convergence in distribution of the sequence Xn to a target distribution associated with random variable
X∞ can be denoted as:

Xn
d→ X∞.

Convergence in Probability. The Weak Law of Large Numbers (WLLN) is an example of conver-
gence in probability which is a stronger form of convergence than convergence in distribution.

Convergence in probability conveys that for any tolerated difference ε that we’re willing to consider,
the probability that the absolute difference between a random variable Xn in the sequence and the
target random variable X∞ exceeds ε tends to 0 as n→∞.

This means that we can pick an arbitrarily small tail probability η > 0, and there will be a value
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of n beyond which all random variables in the sequence differ from the target random variable by less
than ε, with probability at least 1− η. Formally, it implies:

∀ε > 0 : ∀η > 0, ∃Nη ∈ N such that n ≥ Nη =⇒ P(|Xn −X∞| < ε) > 1− η.

This form of convergence is represented as:

Xn
p→ X∞.

If a sequence of random variables converges to a limit random variable in probability, then it will also
converge to that limit in distribution, but the converse is not necessarily true. The converse is true,
however, if the limit is a constant, i.e., a degenerate random variable concentrated on one value (which
it is not – in the case of the CLT for example – because the target is a standard normal).

Convergence Almost Surely. There is an even stronger form of convergence known as convergence
almost surely, or also convergence with probability 1. A sequence of random variables X1, . . . , Xn

converges to a limit random variable X∞ almost surely if the set of events ω ∈ Ω over which the
convergence is not true has probability 0. This form of convergence can be stated as:

P
(

lim
n→∞

Xn = X∞

)
= 1.

or also:
P
(
ω ∈ Ω : lim

n→∞
Xn(ω) = X∞(ω)

)
= 1.

This form of convergence is denoted as:
Xn

a.s.→ X∞.

This form of convergence looks at random variables as functions from the event space Ω to R, and
considers the events for which the sequence Xn(ω) → X∞(ω) versus those where convergence does
not occur. Almost sure convergence says that the events for which convergence does not occur have
probability 0.

An example of almost sure convergence of random variables would be a player who earns one dol-
lar each time she flips a coin and gets a Head, and stops receiving money at the first flip that results
in Tails. Let Xin be the random variable of the amount earned by the player at the inth flip of the
coin. Then, this random variable of amount earned per flip converges almost surely to the constant
0 (random variable equal to 0 with certainty), because the probability of a Tail never happening has
probability 0. Yet, for any finite N ∈ RN, there is a positive (non-zero) probability that all the Xn,
with 1 ≤ n ≤ N are equal to 1, from the non-zero probability of having a run of N Heads.

Strong Law of Large Numbers – SLLN. For completion’s sake, we mention here that there is
a Strong Law of Large Numbers which states that the sample mean of a sequence of i.i.d. random vari-
ables converges almost surely, i.e., with probability 1, to the common expected value µ of the random
variables in the sequence.

ACKNOWLEDGEMENTS

I would like to express my gratitude to Sawyer Robertson for his guidance and suggestions that have improved
the structure and readability of this paper. I would also like to sincerely thank Simon Rubinstein-Salzedo
for the inspiration that he instills in me to pursue and research mathematical questions, even (or especially)
when they seem difficult and challenging. Lastly, I would like to acknowledge and thank my peers in the
Euler Circle: I have benefited from collaborating with them, and learned from their questions and comments
throughout the class.

29



REFERENCES

References

[1] Subhash Bagui and K.L. Mehra, Convergence of binomial to normal: Multiple proofs, (2017), https:

//doi.org/10.12988/imf.2017.7118.

[2] Steven Dunbar, Topics in probability theory and stochastic processes, https://www.math.unl.edu/

~sdunbar1.

[3] Matt E, Cool examples of the central limit theorem in action, math.stackexchange, https://math.

stackexchange.com/questions/38825/cool-examples-of-the-central-limit-theorem-in-action.

[4] Yuval Filmus, Two proofs of the central limit theorem, https://www.cs.toronto.edu/~yuvalf/CLT.pdf.

[5] Charles M. Grinstead and J. Laurie Snell, Introduction to probability, 2nd rev. ed. ed., American Math-
ematical Society, Providence, Rhode Island, 1997.

[6] Krishna Jagannathan, Ee5110: Probability foundations for electrical engineers, (2015), https://nptel.
ac.in/content/storage2/courses/108106083/lecture28_Convergence.pdf.

[7] Vlad Krokhmal, Introductory probability and the central limit theorem, http://www.math.uchicago.edu/

~may/VIGRE/VIGRE2011/REUPapers/Krokhmal.pdf.

[8] Hossein Pishro-Nik, Introduction to probability, statistics, and random processes, Kappa Resources, LLC,
2014, https://www.probabilitycourse.com/chapter7/7_2_0_convergence_of_random_variables.php.

[9] John Tsitsiklis, Probabilistic systems analysis and applied probability, (2010), https://ocw.mit.edu.

[10] Larry Wasserman, All of statistics: A concise course in statistical inference, Springer, 2004,
http://www.stat.cmu.edu/ larry/=stat325.01/chapter5.pdf.

30


