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Abstract. This paper will discuss cover times and how they relate to various forms of
hitting times. It will use this relation to show how certain random walks and other Markov
chains’ cover times can be bounded quite well with only the Matthews Method.

1. Introduction

In class, we have covered hitting times, mixing times, stationary times, and more. There
are more than just those types of times, however. This paper will be cover the important
topic of cover times by first introducing some common examples. An example of a cover
time can be seen in many random walks, such as the following question.

Question 1.1. A monkey controls a typewriter with only 4 keys: up, down, left and right.
Ey randomly selects a key at each turn to press, which will move a dot on the screen initially
located at (0, 0) up, down, left, or right by 1 accordingly. On average, how many key presses
will be made before every point (x, y){|x|, |y| ≤ 10} is visited?

While not directly addressed in this paper, this gives us an idea of a cover time. After
solving for some cover times manually using elementary methods, the remainder of this
paper will be used to bound cover times from both above and below in terms of hitting
times. Finally, we will see some applications of this bound.

2. Definitions and Examples

In this paper, all Markov chains are assumed to be irreducible because we will be talking
about cover times, which only make sense when we are working with irreducible Markov
chains. We will focus on the following question, finding the necessary cover times to solve it.

Definition 2.1. Let X0, X1, . . . be a Markov chain on a state space Ω, and let i ∈ Ω. The
cover time of the Markov chain starting from i, denoted Ci(X), is the expected amount of
time taken to visit every state in Ω.

Definition 2.2. Let X0, X1, . . . be a Markov chain on a state space Ω, and let i ∈ Ω. The
cover time of the Markov chain, denoted C(X), is defined as

C(X) = max
i∈Ω

(Ci(X)).

We often like to talk about a random walk on a graph G instead of a specific Markov chain
when discussing about cover times, as in the real world, more cover-time related problems
apply to random walks than to specific-probability defined Markov chains. When we do so,
we denote the cover time of a random walk on the graph G starting from a vertex i as Ci(G).
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C(G) is similarly defined so that C(G) = maxi∈Ω(Ci(G)), where Ω is the set of points in G.

Example. One common example of a cover time can be found as a result of a random walk
on a complete graph Kn, with the addition of a self-loop at each vertex. At each point
during the walk, the walker moves from eir current vertex to any vertex since all vertices are
connected by an edge. We see this is equivalent to the coupon collector’s problem because
visiting a new vertex is analogous to collecting a new coupon, with the chance of arriving at a
new vertex decreasing as more unique vertices are visited. Hence, we have C(Kn) ≈ n log(n).

Example. Another example that can easily be found using the method outlined by László
Lovász in [L+93] is of an n-cycle.

The set of vertices visited by the walker must all be consecutive since the graph is a cycle.
The first turn we have visited a total of n− 1 vertices, the walker must have just arrived a
new vertex and hence must be at one of the ends of eir set of vertices visited.

Now we equate this scenario to that of the gambler’s ruin Markov chain with absorbing
states 0 and n and with p(i)(i+1) = p(i)(i−1) = 1

2
for all other states i. From a homework

problem in week 3, we know that it takes an expected k(n− k) moves to reach an absorbing
state in this chain from state k. Since we are either at state 1 or n − 1, it will take us an
expected (1)(n − 1) = n − 1 more steps in order to reach a new vertex. If we denote cm as
the first time the walker has reached m unique vertices, we have

cm = cm−1 + (m− 1).

Thus, we can find that

cn = cn−1 + (n− 1) = cn−2 + (n− 2) + (n− 1) + · · · =
n−1∑
k=1

k =
n(n− 1)

2

is the cover time of this graph.

Combining these two examples, we see that it takes slightly over 50 log(50) ≈ 196 moves
to cover a complete graph with 50 vertices, while it takes 20·19

2
= 190 moves to cover a

20-cycle. This close yet easily calculated comparison tells us that a random walk on Z/20Z
has a shorter cover time than one on K50 with self loops.

3. Bounding Cover Times

Now that we have a general sense of methods of calculating cover times, let us bound them
in terms of hitting times. We also slightly modify the definition of hitting time to account
for the entire Markov chain, not just a specific ordered pair of states.

Definition 3.1. Let X0, X1, . . . be a Markov chain on a state space Ω. The hitting time of
the Markov chain, denoted H(X), is defined as

H(X) = max
i,j∈Ω

Ei(τj).

Our first theorem can easily be deduced by noting the definitions of cover times and hitting
times.
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Theorem 3.2. For any irreducible Markov chain X0, X1, . . . on a state space Ω with n states,
we have

H(X) ≤ C(X).

Proof. Selecting states i, j ∈ Ω such that H(X) = Ei(τj), we have

H(X) = Ei(τj) ≤ Ci(X) ≤ C(X).

We must have Ei(τj) ≤ Ci(X) because by the time all states have been visited starting
from state i, state j must have also been visited, causing the process to take at least the
hitting time of j when starting from i.

�

This bound is often because weak there are more than 2 states in the majority of Markov
chains. We shall now focus the rest of this paper on proving the upper bound, which is found
in a more complicated manner.

Theorem 3.3 (Matthews Method). For any irreducible Markov chain X0, X1, . . . on a state
space Ω with n states, we have

C(X) ≤ H(X)

(
1 +

1

2
+

1

3
+ · · ·+ 1

n− 1

)
.

Proof. We start by assuming that without loss of generality our state space is Ω = {1, 2, . . . , n}
and that X0 = n. We also let σ be a uniform random permutation of {1, 2, . . . , n− 1}. We
denote Tk as the first time that the states σ(1), . . . , σ(k) have been visited, and Lk = XTk

as
the last state among σ(1), . . . , σ(k) to have been visited.

Since H(X) is at least the time it takes to get from any one state to any other, we have

En(T1|σ(1) = s) ≤ H(X)

for all 1 ≤ s ≤ n− 1. Taking into account all possible s, we have En(T1) ≤ H(X).

Now, we choose 1 ≤ r 6= s ≤ n− 1 to prove some new inequalities. We have

En(Tk − Tk−1|Lk−1 = r, σ(k) = s = Lk) ≤ H(X)

because the left side of the inequality is less at most the time it takes to go from state r
to s, while the right side is at least the time it takes. Averaging over all r and all s results
in the simplified inequality

En(Tk − Tk−1|Lk = σ(k)) ≤ H(X).

We also have, for any set S, we have

Pn{Lk = σ(k)|{σ(1), . . . , σ(k)} = S} =
1

k
since every 1 ≤ k ≤ n− 1 is equally likely to be the last state to be visited. Additionally,

if we know that Lk 6= σ(k), Tk = Tk−1 because k will already have been visited by the time
the states 1, . . . , k − 1 have been visited as well. Thus we have
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Figure 1. A rooted binary tree of depth 3.

En(Tk − Tk−1|Lk 6= σ(k)) = 0.

Taking

En(Tk − Tk−1|Lk = σ(k)) ≤ H(X)

from above, we can rearrange to get

En(Tk − Tk−1) ≤ Pn{Lk = σ(k)} ·H(X) =
H(X)

k
.

Finally, we sum over all 1 ≤ k ≤ n− 1 to get

C(X) = En(T1) +
n−1∑
k=2

En(Tk − Tk−1) ≤ H(X) +
H(X)

2
+ · · ·+ H(X)

n− 1
,

as desired.
�

4. Covering Binary Trees

Using Theorem 3.3, we can now bound cover times of some common Markov chains such
as in binary trees. We will focus primarily on the upper bound as that brings more useful
and strictly bounded results. The following examples are from [LP17].

Definition 4.1. A rooted binary tree of depth k is a graph with 2k+1 − 1 vertices with 1
vertex on the top level (called the root), 2 vertices on the next, 4 on the next, and so on.
Each vertex (except those on the bottom row, which are called roots) is connected to exactly
two unique vertices on the next level so that there are no cycles.

See Figure 1 for an example of the rooted binary tree of depth 3. For sake of simplicity,
we will also denote 2k+1 − 1 as simply n.

We can find the hitting time of a random walk on this rooted binary tree by first noting
that the commute time between the root vertex and any specific leaf vertex is

tp↔a = 2(n− 1)k,

where commute time is defined by the time it takes to go from one vertex to another and
then back to the first vertex.
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Figure 2. H(X) is equal to the hitting time from the green vertex to the
blue vertex, but not between the red and green vertices as their most
common ancestor is not the root vertex.

The maximal hitting time in this random walk will be from one leaf to another so that
no common ancestors (except the root vertex) are shared between them (see Figure 2 for
an example of such a pair of vertices). However, this is the same as the time it should take
to commute between the root and any leaf, which is 2(n − 1)k. Hence H(X) = 2(n − 1)k,
where X0, X1, . . . denotes our Markov chain. As a result, we have

C(X) ≤ H(X)

(
1 +

1

2
+ · · ·+ 1

n− 1

)
= 2(n− 1)k

(
1 +

1

2
+ · · ·+ 1

n− 1

)
.

Note that we can approximate the nth harmonic number as log(n), so we have

C(X) ≤ 2(n− 1)k

(
1 +

1

2
+ · · ·+ 1

n− 1

)
= (2 + o(1))(log 2)nk2

as our final result.

5. Covering Coin-Flip Sequences

In class, we examined how to determine if a specific sequence of coin flips will appear
before another specific sequence, as well as the expected time needed to arrive at a particular
sequence. Now, the amount of time needed to reach all the sequences, where the method
used to generate new sequences is as follows.

Definition 5.1. Let X0, X1, . . . be a Markov chain on the state space {H,T}k with a uniform
initial state. At each step, the first letter of the k-tuple is removed and the either a T or an
H is appended to the end of the result, each with probability 1

2
. This chain is referred to as

the shift chain on binary k-tuples.

Example. A sequence for the shift chain on binary quintuples could be HTTTT , TTTTH,
TTTHH. However, HTTTT, TTTHH, TTHTH would not be a valid sequence because the
last four letters of the preceding term must be the first four letters of the following term.

We also need to define what a waiting time is to help us grasp the upper bound of the
cover time.

Definition 5.2. The waiting time wx for a term x ∈ {H,T}k is the number of steps required
for a x to appear in the chain without any overlap from the current state’s bits.
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It is easily seen that wx ≥ k because all of the current state’s bits (H’s or T ’s) must
have rotated out, and a completely new set of k bits must have appeared. Additionally, we
have wx ≥ τx for all x, where τx denotes the hitting time of the particular term x. Note
also that wx is independent of the initial state and that our chain has a uniform stationary
distribution. Hence

E(wx) ≥ E(max(τx)) = 2k.

We also define a value Hk that can be equated to H(X) while simultaneously finding its
exact value.

Proposition 5.3. Fix k ≥ 1. For the shift chain on binary k-tuples, Hk defined by

Hk = max
x∈{0,1}k

E(wx)

is equal to 2k+1 − 2.

Proof. We proceed by induction. For k = 1, there is a 1
2

chance that it will take 1 step, 1
4

that it will take 2, and so on. Thus, we have

H1 =
1

2
+

2

4
+

3

8
+

4

16
+ · · ·

=

(
1

2
+

1

4
+

1

8
+ · · ·

)
+

(
1

4
+

1

8
+ · · ·

)
+

(
1

8
+ · · ·

)
= 1 +

1

2
+

1

4
+ · · ·

= 2.

Now fix a term x of length k = 1 and let x− be the pattern consisting of the first k bits
(H’s or T ’s) of x. We must arrive at the term x− first before arriving at x, and we have a 1

2

chance of going from x− to x. The other 1
2

of the time, we start over, now requiring as much
time as we needed at the start to arrive at x. Thus we have the recurrence

E(wx) ≤ E(wx−) + 1 +
1

2
E(wx),

where the additional 1 represents the flip where we go from x− to either the start or x.
Now, we bound Hk+1 in terms of Hk by choosing an x with Hk+1 = E(wx). Then we have
1
2
E(wx) = 1

2
Hk+1 and E(wx−) ≤ Hk. Replacing these into the inequality above, we have

Hk+1 ≤ Hk + 1 +
1

2
Hk+1,

which we rewrite as

Hk+1 ≤ 2Hk + 2.

Given H1 = 2, we have, as a result, Hk ≤ 2k+1 − 2. Note that when we want to find the
hitting time from a term that ends in H to a term with only T ’s, it will take on average
2k+1 − 2 coin flips, using the martingale method. Thus, we have Hk = 2k+1 − 2. �
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As we did before, we can approximate the nth harmonic number as log(n), so we have

1 +
1

2
+

1

3
+ · · ·+ 1

2k − 1
≈ log(2k) = k log 2.

Combining the results we have found, we can obtain, for the shift chain on binary k-tuples,

E(Ci(X)) = C(X) ≤ Hk

(
1 +

1

2
+

1

3
+ · · ·+ 1

2k − 1

)
≈ (2k+1 − 2)(k log 2),

or
C(X) ≤ (k log 2)2k+1(1 + o(1)).

As we have seen, Theorem 3.3 is useful in determining various cover times in terms of
the easier-to-find hitting times. We have also seen the usefulness of cover times in real
world examples, such as the coupon collector problem. The Matthews Method seems quite
elementary given the involvement of harmonic numbers, but the upper bound has proven to
be a very strong one. As more research is done into bounding cover times, mixing times,
hitting times, and more, we may be able to find an even better bound in the future.
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