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Abstract. In this expository paper, we discuss two common Markov chain Monte Carlo(MCMC)
methods for sampling from a complicated distribution: the Metropolis-Hastings algorithm
and Gibbs Sampling. We then apply Gibbs Sampling to the Ising model, a model from sta-
tistical mechanics that is very difficult to simulate without MCMC because there is often a
very large number of states. Finally, we shift our focus to mixing times for the Ising model.
Much of the material from the sections on the Ising model is from [LP17]. This paper
assumes some basic knowledge of Markov chains and methods to bound mixing times.

1. The Metropolis-Hastings Algorithm

The Metropolis-Hastings Algorithm is a method to produce a sequence of random samples
from a given density. First, given a probability distribution π on Ω, suppose we wish to find
a Markov chain with transition matrix P such that P has a stationary distribution of π. If
we had such a chain, we could run the Markov chain until it approximates the stationary
distribution. Then, running the chain further would give samples from the stationary dis-
tribution. To find such a transition matrix P , we pick any initial transition matrix Ψ, and
over many iterations use it to build another chain with stationary distribution close to π :

• Pick an irreducible transition matrix, Ψ, over Ω.
• Pick an initial state x0 ∈ Ω at time t = 0.
• Generate a candidate state x′ at random according to the Markov chain, Ψ(x′|xt).
• Calculate the acceptance probability

A(x′, xt) = min

(
1,
πx′Ψx′,xt

πxtΨxt,x′

)
.

• Accept the candidate state x′ with probability A(x′, xt). If the state is accepted, we
have xt+1 = x′. Otherwise, reject the candidate and set xt+1 = xt. Return to step 3.

More precisely,

Algorithm 1: Metropolis-Hastings algorithm

Initialize x0 ∈ Ω at random
for i← 0 to N − 1 do

Sample x′ ∼ Ψ(x′|xt)
Sample u ∼ [0, 1]

if u < A(x′, xt) = min
(

1,
πx′Ψx′,xt
πxtΨxt,x′

)
then

xt+1 = x′

else
xt+1 = xt

end
end
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This process forms a Markov chain, x0, x1, . . . with transition matrix P given by the
transition probabilities,

Pij =


Ψij ·min

(
1,

πjΨji
πiΨij

)
if i 6= j.

1−
∑

k∈Ω|k 6=i
Ψik ·min

(
1, πkΨki

πiΨik

)
if i = j.

Theorem 1.1. The described transition matrix P for the Metropolis-Hastings algorithm is
a reversible Markov chain with a stationary distribution of π.

Definition 1.2. An ergodic Markov chain over state space Ω with transition matrix P is
said to be reversible if there exists a probability distribution, π that satisfies

πiPij = πjPji

for all i, j ∈ Ω.

Lemma 1.3. Let P be a reversible ergodic transition matrix. The probability distribution π
that satisfies the condition

πiPij = πjPji

for all i, j ∈ Ω is the stationary distribution of P.

Proof. Suppose that π satisfies the condition. We have

(πP )j =
∑
i∈Ω

πiPij =
∑
i∈Ω

πjPji = πj
∑
i∈Ω

Pji = πj

for all j. Thus πP = π, so π is the stationary distribution.
�

Proof of Theorem 1.1. Due to the previous lemma, we need only show that P is reversible.
That is, show that

Pijπi = ΨijA(i, j)πi = ΨjiA(j, i)πj = Pjiπj.

We finish with casework:

Case 1. Ψijπi = Ψjiπj. Here,

πiΨij

πjΨji

=
πjΨji

πiΨij

= 1,

so A(i, j) = A(j, i) = 1. Therefore the chain is reversible.

Case 2. Ψijπi > Ψjiπj. In this case, A(j, i) = 1, and

A(i, j) =
πjΨji

πiΨij

.

Thus

ΨijA(i, j)πi = Ψij
πjΨji

πiΨij

πi = πjΨji = ΨjiA(j, i)πj.

Case 3. Ψijπi < Ψjiπj. Similarly, A(i, j) = 1, and

A(j, i) =
πiΨij

πjΨji

.
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Thus

ΨjiA(j, i)πj = Ψji
πiΨij

πjΨji

πj = πiΨij = ΨijA(i, j)πi.

�

The Metropolis-Hastings algorithm allows us to draw random samples from a complicated
function f(x) without knowing the normalization factor. Say we have f(x) = Cp(x), where
p(x) is a probability density function and C is an unknown proportionality factor. Notice
that the Markov Chain generated by the Metropolis-Hastings algorithm depends only on the
ratios

πj
πi

rather than the values themselves. If we have πx = p(x) = f(x)/C, we can sample
from this complicated distribution without ever knowing the normalization factor since

πj
πi

=
p(j)

p(i)
=
f(j)

f(i)
.

Often, one picks a proposal distribution which is symmetric, i.e., Ψij = Ψji. This reduces
the acceptance probability to

A(xt, x
′) = min

(
1,
πx′Ψx′,xt

πxtΨxt,x′

)
= min

(
1,
πx′

πxt

)
.

This way, if the candidate sample is more probable, we accept it with probability 1.
One issue with the Metropolis-Hastings algorithm and most other MCMC methods is

that the chain might take a long time to approach stationarity. So, typically we burn-in the
sampler by throwing out the first n samples.

Another problem is that the samples are correlated. One way to reduce this is by thinning
the output, storing only every mth point after the burn-in period.

2. Gibbs Sampling

Gibbs Sampling is an important variation of the Metropolis-Hastings algorithm with
conditional distributions as the proposal distribution Ψ and acceptance probability 1. It
samples from a distribution over several random variables by fixing all but one random
variable, sampling that one conditioned on the others. It does this for each random vari-
able. So, all we need are the conditional distributions. Let x = (x1, x2, . . . xn) and x−i =
(x1, x2, . . . xi−1, xi+1, . . . , xn). In this section, we denote components of the state vector with
subscripts and the time with superscripts.

Algorithm 2: Gibbs Sampling

Initialize x
(0)
1 , x

(0)
2 , . . . , x

(0)
n ∈ Ω at random

for t← 0 to N − 1 do
Pick an index 1 ≤ j ≤ n at random

Sample x
(t+1)
j ∼ π(xj|x(t+1)

1 , . . . , x
(t+1)
j−1 , x

(t)
j+1, . . . , x

(t)
n )

end

This runs a Markov chain on each of the random variables xi. The rule to update x is
choose a random index j, and then choose a new state according to

P (x
(t)
j , x

′
j) =

{
πx′

π(z:z−j=x−j)
if x′−j = x

(t)
−j,

0 Otherwise.
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Theorem 2.1. The described transition matrix P for the Gibbs Sampler is a reversible
Markov chain with a stationary distribution of π.

Proof. We just need to check that π satisfies the detailed balance equation. Suppose we have
arbitrary states x and y. If x−j 6= y−j, then

πxPxy = 0 = πyPxy.

Otherwise, we have

πxPxy = πx
πy

πz:z−j=x−j

= πy
πx

πz:z−j=y−j
= πyPyx.

�

One issue with the Gibbs Sampler is that we always accept samples based on conditional
distributions. This results in high correlation between consecutive samples. As with the
Metropolis-Hastings algorithm, one typically starts saving samples after a burn-in period
and thins the outputs.

3. The Ising Model

The Ising model is a very commonly studied model, originally used to study ferromag-
netism. However, the model has numerous applications outside of magnetism including
simulating neurons in the brain and simulating lattice gasses.

The most commonly studied spin system is the nearest-neighbor Ising model. Consider a
set of magnets, each having one of two possible orientations, or spins, represented by +1 and
−1 being placed on the vertices of a graph. Let the vertex set of this graph be V and the
edge set be E. a A configuration σ represents the orientations of all the magnets. So, σ(v) is
the spin of vertex v under configuration σ. The state space is Ω = {−1, 1}V . The probability
distribution is given by

µ(σ) =
e−βH(σ)

Z(β)

where β = 1
kBT

is the inverse of the temperature,

H(σ) = −
∑
v∼w

σ(v)σ(w)

is the energy of a configuration, obtained by summing the interactions between neighboring
vertices, and

Z(β) =
∑
σ∈Ω

e−βH(σ)

is the normalizing constant, called the partition function. The β value, the inverse of tem-
perature, determines the importance of the energy function. At high values, lower energy
configurations are more likely. At low values, H is less important and µ is closer to the
uniform distribution.

Note that it is impractical to compute the normalizing constant which is a sum over all
2|V | configurations. This high amount of states motivates us to use Markov chain Monte
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Carlo methods to simulate the Ising model. We will use Gibbs sampling, sometimes called
Glauber dynamics for the Ising model. This moves from a starting configuration σ by picking
a uniformly random vertex w ∈ V and generating a new configuration according to µ and
the conditional probability that it agrees with σ on vertices other than w.

The new state σ′ agrees with σ everywhere except possibly at w, where σ′(w) = 1 with
probability

µ(σw = 1|σ−w)

µ(σw = 1|σ−w) + µ(σw = −1|σ−w)
=

e(1)β
∑
u:u∼w σu/Z(β)

e(1)β
∑
u:u∼w σu/Z(β) + e(−1)β

∑
u:u∼w σu/Z(β)

.

This simplifies to

p(σ,w) =
eβS(σ,w)

eβS(σ,w) + e−βS(σ,w)
=

1 + tanh(βS(σ,w))

2
.

where S(σ,w) =
∑

u:u∼w σ(u). This only depends on the spins at the vertices connected
to w. Thus the transition matrix from configurations σ to σ′ is

P (σ, σ′) =
1

|V |
∑
w∈V

eβσ
′(w)S(σ,w)

eβσ′(w)S(σ,w) + e−βσ′(w)S(σ,w)
· 1{σ(v)=σ′(v) for v 6=w}.

This is reversible with respect to and has a stationary distribution of µ. (Note that
1{σ(v)=σ′(v) for v 6=w} is the indicator function and in this case is 1 if σ(v) = σ′(v) for v 6= w
and 0 otherwise.)

Figure 1. Glauber dynamics for the nearest-neighbor Ising model on a
square lattice at low temperature β > βc (left), critical temperature β = βc
(middle), and high temperature β < βc (right) after a sufficient burn-in
period. At low temperatures, the model tends to be biased towards low
energy configurations with more connected vertices having the same spin. As
β increases, this goes away and at very high temperature with β close to 0,
the energy function plays almost no effect and the distribution is
approximately uniform. [LP17]
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4. Mixing Times for the Ising Model

We now turn our focus to the mixing times for the Ising model and the Ising model on a
complete graph. We begin by recalling Theorem 15.1 from Levin, Peres, and Wilmer’s book.

Theorem 4.1. [LP17] Consider the Ising model on a graph with n vertices and maximal
degree ∆. Let c(β) = 1−∆ tanh(β). If ∆ · tanh(β) < 1, then

tmix(ε) ≤
⌈
n(log n+ log(1/ε)

c(β)

⌉
.

Proposition 4.2. For x ∈ [0,∞),

tanh(x) ≤ x.

Proof. Let f(x) = x− tanh(x). Taking the derivative,

f ′(x) = 1− (1− tanh2(x)) = tanh2(x) ≥ 0.

Since f(x) is monotonically increasing and tanh(0) = 0, f(x) is always positive for x > 0. �

By the proposition, at high temperatures when β < ∆−1, Theorem 4.1 holds and there is
fast mixing on the order O(n log n).

Let Kn be the complete graph on n vertices. The interaction strength for the complete
graph is σ(v)

∑
w:w∼v σ(w), which is of order n. So, let’s replace β and take β = α/n. The

probability of updating to a +1 is now

p(σ,w) =
eα(S−σ(w))/n

eα(S−σ(w))/n + e−α(S−σ(w))/n

where S =
∑n

i=1 σ(i) is the total magnetization. We now have the following theorem about
the mixing times for the complete graph Ising model, known as the Curie-Weiss model.

Theorem 4.3. Let Kn be the complete graph on n vertices, and consider the Markov chain
for the Ising model on Kn with β = α/n.

(i) If α < 1, then

tmix(ε) ≤
⌈
n(log(n) + log(1/ε))

1− α

⌉
.

(ii) If α > 1, there exists a constant C0 > 0 such that

tmix(ε) ≥ C0e
r(α)n,

where r(α) > 0.

Proof of (i). We have ∆ = n− 1 for the complete graph. Substituting,

∆ tanh(β) = (n− 1) tanh(α/n).

Now, we prove that tanh(x) ≤ x for nonnegative x. By Lemma 4.2,

∆ tanh(β) = (n− 1) tanh(α/n) ≤ n− 1

n
α < α.

Thus if α < 1, then ∆ · tanh(β) < 1. Theorem 4.1 completes the proof. �
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Proof of (ii). We bound the mixing time using the bottleneck ratio. Let Ak be the set of
configurations σ such that |{v : σ(v) = 1}| = k. We have π(Ak) = αk/Z(α) where

αk =

(
n

k

)
exp

(
α

n

[(
k

2

)
+

(
n− k

2

)
− k(n− k)

])
and Z(α) is a normalizing constant. Now, Stirling’s formula tells us

log

(
n

cn

)
= log

n!

(cn)!(n− cn)!

= log(n!)− log((cn)!)− log((n− cn)!)

∼ cn log(
n

cn
) + (n− cn) log(

n

n− nc
)

= −cn log(c)− n(1− c) log(1− c).
We take logs to our expression for αk and apply Stirling’s formula:

log(αbcnc) = nϕα(c)(1 + o(1))

where

ϕα(c) = −c log(c)− (1− c) log(1− c) + α
(1− 2c)2

2
.

Define S to be the set of configurations σ with
∑

v∈V σ(v) < 0 and similarly define S ′ to
be the set with

∑
v∈V σ(v) > 0. By symmetry, 2π(S) = π(S) + π(S ′) ≤ 1. Thus π(S) ≤ 1/2.

The only way to get from S to Sc = Ω\S is through Abn/2c. This is a bottleneck between
states with positive magnetization and states with negative magnetization. Now,

Q(S, Sc) ≤ π(Abn/2c)

and

π(S) =
∑

j≤bn/2c

π(Aj).

Let the maximum value of ϕα(c) on [0, 1/2] be obtained at c = cα. We differentiate our
expression for ϕ,

ϕ′α(1/2) = 0

and

ϕ′′α(1/2) = −4(1− α).

So for α > 1, a local minimum is attained at c = 1/2. This means the maximum on the
interval [0, 1/2] must be at cα < 1/2. Therefore, we can bound the bottleneck ratio as

Φ(S) =
Q(S, Sc)

π(S)
≤
π(Abn/2c)

π(Abcαnc)
=
abn/2c/Z(α)

abcαnc/Z(α)
=

exp[ϕα(1/2)n(1 + o(1))]

exp[ϕα(cα)n(1 + o(1))]
.

Since ϕα(cα) > ϕα(1/2), there is an r(α) > 0 and a constant b such that Φ? ≤ be−nr(α). Thus
the mixing time is Ω(enr(α)). �

At high temperatures(α < 1) the complete graph Ising model is fast mixing with order
n log n and at low temperatures (α > 1) the mixing time is exponential in n. In [LLP10], it is
shown that for the case of α = 1, tmix is on the order of n3/2. This interesting phenomenon of
the mixing time transitioning from θ(n log n) to θ(n3/2) to θ(en) is further studied in [DLP09].
Moreover, this critical slowdown is not unique to the complete graph Ising model. It turns
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out that other graphs, for example, the widely studied Ising model on a square lattice, exhibit
this transition of mixing times at the critical temperature as well.

The mixing times of the Glauber dynamics for the Ising model is a broad and active
topic of current research with many open problems . For more on the square lattice Ising
model and its mixing times, we refer the reader to [LS10]. We also recommend [DLP09]
and [LLP10] for further reading on the cutoff and mixing times of the complete graph Ising
model.
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