MCMC AND THE ISING MODEL

ADAM ZWEIGER

ABSTRACT. In this expository paper, we discuss two common Markov chain Monte Carlo(MCMC)
methods for sampling from a complicated distribution: the Metropolis-Hastings algorithm

and Gibbs Sampling. We then apply Gibbs Sampling to the Ising model, a model from sta-
tistical mechanics that is very difficult to simulate without MCMC because there is often a

very large number of states. Finally, we shift our focus to mixing times for the Ising model.
Much of the material from the sections on the Ising model is from [LP17]. This paper
assumes some basic knowledge of Markov chains and methods to bound mixing times.

1. THE METROPOLIS-HASTINGS ALGORITHM

The Metropolis-Hastings Algorithm is a method to produce a sequence of random samples
from a given density. First, given a probability distribution 7 on €2, suppose we wish to find
a Markov chain with transition matrix P such that P has a stationary distribution of «. If
we had such a chain, we could run the Markov chain until it approximates the stationary
distribution. Then, running the chain further would give samples from the stationary dis-
tribution. To find such a transition matrix P, we pick any initial transition matrix ¥, and
over many iterations use it to build another chain with stationary distribution close to 7 :

e Pick an irreducible transition matrix, ¥, over ).
e Pick an initial state x¢ € 2 at time ¢t = 0.
e Generate a candidate state 2’ at random according to the Markov chain, W (z'|x;).
e Calculate the acceptance probability
T /\I’ ’
A(x', z;) = min (1, ==& ’xt) .

s \Ilmt,:c’

e Accept the candidate state ' with probability A(z’, z;). If the state is accepted, we
have x; 1 = 2’. Otherwise, reject the candidate and set x;11; = x;. Return to step 3.

More precisely,

Algorithm 1: Metropolis-Hastings algorithm

Initialize zo € € at random
for i< 0to N—1do
Sample 2’ ~ W (x'|x;)
Sample u ~ [0, 1]

if u < A(2/,z;) = min (1, %) then
Tt Fxy,x!
| @ =2
else
Ti41 = T
end

end
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This process forms a Markov chain, xg,z1,... with transition matrix P given by the
transition probabilities,
Wy min (1, 25 ) if i # .
B = o . e
K 1— > Wy -min (1,’;?\‘11,'?1) if i = j.
keQlk£i Lk

Theorem 1.1. The described transition matrix P for the Metropolis-Hastings algorithm s
a reversible Markov chain with a stationary distribution of .

Definition 1.2. An ergodic Markov chain over state space €2 with transition matrix P is
said to be reversible if there exists a probability distribution, 7 that satisfies

m Py = m;iPji
for all 7,5 € Q.

Lemma 1.3. Let P be a reversible ergodic transition matriz. The probability distribution m
that satisfies the condition

Py = 7 Pji
for alli,j € Q0 is the stationary distribution of P.

Proof. Suppose that 7 satisfies the condition. We have
(wP); =Y mPy=Y mPi=m) Pi=m
i€Q ieQ iEQ
for all 5. Thus 7P = 7, so 7 is the stationary distribution.
[ |

Proof of Theorem 1.1. Due to the previous lemma, we need only show that P is reversible.
That is, show that
Biymi = Wi AL, j)ms = V5 A(j, i)m; = Pim;.
We finish with casework:
Case 1. V;m; = U ;m;. Here,
Wiq/ij Wj\I’ji

pr— pr— 1
Wj‘Ifji Wi\Ijij

Y

so A(i,7) = A(j,i) = 1. Therefore the chain is reversible.

Case 2. U;;m; > U;;m;. In this case, A(j,7) = 1, and
W.q{..
Ali A7) = 2t
(i,) s
Thus U
Zj%ﬂ-l = W]\Ifjl = \I/]ZA(j, i)ﬂ'j.

ij

U A, j)my = W

Case 3. \Ilijﬂ-i < \I[jz'ﬂ-j‘ Similarly, A(’L,j) =1, and
A(G, 1) =

Wi\Ijij
Wj\Ilji
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Thus
.. 7'('1‘;[/” ..
\DﬂA<], Z>7Tj = \D]Z— = 7T1\Ij/lj \IJZ]A(Z,])WZ
ﬂ-j\Ilj’L

[ |
The Metropolis-Hastings algorithm allows us to draw random samples from a complicated
function f(z) without knowing the normalization factor. Say we have f(z) = Cp(z), where
p(z) is a probability density function and C' is an unknown proportionality factor. Notice
that the Markov Chain generated by the Metropolis-Hastings algorithm depends only on the
ratios = rather than the values themselves. If we have 7, = p(z) = f(x)/C, we can sample

from thls complicated distribution without ever knowing the normalization factor since

m _pl) _ f0G)
moop()  f@)
Often, one picks a proposal distribution which is symmetric, i.e., ¥;; = W;;. This reduces
the acceptance probability to

/ . ﬂ-x’\:[]x’,zt . Tyt
A(zy,2') =min [ 1, ——= | = min { 1, )
Ty \I}a:t,:c’ Ty

This way, if the candidate sample is more probable, we accept it with probability 1

One issue with the Metropolis-Hastings algorithm and most other MCMC methods is
that the chain might take a long time to approach stationarity. So, typically we burn-in the
sampler by throwing out the first n samples.

Another problem is that the samples are correlated. One way to reduce this is by thinning
the output, storing only every m™ point after the burn-in period.

2. GIBBS SAMPLING

Gibbs Sampling is an important variation of the Metropolis-Hastings algorithm with
conditional distributions as the proposal distribution ¥ and acceptance probability 1. It
samples from a distribution over several random variables by fixing all but one random
variable, sampling that one conditioned on the others. It does this for each random vari-
able. So, all we need are the conditional distributions. Let z = (x1,x9,...2,) and z_; =
(1,2, ... Ti1,Tit1,-..,Ty). In this section, we denote components of the state vector with
subscripts and the time with superscripts.

Algorithm 2: Gibbs Sampling

Initialize xg ), xéo), e ,x%o) € ) at random

fort <+ 0to N—-1do

Pick an index 1 < j < n at random
+1 t+1 t+1 t t
(t+1) ﬂ(xj\afg ),...,xg_l),x§ll,...7x7(1))

Sample x;
end

This runs a Markov chain on each of the random variables z;. The rule to update x is
choose a random index j, and then choose a new state according to

if " (t) i

7T$/

P (t), A w(ziz_j=x_;)
(@ E J) 0 Otherw1se.



4 ADAM ZWEIGER

Theorem 2.1. The described transition matriz P for the Gibbs Sampler is a reversible
Markov chain with a stationary distribution of m.

Proof. We just need to check that m satisfies the detailed balance equation. Suppose we have
arbitrary states x and y. If z_; # y_;, then

TPy = 0 =m, P,

Otherwise, we have
T
_ y
Ty Pry = Ty
T‘-ZZij:fl‘fj
ﬂ-x
=
y
7TZIZ

=m, P,

yr:

—i=Y-j

One issue with the Gibbs Sampler is that we always accept samples based on conditional
distributions. This results in high correlation between consecutive samples. As with the
Metropolis-Hastings algorithm, one typically starts saving samples after a burn-in period
and thins the outputs.

3. THE IsiNG MODEL

The Ising model is a very commonly studied model, originally used to study ferromag-
netism. However, the model has numerous applications outside of magnetism including
simulating neurons in the brain and simulating lattice gasses.

The most commonly studied spin system is the nearest-neighbor Ising model. Consider a
set of magnets, each having one of two possible orientations, or spins, represented by +1 and
—1 being placed on the vertices of a graph. Let the vertex set of this graph be V' and the
edge set be E. a A configuration o represents the orientations of all the magnets. So, o(v) is
the spin of vertex v under configuration o. The state space is = {—1,1}". The probability
distribution is given by

e~ BH(0)

plo) = 70

where [ = ,%%T is the inverse of the temperature,

H(o) == o(v)o(w)

v~Yw

is the energy of a configuration, obtained by summing the interactions between neighboring

vertices, and
Z(8) =3 e

oe)
is the normalizing constant, called the partition function. The g value, the inverse of tem-
perature, determines the importance of the energy function. At high values, lower energy
configurations are more likely. At low values, H is less important and p is closer to the
uniform distribution.
Note that it is impractical to compute the normalizing constant which is a sum over all
2Vl configurations. This high amount of states motivates us to use Markov chain Monte
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Carlo methods to simulate the Ising model. We will use Gibbs sampling, sometimes called
Glauber dynamics for the Ising model. This moves from a starting configuration o by picking
a uniformly random vertex w € V and generating a new configuration according to p and
the conditional probability that it agrees with o on vertices other than w.

The new state o’ agrees with o everywhere except possibly at w, where ¢’'(w) = 1 with
probability

’LL(O-w - 1|O—w> 6(1)ﬁzu:u~w Uu/Z(/B)

Iu(o'w = ]_|o'_w) + N(Uw = —1|g’_w) B @(Uﬁzu:uww Uu/Z(B) —+ e(*l)ﬁzu;umu J“/Z(ﬁ) .

This simplifies to

efSlow) 1 + tanh(BS (o, w))

plo,w) = BS(ow) | g—BS(ow) — 2

where S(o,w) = > . . o(u). This only depends on the spins at the vertices connected
to w. Thus the transition matrix from configurations o to o’ is

1 B (w)S(ow)
A } : . ,
Plo,a) = V] £ efo@)Slow) 4 g=fo"@)Slow) Lo(v)=0(v) for vtw).

This is reversible with respect to and has a stationary distribution of u. (Note that
1{o(v)=0'(v) for vzw} 1S the indicator function and in this case is 1 if o(v) = o'(v) for v # w
and 0 otherwise.)

Figure 1. Glauber dynamics for the nearest-neighbor Ising model on a
square lattice at low temperature 5 > (. (left), critical temperature 8 = .
(middle), and high temperature g < f3, (right) after a sufficient burn-in
period. At low temperatures, the model tends to be biased towards low
energy configurations with more connected vertices having the same spin. As
[ increases, this goes away and at very high temperature with 5 close to 0,
the energy function plays almost no effect and the distribution is
approximately uniform. [LP17]
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4. MixXING TIMES FOR THE ISING MODEL

We now turn our focus to the mixing times for the Ising model and the Ising model on a
complete graph. We begin by recalling Theorem 15.1 from Levin, Peres, and Wilmer’s book.

Theorem 4.1. [LP17] Consider the Ising model on a graph with n vertices and mazimal
degree A. Let ¢(f) =1 — Atanh(B). If A -tanh(B) < 1, then

Fone(2) < [n(logn - log(l/g)-‘
c(B)
Proposition 4.2. For x € [0, 00),
tanh(z) < z.

Proof. Let f(x) = x — tanh(x). Taking the derivative,
f'(z) =1 — (1 — tanh®*(z)) = tanh?*(z) > 0.
Since f(z) is monotonically increasing and tanh(0) = 0, f(x) is always positive for z > 0. W

By the proposition, at high temperatures when 3 < A~!, Theorem 4.1 holds and there is
fast mixing on the order O(nlogn).

Let K,, be the complete graph on n vertices. The interaction strength for the complete
graph is o(v) Y ... o(w), which is of order n. So, let’s replace § and take § = a/n. The
probability of updating to a +1 is now

eoz(Sfo(w))/n

ea(S—J(w))/n + e—a(S—J(w))/n

plo,w) =

where S =Y "" | o(i) is the total magnetization. We now have the following theorem about
the mixing times for the complete graph Ising model, known as the Curie-Weiss model.

Theorem 4.3. Let K,, be the complete graph on n vertices, and consider the Markov chain
for the Ising model on K,, with § = «o/n.

(i) If a < 1, then

11—«

tmix(g) S ’V
(i1) If a > 1, there exists a constant Cy > 0 such that

tmix (5) Z C’0 er(a)n )

n(log(n) + log(l/a))-‘ '

where r(a) > 0.
Proof of (i). We have A = n — 1 for the complete graph. Substituting,
Atanh(f) = (n — 1) tanh(a/n).
Now, we prove that tanh(z) < x for nonnegative z. By Lemma 4.2,

Atanh(8) = (n — 1) tanh(a/n) < "

a < Q.

Thus if @ < 1, then A - tanh(f) < 1. Theorem 4.1 completes the proof. |
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Proof of (ii). We bound the mixing time using the bottleneck ratio. Let Aj be the set of
configurations o such that |[{v: o(v) = 1}| = k. We have m(Ay) = ax/Z () where

n a |k n—k
= (1) o (G1G) « (7)o e
and Z(«a) is a normalizing constant. Now, Stirling’s formula tells us

o (1) = % o

= log(n!) —log((cn)!) — log((n — cn)!)
—)

(
n
~ cn log(a) + (n—cn) log(n —

= —cnlog(c) —n(1l —¢)log(l — ¢).
We take logs to our expression for « and apply Stirling’s formula:

log(aLan) = n(pa(c)(l + 0(1))

where
01 et it 202

Define S to be the set of configurations o with ) ., o(v) < 0 and similarly define S” to
be the set with ) _, o(v) > 0. By symmetry, 27(S) = 7(S5) + 7(S’) < 1. Thus (5) < 1/2.
The only way to get from S to S¢ = Q\S is through A}, /5. This is a bottleneck between
states with positive magnetization and states with negative magnetization. Now,

Q(S,5%) < m(Apny2))

and

i<[n/2]
Let the maximum value of ¢,(c) on [0,1/2] be obtained at ¢ = ¢,. We differentiate our
expression for ¢,

pa(1/2) =0
and
va(1/2) = —4(1 — a).
So for a > 1, a local minimum is attained at ¢ = 1/2. This means the maximum on the
interval [0, 1/2] must be at ¢, < 1/2. Therefore, we can bound the bottleneck ratio as

QS 5°) _ m(Apnj2)) _ ainj)/Z(a) _ explpa(1/2)n(1 + o(1))]
m(S) ~ W(ALcanJ) Alcan] /Z(a) exp[pa(ca)n(l+o(1))]

Since Yo(ca) > @a(1/2), there is an r(a) > 0 and a constant b such that ®, < be™™(®), Thus
the mixing time is Q(e™ (). [

B(S) =

At high temperatures(aw < 1) the complete graph Ising model is fast mixing with order
nlogn and at low temperatures (« > 1) the mixing time is exponential in n. In [LLP10], it is
shown that for the case of v = 1, ¢y is on the order of n*/2. This interesting phenomenon of
the mixing time transitioning from #(n logn) to 6(n*?) to 6(e™) is further studied in [DLP09)].
Moreover, this critical slowdown is not unique to the complete graph Ising model. It turns
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out that other graphs, for example, the widely studied Ising model on a square lattice, exhibit
this transition of mixing times at the critical temperature as well.

The mixing times of the Glauber dynamics for the Ising model is a broad and active
topic of current research with many open problems . For more on the square lattice Ising
model and its mixing times, we refer the reader to [LS10]. We also recommend |[DLP0Y)
and |LLP10] for further reading on the cutoff and mixing times of the complete graph Ising
model.
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