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Phase Transition

Porous Medium −→ Random Graph on Zd

The Fundamental Question
Let each edge be open with i.i.d. probability p, and let
θ(p) = Pp(|C0| = ∞) be the probability of an infinite open
component. Does there exist a pc ∈ (0, 1) such that:

θ(p) = 0 for p < pc and θ(p) > 0 for p > pc?



The Mathematical Model

Definition 1 (The Lattice Ld)
The graph is Ld = 〈Zd,Ed〉, where the set of vertices is the integer
lattice Zd. The set of edges Ed consists of all unordered pairs
{x, y} of vertices in Zd with l1-distance δ(x, y) =

∑d
i=1 |xi − yi| = 1.

Definition 2 (The Probability Space)
The sample space is the set of all bond configurations
Ω = {0, 1}Ed . For a given p ∈ [0, 1], the product Bernoulli measure
Pp is defined on Ω such that for any edge e, the probability of its
state being 1 (open) is Pp(ω(e) = 1) = p, independently of all
other edges.



Kolmogorov’s 0-1 Law

Tail Events
Let {Fn} be a sequence of σ-algebras generated by a sequence of
independent random variables. The tail σ-algebra is
T =

∩∞
n=1 σ(

∪∞
k=n Fk). An event A ∈ T is a tail event.

Theorem 3 (Kolmogorov’s 0-1 Law)
If A is a tail event, then P(A) ∈ {0, 1}.
Application: The event S = {ω ∈ Ω | ∃ an infinite open cluster}
is a tail event with respect to the edge states. Therefore,
Pp(S) ∈ {0, 1}.



The Critical Probability pc

The percolation probability is defined as θ(p) = Pp(|C0| = ∞),
where C0 is the open cluster containing the origin.
Definition 4 (Critical Probability)
pc(d) is the threshold where θ(p) becomes non-zero.

pc(d) = sup{p | θ(p) = 0} = inf{p | θ(p) > 0}

The relationship θ(p) > 0 ⇐⇒ Pp(S) = 1 ensures the transition is
sharp.



Property I: pc(1) = 1

Theorem 5 (pc(1) = 1)
For bond percolation on Z1, the critical probability is 1.

Proof.
For p < 1, let An be the event that edge 〈n, n + 1〉 is closed. The
events {An} are independent with Pp(An) = 1 − p > 0. Since

∞∑
n=1

Pp(An) =
∞∑

n=1
(1 − p) = ∞

the second Borel-Cantelli Lemma implies Pp(An i.o.) = 1. Almost
surely, infinitely many edges to the right (and left) of the origin are
closed, preventing an infinite path from the origin. Thus, θ(p) = 0
for all p < 1. Since θ(1) = 1, we conclude that pc(1) = 1.



Property II: Monotonicity

Theorem 6 (Monotonicity)
The critical probability is non-increasing in dimension:
pc(d + 1) ≤ pc(d) for d ≥ 1.

Proof.
Let θd(p) be the percolation probability on Ld. We embed Ld in
Ld+1 via the map (x1, . . . , xd) 7→ (x1, . . . , xd, 0). A configuration ω
on Ld+1 induces a process on the embedded Ld. An infinite open
cluster in Ld is also an infinite open cluster in Ld+1. This gives the
event inclusion:

{|C0(ω)| = ∞ on Ld} ⊆ {|C0(ω)| = ∞ on Ld+1}

This immediately implies θd(p) ≤ θd+1(p) for all p. From the
definition pc(d) = inf{p | θd(p) > 0}, the result follows.



Main Theorem: Non-Trivial Transition for d ≥ 2

Theorem 7 (Non-Degeneracy)
For any dimension d ≥ 2, the critical probability is non-degenerate:

0 < pc(d) < 1

This guarantees the existence of distinct subcritical and
supercritical phases in higher dimensions.



Proof Strategy: pc(d) > 0 via Path Counting

Rationale
The event {|C0| = ∞} implies the existence of an infinite open
self-avoiding path from the origin. By counting these simpler
structures, we can find an upper bound on θ(p).

Let Nn be the number of open self-avoiding paths of length n from
0.

θ(p) ≤ Pp(Nn ≥ 1) ≤ Ep[Nn] = σn(d) · pn

≤ (2d(2d − 1)n−1) · pn =
2d

2d − 1 · [p(2d − 1)]n

Conclusion: If p(2d − 1) < 1, the RHS → 0 as n → ∞, forcing
θ(p) = 0. Thus pc(d) ≥ 1

2d−1 > 0.



The Duality Principle in L2

For the planar lattice L2, we define a dual lattice L2,∗ whose
vertices are at the centers of the faces of L2.
Definition 8 (Dual Configuration)
Each edge e ∈ E2 is crossed by exactly one dual edge e∗. We
define the state of the dual configuration ω∗ by:

ω∗(e∗) = 1 − ω(e)

A dual edge is open iff the primal edge is closed. Percolation on
the dual lattice occurs with parameter 1 − p.

Key Topological Fact
An open cluster in the primal lattice L2 is finite if and only if it is
enclosed by an open path (a circuit) in the dual lattice L2,∗.



Proof Strategy: pc(2) < 1 using Duality

Goal: Show ∃p < 1 such that θ(p) > 0.

Using the duality principle:

1 − θ(p) = Pp(|C0| < ∞)

= Pp(origin is enclosed by an open dual circuit γ∗)
≤

∑
circuits γ∗

Pp(γ
∗ is open)

=
∞∑

n=4
ρn(1 − p)n

Conclusion: The power series in (1 − p) has a positive radius of
convergence. For p sufficiently close to 1, the sum is less than 1,
which implies 1 − θ(p) < 1 and thus θ(p) > 0.



Equivalence of Critical Points

Definition 9 (Mean Cluster Size)
A key thermodynamic quantity is the mean cluster size, defined as
χ(p) = Ep[|C0|]. This gives rise to another critical point,
pT = sup{p | χ(p) < ∞}.

Theorem 10 (Uniqueness of the Critical Point)
For any dimension d, the geometric and thermodynamic critical
points coincide:

pc(d) = pT(d)



Proof Strategy: pc = pT via Exponential Decay
Goal: Show p < pc =⇒ χ(p) < ∞.

The key result for p < pc is the exponential decay of connectivity:

Pp(origin connects to distance n) ≤ e−nh(p) for some h(p) > 0.

This allows bounding the mean cluster size by summing over
cluster radii:

χ(p) =
∞∑

k=1
k · Pp(|C0| = k) ≤

∞∑
n=0

|S(n)| · Pp(radius is n)

≤
∞∑

n=0
(C · nd) · e−nh(p) < ∞

The convergence follows because exponential decay overcomes
polynomial growth.



Advanced Tools: The Role of Correlation Inequalities

▶ FKG Inequality: Pp(A ∩ B) ≥ Pp(A)Pp(B) for increasing
events A,B. It is fundamental for proving monotonicity (e.g.,
θ(p) is non-decreasing) and for showing that
connectivity-enhancing events are positively correlated.
Intuitively speaking, it formalizes that ”more open edges help”.

▶ BK Inequality: Pp(A ◦ B) ≤ Pp(A)Pp(B). It provides upper
bounds on probabilities of events requiring disjoint resources.

▶ Russo’s Formula: d
dpPp(A) = Ep[Npivotal(A)].



Uniqueness of the Infinite Cluster

Theorem 11
For p > pc(d) with d ≥ 2, there is almost surely exactly one
infinite open cluster.

Proof Outline
Let N be the number of infinite open clusters (IOCs). By the 0-1
Law, Pp(N = k) = 1 for some constant k ∈ {0, 1, . . . ,∞}. Since
p > pc, we know k ≥ 1. The proof shows k = 1 by demonstrating
that both k ∈ {2, 3, . . . } and k = ∞ are impossible.



Proof of Uniqueness, Part I: Ruling out Finite Plurality

Goal: Show Pp(N ≥ 2) = 0, which rules out k ∈ {2, 3, . . . }.
Lemma 12
Let MB be the number of distinct IOCs intersecting a finite set B.
Then Pp(MB ≥ 2) = 0.

Proof.
Let {Bn}∞n=1 be an increasing sequence of finite sets with
∪nBn = Zd. Then {N ≥ 2} = ∪∞

n=1{MBn ≥ 2}. By the continuity
of probability measure:

Pp(N ≥ 2) = Pp( limn→∞
{MBn ≥ 2}) = lim

n→∞
Pp(MBn ≥ 2) = 0



Proof of Uniqueness, Part II: The Contradiction Setup
Goal: Show Pp(N = ∞) = 0 by contradiction.
The Argument’s Core Idea
If there were infinitely many infinite clusters, the lattice would be
”dense” with points where these clusters meet. We can show this
density is geometrically impossible.

Step 1: The Assumption and its Consequence
Assume there are infinitely many infinite clusters
(Pp(N = ∞) = 1).
A direct consequence is that special vertices called trifurcation
points must exist with positive probability. A trifurcation point is
a vertex where at least three distinct infinite clusters are accessible.
This leads to a necessary condition:

Pp(the origin is a trifurcation point) > 0



Proof of Uniqueness, Part III: The Geometric Contradiction

Goal: Show that the consequence Pp(origin is a trifurcation) > 0
is impossible.
Step 2: The Geometric Constraint
Consider a large box B(n) of side length 2n + 1.
The expected number of trifurcation points inside the box is
proportional to its volume:

E[# of trifurcations in B(n)] = |B(n)|·Pp(origin is a trifurcation) ∝ nd

However, a combinatorial argument shows that the number of such
points is also limited by the box’s surface area:

E[# of trifurcations in B(n)] ≤ C · |∂B(n)| ∝ nd−1



Step 3: The Contradiction
Combining these gives the inequality:

|B(n)| · Pp(origin is a trifurcation) ≤ C · nd−1

=⇒ Pp(origin is a trifurcation) ≤ C · nd−1

|B(n)| ≈ C · nd−1

C′ · nd = O
(

1
n

)
As we let the box grow (n → ∞), the right side goes to 0. This
forces the probability to be 0, which contradicts our necessary
condition.



Thanks for listening!


