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Abstract. This paper introduces the fundamental concepts of percolation theory, focus-
ing on the bond percolation model on the d-dimensional cubic lattice Zd. We provide a
rigorous mathematical framework for the model, define the lattice structure, the associ-
ated probability space, and key observables. The central focus is the the existence of a
sharp phase transition in the macroscopic connectivity of the graph as the edge probability
p varies. We will formally define the critical probability pc(d) and establish some of its
elementary properties.

1. Introduction

Percolation theory originates from a simple physical question: consider a porous stone
submerged in water. The pores within the stone form a network of fine channels, each
of which may be randomly open or blocked. Can water permeate the stone and reach its
center? Intuitively, if the probability of a single channel being open is high, it is more likely
that water can find a path to the center. Percolation theory seeks to understand if there is
a critical value for this probability, a threshold at which the global connectivity structure
of the stone undergoes a fundamental change.

To study this problem, we simplify it into a model at the intersection of graph theory
and probability theory. The simplest and most-studied case is bond percolation on the
cubic lattice. We consider the integer grid Zd, where each vertex is connected to its nearest
neighbors. Each connection, or edge, is declared “open” with a fixed probability p and
“closed” with probability 1− p, independently of all other edges.

While the “porous stone” provides the initial motivation, the applications of percolation
theory are far-reaching. The model can be adapted to describe phenomena such as the
spread of infectious diseases, the propagation of forest fires, and the conductivity of dis-
ordered materials. In a forest fire model, for instance, trees can be in one of three states:
unburnt, burning, or burnt-out. A burning tree can ignite its unburnt neighbors. If we
view the potential transmission of fire as an “open” edge, the spread of the fire becomes a
percolation process. Such models are often more complex, as the states of edges may not
be independent, but they share the same fundamental structure.

This paper will formalize the basic bond percolation model and explore its most striking
feature: the existence of a critical probability.

2. The Mathematical Model

To analyze the percolation model with mathematical rigor, we must first precisely define
the graph structure and the probability space.
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2.1. The Lattice Ld. We work in the d-dimensional Euclidean space Rd.

Definition 2.1. The set of vertices of our graph is the integer lattice Zd = {x = (x1, . . . , xd) |
xi ∈ Z for all i = 1, . . . , d}.

To define the edges, we use the l1-distance.

Definition 2.2. The l1-distance between two vertices x, y ∈ Zd is given by

δ(x, y) =

d∑
i=1

|xi − yi|

Two vertices x, y are said to be adjacent if δ(x, y) = 1.

Definition 2.3. The set of edges Ed consists of all unordered pairs ⟨x, y⟩ of adjacent vertices
in Zd. The d-dimensional cubic lattice is the graph Ld = ⟨Zd,Ed⟩.

2.2. The Probability Space. The randomness in our model comes from the state of the
edges. We formalize this by constructing a suitable probability space.

Definition 2.4. A bond configuration, denoted by ω, is an element of the space Ω =

{0, 1}Ed . For each edge e ∈ Ed, its state in the configuration ω is given by ω(e) ∈ {0, 1}.
We say the edge e is open in ω if ω(e) = 1 and closed if ω(e) = 0.

Each ω ∈ Ω represents a specific realization of the open and closed edges on the lattice
Ld. The sample space Ω is endowed with a σ-algebra F generated by the cylinder sets,
making it a standard measurable space. We now define the probability measure.

Definition 2.5. For a given probability p ∈ [0, 1], we define the product Bernoulli measure
Pp on (Ω,F) by

Pp =
∏
e∈Ed

µ(e)p

where for each edge e, µ(e)p is the Bernoulli measure on {0, 1} satisfying µ(e)p ({1}) = p and
µ
(e)
p ({0}) = 1− p.

In less formal terms, under the measure Pp, each edge e ∈ Ed is independently set to
be open with probability p and closed with probability 1 − p. The triple (Ω,F , Pp) is the
probability space for our percolation model. We use the subscript p, as in Pp(A) or Ep[X],
to denote probabilities and expectations with respect to this measure.

2.3. Open Clusters and the Percolation Probability. With the model established, we
can define the primary objects of interest.

Definition 2.6. An open path in a configuration ω is a sequence of vertices x0, x1, . . . , xn
such that for all i = 0, . . . , n− 1, the edge ⟨xi, xi+1⟩ is open.

Definition 2.7. For a vertex x ∈ Zd, the open cluster containing x, denoted Cx, is the set
of all vertices y ∈ Zd that are connected to x by an open path. If the edge from x to all its
neighbors is closed, then Cx = {x}. The size of the cluster is its cardinality, denoted |Cx|.



BOND PERCOLATION ON Zd 3

We are particularly interested in whether these clusters can be infinite. This leads to the
central function of the theory.

Definition 2.8. The percolation probability, denoted θ(p), is the probability that the origin
belongs to an infinite open cluster.

θ(p) = Pp(|C0| = ∞)

By the translational invariance of the lattice Ld and the i.i.d. nature of the edge states,
the probability of any vertex x belonging to an infinite cluster is the same, i.e., Pp(|Cx| =
∞) = θ(p) for all x ∈ Zd.

A related quantity is the probability that an infinite cluster exists anywhere in the lattice.

Definition 2.9. Let ψ(p) be the probability that there exists at least one infinite open
cluster in the lattice.

ψ(p) = Pp

 ∪
x∈Zd

{|Cx| = ∞}


Note that θ(p) describes a local property (at the origin), whereas ψ(p) describes a global
property. Their relationship is fundamental to the theory.

3. The Critical Phenomenon and its Properties

A remarkable feature of the percolation model is the emergence of a phase transition.
The macroscopic connectivity of the graph changes abruptly as p crosses a certain threshold.

3.1. The 0-1 Law for Percolation. Our first result shows that the global property ψ(p)
is trivial.

Theorem 3.1. For any p ∈ [0, 1], the probability of the existence of an infinite open cluster,
ψ(p), is either 0 or 1.

Proof. Let S be the event that an infinite open cluster exists. The occurrence of S does
not depend on the state of any finite collection of edges. To see this, consider any finite set
of edges Efin ⊂ Ed. If a configuration ω contains an infinite open cluster, then changing
the states of the edges in Efin cannot destroy this property entirely, as an infinite path can
always be rerouted to avoid a finite number of closed edges. Thus, S is a tail event with
respect to the sequence of independent Bernoulli random variables corresponding to the
states of the edges. By Kolmogorov’s 0-1 Law, any such tail event must have a probability
of either 0 or 1. Therefore, ψ(p) = Pp(S) ∈ {0, 1}. □

3.2. Definition of the Critical Probability. The 0-1 law for ψ(p) suggests a sharp
transition. The following lemma connects this global property to the local percolation
probability θ(p).

Lemma 3.2. The relationship between θ(p) and ψ(p) is as follows:
(1) If θ(p) = 0, then ψ(p) = 0.
(2) If θ(p) > 0, then ψ(p) = 1.
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Proof. (1) The event that an infinite cluster exists is the union of the events that each
vertex belongs to an infinite cluster: {an infinite cluster exists} =

∪
x∈Zd{|Cx| =

∞}. Using the union bound (Boole’s inequality) and the translational invariance of
θ(p):

ψ(p) = Pp

 ∪
x∈Zd

{|Cx| = ∞}

 ≤
∑
x∈Zd

Pp(|Cx| = ∞) =
∑
x∈Zd

θ(p)

If θ(p) = 0, the sum is 0, which implies ψ(p) = 0.
(2) If θ(p) > 0, it is immediate that ψ(p) ≥ θ(p) > 0. Since we know from Theorem 3.1

that ψ(p) can only be 0 or 1, we must have ψ(p) = 1.
□

This lemma shows that the transition point for ψ(p) from 0 to 1 coincides exactly with
the point where θ(p) becomes strictly positive. This motivates the central definition of the
field.
Definition 3.3. The critical probability for the lattice Ld, denoted pc(d), is defined as:

pc(d) = sup{p ∈ [0, 1] | θ(p) = 0}
Equivalently, pc(d) = inf{p ∈ [0, 1] | θ(p) > 0}, as θ(p) is a non-decreasing function of p.

The critical probability divides the behavior of the system into distinct phases:
• Subcritical Phase (p < pc(d)): θ(p) = 0 and ψ(p) = 0. Almost surely, all open
clusters are finite.

• Supercritical Phase (p > pc(d)): θ(p) > 0 and ψ(p) = 1. There is a strictly positive
probability for the origin to be in an infinite cluster, and an infinite cluster almost
surely exists.

• Critical Phase (p = pc(d)): The behavior is more complex and depends on the
dimension d.

3.3. Elementary Properties of the Critical Probability. We conclude by proving two
simple but important properties of pc(d).
Theorem 3.4. For the one-dimensional lattice (d = 1), the critical probability is pc(1) = 1.
Proof. In L1, the vertices are the integers Z. For the origin to belong to an infinite cluster,
there must be an infinite open path extending in at least one direction. Let’s consider the
path to the right.

If p < 1, the probability that a given edge is closed is 1 − p > 0. Let An be the event
that the edge ⟨n, n + 1⟩ is closed for n > 0. The events {An}∞n=1 are independent, and
Pp(An) = 1− p. The sum of these probabilities diverges:

∞∑
n=1

Pp(An) =
∞∑
n=1

(1− p) = ∞

By the second Borel-Cantelli Lemma, the event {An i.o.} occurs with probability 1. This
means that almost surely, infinitely many edges to the right of the origin are closed. A
symmetric argument shows that infinitely many edges to the left are also closed. Therefore,
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any open path starting from the origin must be finite. Thus, |C0| <∞ almost surely, which
implies θ(p) = 0 for all p < 1.

If p = 1, all edges are open with probability 1. The entire lattice forms a single infinite
cluster, so |C0| = ∞ and θ(1) = 1.

From the definition pc(1) = sup{p | θ(p) = 0}, we conclude that pc(1) = 1. □
Theorem 3.5. The sequence of critical probabilities is non-increasing in dimension, i.e.,
pc(d+ 1) ≤ pc(d) for all d ≥ 1.
Proof. We use a coupling argument. Let θd(p) denote the percolation probability on the
lattice Ld. Consider Ld as a subgraph of Ld+1 by identifying Zd with the set of vertices
{x ∈ Zd+1 | xd+1 = 0}.

Let there be a bond percolation process on Ld+1 with edge probability p. The restriction
of this process to the embedded subgraph Ld is a bond percolation process on Ld with the
same parameter p.

If a configuration on this subgraph contains an infinite open cluster connected to the ori-
gin, this same cluster is also an infinite open cluster in the larger space Ld+1. Therefore, the
event {|C0| = ∞ on Ld} implies the event {|C0| = ∞ on Ld+1}. This gives the inequality:

θd(p) ≤ θd+1(p) for all p ∈ [0, 1]

Recall the definition pc(d) = sup{p | θd(p) = 0}. If p > pc(d), then by definition θd(p) > 0.
From the inequality above, it follows that θd+1(p) > 0. This means that the set {p |
θd+1(p) > 0} contains the set {p | θd(p) > 0}. Taking the infimum over these sets gives:

pc(d+ 1) = inf{p | θd+1(p) > 0} ≤ inf{p | θd(p) > 0} = pc(d)

The theorem is proved. □
The results here establish the existence of a phase transition. A crucial next step, which

guarantees the existence of distinct subcritical and supercritical phases for higher dimen-
sions, is to prove that for d ≥ 2, the critical probability is non-degenerate, i.e., 0 < pc(d) < 1.

4. Non-Degeneracy of the Critical Probability for d ≥ 2

In this section, we prove that for any dimension d ≥ 2, the critical probability is non-
degenerate. This result is fundamental, as it guarantees the existence of distinct subcritical
and supercritical phases for percolation on higher-dimensional lattices.
Theorem 4.1. For bond percolation on the cubic lattice Ld with d ≥ 2, we have

0 < pc(d) < 1

Proof. The proof is divided into two main parts.
(1) First, we prove that pc(d) > 0 for all d ≥ 1. This establishes a non-trivial subcritical

phase.
(2) Second, we prove that pc(2) < 1 by using a duality argument specific to the planar

case.
Combining the second result with the monotonicity property pc(d) ≤ pc(2) for d > 2
(established in Theorem 3.4), we conclude that pc(d) < 1 for all d ≥ 2. Together, these two
parts prove the theorem.
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4.1. Proof of the Lower Bound: pc(d) > 0. To show that pc(d) > 0, we will find a value
p > 0 for which we can demonstrate that θ(p) = 0. The argument relies on counting the
number of possible open paths.

If the origin belongs to an infinite open cluster, there must exist at least one self-avoiding
open path of infinite length starting from the origin. Consequently, for any finite length n,
there must be at least one open self-avoiding path of length n starting at the origin.

Let us define σ(n) as the total number of self-avoiding paths of length n starting at the
origin in Ld. Let N(n) be the random variable representing the number of such paths that
are open in a given configuration.

The event {|C0| = ∞} is a subset of the event {N(n) ≥ 1} for any n ≥ 1. Therefore, we
can bound the percolation probability:

θ(p) = Pp(|C0| = ∞) ≤ Pp(N(n) ≥ 1)

By Markov’s inequality, Pp(N(n) ≥ 1) ≤ Ep[N(n)]. The expectation of N(n) can be
calculated by linearity. For any specific self-avoiding path of length n, the probability that
all its n edges are open is pn. Summing over all possible paths, we get:

Ep[N(n)] =
∑

π:self-avoiding,|π|=n

Pp(π is open) = σ(n)pn

Combining these inequalities yields an upper bound for θ(p):

θ(p) ≤ σ(n)pn

Our next task is to find an upper bound for σ(n). A path of length n is a sequence of n+1
distinct vertices v0, v1, . . . , vn. Starting from the origin v0 = 0, there are 2d choices for v1.
For any subsequent vertex vi+1, there are at most 2d − 1 choices, since the path cannot
immediately return to vi. This gives a simple combinatorial bound:

σ(n) ≤ 2d(2d− 1)n−1

Substituting this into our bound for θ(p):

θ(p) ≤ 2d(2d− 1)n−1pn =
2d

2d− 1
[p(2d− 1)]n

This inequality must hold for all n ≥ 1. If we choose p such that p(2d−1) < 1, or p < 1
2d−1 ,

then the term [p(2d− 1)]n tends to 0 as n→ ∞. Since θ(p) is a non-negative constant with
respect to n, this forces θ(p) = 0.

Thus, for any p < 1
2d−1 , we have θ(p) = 0. From the definition pc(d) = sup{p | θ(p) = 0},

it follows that
pc(d) ≥

1

2d− 1
> 0

This completes the first part of the proof.
We can refine this bound by noting that the limit λ(d) = limn→∞[σ(n)]1/n, known as

the connectivity constant of Ld, exists. The argument above can be extended to show that
pc(d) ≥ 1/λ(d).
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4.2. Proof of the Upper Bound: pc(2) < 1. To prove that pc(2) < 1, we need to find
a value p < 1 for which θ(p) > 0. We achieve this using a duality argument for the planar
lattice L2.

Consider the dual lattice of L2, denoted L2,∗. Its vertices are located at the centers of
the faces of L2, at coordinates (i+ 1

2 , j +
1
2) for i, j ∈ Z. Each edge in L2,∗ crosses exactly

one edge in L2.
We define the state of a dual edge to be the opposite of the primal edge it crosses: a dual

edge is declared ‘closed‘ if its corresponding primal edge is open (probability p), and ‘open‘
if the primal edge is closed (probability 1− p).

A key topological fact in the plane is that the open cluster of the origin, C0, is finite if
and only if it is enclosed by a circuit of ‘open‘ edges in the dual lattice. If no such circuit
exists, C0 must be infinite. This allows us to relate θ(p) to properties of the dual graph.

Let us bound the probability that C0 is finite. This occurs if there is at least one ‘open‘
dual circuit surrounding the origin.

1− θ(p) = Pp(|C0| <∞) = Pp(exists an open dual circuit γ∗ surrounding the origin)
Using the union bound over all possible self-avoiding dual circuits γ∗ that surround the
origin:

1− θ(p) ≤
∑
γ∗

Pp(γ
∗ is open)

The probability that a specific dual circuit γ∗ of length n is open is (1 − p)n. Let ρ(n) be
the number of distinct self-avoiding dual circuits of length n that enclose the origin. The
sum becomes:

1− θ(p) ≤
∞∑
n=4

ρ(n)(1− p)n

Now we must estimate ρ(n). A simple bound can be obtained by relating circuits to paths.
Any circuit of length n containing the origin can be cut at one of its n vertices to form
a self-avoiding path of length n − 1. The number of self-avoiding paths of length k in
the dual lattice (which is also a square lattice) is σ(k). A loose but sufficient bound is
ρ(n) ≤ nσ(n− 1).

1− θ(p) ≤
∞∑
n=4

nσ(n− 1)(1− p)n

Using the connectivity constant λ(2) for L2, we know that σ(k) ≈ [λ(2)]k for large k. The
sum is thus bounded by a geometric-like series whose convergence is determined by the ratio
(1− p)λ(2). The series converges if (1− p)λ(2) < 1.

If we choose p such that 1− p < 1/λ(2), or equivalently p > 1− 1/λ(2), the sum on the
right-hand side converges. As p→ 1, the sum tends to 0. We can therefore choose a p < 1
(but sufficiently close to 1) such that the sum is strictly less than 1. For such a p:

1− θ(p) < 1 =⇒ θ(p) > 0

By the definition pc(2) = inf{p | θ(p) > 0}, we have established that

pc(2) ≤ 1− 1

λ(2)
< 1
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This completes the second part of the proof. □

4.3. Conclusion. We have shown that pc(d) > 0 for d ≥ 2 and pc(2) < 1. Since pc(d) ≤
pc(2) for all d > 2, it follows that pc(d) < 1 for all d ≥ 2. This establishes the main theorem,
confirming that for two or more dimensions, both the subcritical and supercritical phases
exist and are non-trivial. The study of percolation can now proceed to analyze the distinct
properties of these phases.

5. Correlation Inequalities and the Influence of p

We now introduce several important results that are frequently used in the study of
probabilistic graph models. These tools allow us to understand how the probability of
events changes with the edge density p and how different events relate to one another.

5.1. Monotone Events and their Properties. The motivation for defining increasing
events comes from the desire to understand how the global properties of the lattice change
as the edge probability p varies. A natural question is whether the percolation probability,
θ(p), is a monotonic function of p. Intuitively, as p increases, the model’s connectivity
should improve, making it more likely for the origin to belong to an infinite cluster. We
formalize this intuition with the following definitions.

Definition 5.1. Let ω1 and ω2 be two bond configurations. We write ω1 ≤ ω2 if ω1(e) ≤
ω2(e) for all edges e ∈ Ed. An event A ⊆ Ω is called an increasing event if for any ω ∈ A,
the condition ω ≤ ω′ implies ω′ ∈ A. Similarly, an event is decreasing if ω ∈ A and ω′ ≤ ω
implies ω′ ∈ A.

In essence, an increasing event is one whose occurrence is facilitated by having more open
edges. A decreasing event is one whose occurrence is hindered by having more open edges.

Definition 5.2. A random variable N : Ω → R is called an increasing random variable
if N(ω) ≤ N(ω′) whenever ω ≤ ω′.

With these definitions, we can rigorously show how the parameter p affects the model.
We use the standard coupling construction where the state of each edge e is determined
by comparing a uniform random variable X(e) ∼ U(0, 1) to p. Let ηp be the random
configuration where ηp(e) = 1 if X(e) < p and 0 otherwise. For a fixed realization of the
vector X = (X(e))e∈Ed , if p1 < p2, it is clear that ηp1 ≤ ηp2 .

Theorem 5.3. Let A be an increasing event. Then its probability Pp(A) is a non-decreasing
function of p.

Proof. Let IA be the indicator function for the event A. Since A is an increasing event,
IA is an increasing random variable. For p1 < p2, using the coupling described above, we
have ηp1 ≤ ηp2 , which implies IA(ηp1) ≤ IA(ηp2). Taking the expectation over all possible
outcomes of the underlying random variables X(e) preserves this inequality:

E[IA(ηp1)] ≤ E[IA(ηp2)]

This is equivalent to Pp1(A) ≤ Pp2(A). □
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As an immediate corollary, since the event {|C0| = ∞} is an increasing event, θ(p) is a
non-decreasing function of p. Many other natural events, such as the existence of an open
path between two vertices x and y, are also increasing.

5.2. The FKG Inequality. The FKG inequality, named after Fortuin, Kasteleyn, and
Ginibre, formalizes the intuition that if two events are both increasing, they should be
positively correlated. That is, the occurrence of one should make the other more likely.

Theorem 5.4 (FKG Inequality). If A and B are two increasing events, then
Pp(A ∩B) ≥ Pp(A)Pp(B)

More generally, if X and Y are two increasing random variables with finite second moments,
then their covariance is non-negative:

Ep[XY ] ≥ Ep[X]Ep[Y ]

Proof. We prove the version for random variables; the result for events follows by letting
X = IA and Y = IB. The proof proceeds by induction on the number of edges n on which
the random variables depend.

Base Case (n = 1): Suppose X and Y depend only on the state of a single edge e1. Let
their values be X(1), Y (1) if the edge is open and X(0), Y (0) if it is closed.

Ep[XY ]− Ep[X]Ep[Y ] = [pX(1)Y (1) + (1− p)X(0)Y (0)]

− [pX(1) + (1− p)X(0)][pY (1) + (1− p)Y (0)]

= p(1− p)[X(1)Y (1)−X(1)Y (0)−X(0)Y (1) +X(0)Y (0)]

= p(1− p)[X(1)−X(0)][Y (1)− Y (0)]

Since X and Y are increasing, X(1) ≥ X(0) and Y (1) ≥ Y (0), so the expression is non-
negative.

Inductive Step: Assume the inequality holds for random variables depending on k − 1
edges. Now let X,Y depend on edges e1, . . . , ek. We condition on the configuration ω′ =
(ω(e1), . . . , ω(ek−1)). By the law of total expectation, Ep[XY ] = Ep[Ep[XY | ω′]]. Given
ω′, X and Y are random variables that depend only on the state of edge ek. As functions
of ω(ek), they remain increasing. Thus, by the base case:

Ep[XY | ω′] ≥ Ep[X | ω′]Ep[Y | ω′]

Taking the expectation of both sides over the configurations of the first k − 1 edges:
Ep[XY ] ≥ Ep

[
Ep[X | ω′]Ep[Y | ω′]

]
Now, let X ′(ω′) = Ep[X | ω′] and Y ′(ω′) = Ep[Y | ω′]. These are random variables that
depend on the first k − 1 edges. One can show they are also increasing. We can therefore
apply the inductive hypothesis to X ′ and Y ′:

Ep[X
′Y ′] ≥ Ep[X

′]Ep[Y
′]

Using the law of total expectation again, Ep[X
′] = Ep[X] and Ep[Y

′] = Ep[Y ]. Combining
these steps gives the desired result:

Ep[XY ] ≥ Ep[X
′Y ′] ≥ Ep[X

′]Ep[Y
′] = Ep[X]Ep[Y ]
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The extension to variables depending on infinitely many edges can be done via a limiting
argument using the martingale convergence theorem. The inequality can also be extended to
decreasing events (the inequality direction is the same) or a mix of increasing and decreasing
events (the inequality is reversed). □

5.3. The BK Inequality. In contrast to the FKG inequality, the BK inequality (due to
van den Berg and Kesten) provides an upper bound on the probability of two increasing
events occurring ”disjointly”.

Definition 5.5. For two events A and B, the event A ◦ B (read as ”A and B occur
disjointly”) is the event that there exist two disjoint sets of open edges, E1 and E2, such
that the configuration with open edges E1 is in A and the configuration with open edges
E2 is in B.

For example, if A is the event ”there is an open path from x to y” and B is the event
”there is an open path from u to v”, then A ◦B is the event ”there exist edge-disjoint open
paths from x to y and from u to v”. Intuitively, the requirement that the paths be disjoint
makes the event harder to satisfy.

Theorem 5.6 (BK Inequality). If A and B are increasing events that depend on only a
finite set of edges, then

Pp(A ◦B) ≤ Pp(A)Pp(B)

The proof is more involved and is omitted here, but its core idea is to ”decouple” the
events. One imagines replacing each edge in the graph with two parallel edges, one des-
ignated for event A and the other for event B. In this new graph, A and B become
independent. The probability Pp(A ◦B) in the original graph can be shown to be no more
than the probability Pp(A ∩B) in the new, decoupled graph, which equals Pp(A)Pp(B).

The BK and FKG inequalities can be combined. For example, if Ai is the event that a
path set πi contains an open path, then A1◦· · ·◦Ak is the event that there exist edge-disjoint
open paths, one from each set πi. We have:

Pp(A1 ◦ · · · ◦ Ak) ≤
k∏

i=1

Pp(Ai) ≤ Pp(A1 ∩ · · · ∩ Ak)

5.4. Russo’s Formula. Russo’s formula provides an explicit expression for the derivative
of the probability of an increasing event with respect to p.

Definition 5.7. An edge e is said to be pivotal for an event A in a configuration ω if
changing the state of e (and nothing else) changes whether A occurs.

Theorem 5.8 (Russo’s Formula). Let A be an increasing event that depends on only a
finite set of edges. Then Pp(A) is differentiable, and

d

dp
Pp(A) =

∑
e

Pp(e is pivotal for A) = Ep[N(A)]

where N(A) is the random variable counting the number of pivotal edges for A.
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Proof Sketch. Using the definition of the derivative and the coupling construction, we find
that

Pp+δ(A)− Pp(A) = P (ηp /∈ A, ηp+δ ∈ A)

For small δ, the event on the right happens almost exclusively when exactly one edge e has
its state flipped from closed to open because p ≤ X(e) < p + δ. The probability of two or
more edges flipping is O(δ2) and does not contribute to the derivative. The event occurs if
this single flipped edge is pivotal.

Pp+δ(A)− Pp(A) ≈
∑
e

P (p ≤ X(e) < p+ δ and e is pivotal)

Since the pivotal property of e is independent of its own state, this is approximately∑
e

P (p ≤ X(e) < p+ δ) · Pp(e is pivotal) = δ
∑
e

Pp(e is pivotal)

Dividing by δ and taking the limit gives the result. □

A useful alternative form of Russo’s formula is derived as follows:
dPp(A)

dp
=
∑
e

1

p
Pp(e is open and pivotal) = 1

p

∑
e

Pp(A ∩ {e is pivotal})

The second equality holds because if an edge is pivotal for an increasing event, the event
must occur if the edge is open.

dPp(A)

dp
=

1

p

∑
e

Pp(A)Pp(e is pivotal | A) = Pp(A)

p
Ep[N(A) | A]

Separating variables, dPp(A)
Pp(A) = 1

pEp[N(A) | A]dp, and integrating from p1 to p2 yields:

Pp2(A) = Pp1(A) exp

(∫ p2

p1

Ep[N(A) | A]
p

dp

)
If A depends on m edges, then N(A) ≤ m, which gives the bound:

Pp2(A)

Pp1(A)
≤
(
p2
p1

)m

This shows that the probability of an event depending on a small number of edges cannot
change too rapidly with p.

5.5. Inequalities from Reliability Theory. Finally, we present an identity that relates
the derivative of Pp(A) to the covariance between the event and the number of open edges.
Assume A depends on a finite set of m edges. Let N be the number of open edges in this
set.

Theorem 5.9. For any event A depending on a finite set of m edges,
d

dp
Pp(A) =

1

p(1− p)
covp(N, IA)
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Proof. Pp(A) =
∑

ω p
N(ω)(1− p)m−N(ω)IA(ω). Differentiating with respect to p gives

dPp(A)

dp
=
∑
ω

IA(ω)
[
NpN−1(1− p)m−N − (m−N)pN (1− p)m−N−1

]
=
∑
ω

IA(ω)p
N (1− p)m−N

[
N

p
− m−N

1− p

]
=

1

p(1− p)

∑
ω

IA(ω)p
N (1− p)m−N (N −mp)

=
1

p(1− p)
(Ep[NIA]−mpEp[IA]) =

covp(N, IA)
p(1− p)

since Ep[N ] = mp. □

If A is an increasing event, we can use the FKG inequality to get a lower bound. Note
that N − IA is an increasing random variable. By FKG, covp(N − IA, IA) ≥ 0.

covp(N, IA) = covp(N − IA, IA) +Varp(IA) ≥ Varp(IA)
This leads to the inequality:

dPp(A)

dp
≥ Varp(IA)

p(1− p)
=
Pp(A)(1− Pp(A))

p(1− p)

This provides a useful lower bound on the rate of change of the probability of an increasing
event. A tighter bound, stated without proof, is

dPp(A)

dp
≥ Pp(A) logPp(A)

p log p

6. Uniqueness of the Critical Probability

In this section, we introduce the theorem on the uniqueness of the critical probability. We
will first state the theorem and explore some of its powerful consequences. The full proof,
which is lengthy, will be methodically broken down into a series of lemmas in subsequent
discussions.

6.1. New Observables and an Alternative Critical Probability. Before proceeding,
we introduce several key quantities that will be used throughout our analysis.

Definition 6.1. Let C0 be the open cluster containing the origin. We define the following:
• The mean cluster size: χ(p) = Ep[|C0|].
• The mean finite cluster size: χf (p) = Ep[|C0| · I(|C0| <∞)].
• The expected reciprocal cluster size: κ(p) = Ep[1/|C0|].

These four quantities, (θ, χ, χf , κ), are central to the study of percolation. Some of their
properties are immediate from the definitions.

• In the subcritical phase (p < pc), infinite clusters almost surely do not exist, so
|C0| <∞ a.s. This implies χ(p) = χf (p).
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• In the supercritical phase (p > pc), we have θ(p) = Pp(|C0| = ∞) > 0. The
expectation for the cluster size becomes:

χ(p) = ∞ · Pp(|C0| = ∞) +

∞∑
n=1

nPp(|C0| = n) = ∞

A direct conclusion is that the mean cluster size χ(p) is infinite in the supercritical phase.
But does the converse hold? Is χ(p) necessarily finite in the subcritical phase? This depends
on the convergence of the series

∑
nPp(|C0| = n) for p < pc. Answering this is a core goal

of this section.
This question motivates an alternative definition for the critical probability, based on the

mean cluster size.

Definition 6.2. We define a new critical probability, pT , as

pT = sup{p | χ(p) <∞}

This definition is physically meaningful, as pT marks the threshold where the average
cluster size diverges. A natural and fundamental question arises: do these two definitions of
the critical point coincide? That is, does pc = pT ? This is the problem of the uniqueness of
the critical probability. Proving that they are equal is equivalent to proving that the mean
cluster size χ(p) is finite if and only if p < pc.

6.2. An Overview of the Proof Strategies. We will establish that pc = pT by proving
that χ(p) <∞ for all p < pc. There are two primary approaches to this proof.

Strategy 1: Exponential Decay of the Cluster Radius. The first approach is to
show that in the subcritical phase, the size of open clusters is limited by an exponential
decay law. The key theorem to be proven is:

Theorem 6.3. For any p < pc(d), there exists a function h(p) > 0 such that for all n ≥ 1,

Pp(the origin is connected to the boundary of a box of radius n) ≤ e−nh(p)

We will show that this exponential decay is sufficient to ensure the convergence of the
sum for χ(p), thus proving it is finite.

Strategy 2: The Ghost-Site Method. The second approach involves augmenting the
percolation model to derive new relationships between the fundamental quantities. This
method will be used to prove the following theorem:

Theorem 6.4. If p is such that χf (p) = ∞, then one of two conditions must hold:
(1) θ(p) > 0, or
(2) θ(p) = 0 and for all p′ > p, θ(p′) ≥ p′−p

2p′ .

While the first approach is perhaps more direct, the second approach is rich with con-
sequences and reveals deep connections between θ, p, and χ. Both are essential to a full
understanding of the theory.
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6.3. Consequences of the Uniqueness Theorem. Assuming the theorems stated in the
two strategies are true, we can now demonstrate that pc = pT .

Proof of pc = pT using Strategy 2: We prove by contradiction. Assume there exists
a p < pc for which χ(p) = ∞. Since we are in the subcritical phase, |C0| < ∞ a.s., so
χ(p) = χf (p) = ∞. By the theorem of Strategy 2, since θ(p) = 0 (as p < pc), the second
condition must apply: for any p′ > p, we must have θ(p′) ≥ p′−p

2p′ . However, because p < pc,
we can choose a p′ such that p < p′ < pc. For such a p′, we know by the definition of pc
that θ(p′) = 0. But the inequality requires θ(p′) > 0, a clear contradiction. Therefore, our
initial assumption must be false. It must be that for all p < pc, χ(p) < ∞. This implies
pc ≤ pT . Since we already established that χ(p) = ∞ for p > pc, we have pT ≤ pc. We
conclude that pc = pT .

Proof of pc = pT using Strategy 1: To formalize the argument, we introduce some
notation. Let S(n) = {x ∈ Zd | δ(0, x) ≤ n} be the ball of radius n around the origin, and
let ∂Sn = {x ∈ Zd | δ(0, x) = n} be its boundary. Let An be the event that there exists
an open path from the origin to a point on ∂Sn. The theorem of Strategy 1 states that for
p < pc, Pp(An) ≤ e−nh(p).

Let M = max{n | An occurs} be the radius of the origin’s cluster. For p < pc, Pp(M <
∞) = 1. If M = n, the cluster C0 is contained within the ball S(n). The number of vertices
in this ball is bounded by a polynomial in n, i.e., |S(n)| ≤ π(d)(n + 1)d for some constant
π(d). We can now bound the mean cluster size:

χ(p) = Ep[|C0|] =
∞∑
n=0

Ep[|C0| |M = n]Pp(M = n)

Since Pp(M = n) ≤ Pp(M ≥ n) = Pp(An) and Ep[|C0| |M = n] ≤ |S(n)|, we have:

χ(p) ≤
∞∑
n=0

|S(n)|Pp(An) ≤
∞∑
n=0

π(d)(n+ 1)de−nh(p)

This series converges because the exponential term e−nh(p) decays faster than any polyno-
mial term (n+ 1)d grows. Thus, χ(p) <∞ for all p < pc, which again proves pc = pT .

A powerful corollary of the exponential decay in Strategy 1 is a bound on the tail prob-
ability of the cluster size distribution. The core idea is to relate the size of a cluster (a
number of vertices) to its spatial extent (a radius).

Theorem 6.5. For p < pc, there exists a constant β(p) > 0 such that for all n ≥ 1:

Pp(|C0| ≥ n) ≤ e−β(p)n1/d

Proof Sketch. Let us assume the result that for p < pc, there exists a function h(p) > 0
such that for any integer k ≥ 1, the probability of the origin connecting to the boundary of
a ball of radius k is bounded by:

Pp(Ak) = Pp(C0 connects to ∂Sk) ≤ e−kh(p)

where Ak is the event that there is an open path from the origin to a vertex in ∂Sk = {x ∈
Zd | δ(0, x) = k}. Now, consider the event that the origin’s cluster C0 has size at least n,
i.e., {|C0| ≥ n}.
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A cluster is a set of vertices. If this set is to contain at least n vertices, it must occupy
a certain volume in the lattice. Let us consider a ball of radius m centered at the origin,
S(m) = {x ∈ Zd | δ(0, x) ≤ m}. The number of vertices in this ball, |S(m)|, is bounded by
a polynomial in m. Specifically, there exists a constant π(d) (depending on the dimension
d) such that |S(m)| ≤ π(d)(m+ 1)d.

If the entire cluster C0 were contained within the ball S(m), its size would be at most
the volume of the ball: |C0| ≤ |S(m)|. Suppose the event {|C0| ≥ n} occurs. This implies
that the cluster cannot be contained within any ball S(m) whose volume is less than n. Let
us find an integer radius k such that if the cluster’s radius is less than k, its size must be
less than n. We need to find k such that if C0 is contained in S(k− 1), then |C0| < n. The
maximum size of a cluster contained in S(k − 1) is its volume, |S(k − 1)| ≤ π(d)kd. We
want to find k such that π(d)kd < n. This is true if k < (n/π(d))1/d.

Let’s choose k = ⌊(n/π(d))1/d⌋. Now, consider the contrapositive argument. If the event
Ak does not occur, it means the cluster C0 has a radius less than k, so it must be entirely
contained within the ball S(k − 1). In this case, its size is bounded by:

|C0| ≤ |S(k − 1)| ≤ π(d)kd = π(d)

⌊(
n

π(d)

)1/d
⌋d

≤ π(d)

((
n

π(d)

)1/d
)d

= n

So, if Ak does not occur, then |C0| ≤ n. The contrapositive statement is that if |C0| > n
(or |C0| ≥ n, as the argument holds), then the event Ak must have occurred. This gives us
the crucial event inclusion:

{|C0| ≥ n} ⊆ Ak, where k =

⌊(
n

π(d)

)1/d
⌋

This inclusion implies the probability inequality:

Pp(|C0| ≥ n) ≤ Pp(Ak)

Now we apply the assumed exponential decay for Pp(Ak):

Pp(|C0| ≥ n) ≤ e−kh(p) = exp

(
−

⌊(
n

π(d)

)1/d
⌋
h(p)

)
For large n, the floor function ⌊x⌋ is very close to x. We can bound it from below, for
instance by ⌊x⌋ ≥ x− 1.

Pp(|C0| ≥ n) ≤ exp

(
−

((
n

π(d)

)1/d

− 1

)
h(p)

)
= eh(p) exp

(
− h(p)

(π(d))1/d
n1/d

)
This expression is of the form C ·e−β′n1/d . By choosing a slightly smaller constant β(p) < β′

to absorb the leading factor eh(p) over all n ≥ 1, we arrive at the stated result: there exists
a β(p) > 0 such that for all n ≥ 1,

Pp(|C0| ≥ n) ≤ e−β(p)n1/d

□
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This result shows that large clusters are extremely rare in the subcritical phase. Fur-
thermore, these methods can be extended to show that for p slightly above pc, θ(p) grows
at least linearly, i.e., θ(p) ≥ a(p − pc) for some a > 0, indicating a sharp transition at the
critical point.

Theorem 6.6 (Uniqueness of the Infinite Cluster). For bond percolation on the lattice Ld

with d ≥ 2, if the edge probability p is in the supercritical phase, p > pc(d), then there is
almost surely exactly one infinite open cluster.

Proof. Let N(ω) be the random variable for the number of distinct infinite open clusters
(IOCs) in a configuration ω. We will prove that for p > pc(d), Pp(N = 1) = 1.

Let Fn be the σ-algebra generated by the states of edges within the box B(n) = {x ∈ Zd :
||x||∞ ≤ n}. The tail σ-algebra is T =

∩∞
n=1 σ(

∪∞
k=nFk). The number of IOCs, N , is T -

measurable. By Kolmogorov’s 0-1 Law, any T -measurable random variable must be almost
surely constant. Thus, there exists a k ∈ {0, 1, . . . ,∞} such that Pp(N = k) = 1. In the
supercritical phase, the probability of at least one IOC existing is ψ(p) = Pp(N ≥ 1) = 1.
This implies k ≥ 1.

The proof proceeds by demonstrating that Pp(N ≥ 2) = 0, which leaves k = 1 as the
only possibility.

First, we rule out a finite plurality, 2 ≤ k <∞. Let MB be the number of distinct IOCs
intersecting a finite set B ⊂ Zd. It is a foundational result of percolation theory that two
distinct IOCs cannot enter the same finite region.

Lemma 6.7. For any finite set B ⊂ Zd, Pp(MB ≥ 2) = 0.

Let {Bn}∞n=1 be an increasing sequence of finite sets with
∪
Bn = Zd. The sequence

of random variables MBn(ω) is non-decreasing in n for any ω, and converges pointwise to
N(ω):

lim
n→∞

MBn(ω) = N(ω) ∀ω ∈ Ω

The event {N ≥ 2} is the increasing limit of the events {MBn ≥ 2}. By the continuity of
probability measure for increasing sequences of events:

Pp(N ≥ 2) = Pp

( ∞∪
n=1

{MBn ≥ 2}

)
= lim

n→∞
Pp(MBn ≥ 2)

By Lemma 6.7, Pp(MBn ≥ 2) = 0 for all n. Thus, Pp(N ≥ 2) = 0. This eliminates the
possibility that k ∈ {2, 3, . . . }.

It remains to show that Pp(N = ∞) = 0. We prove this by contradiction. Assume
Pp(N = ∞) = 1. We show this implies a positive density of ”trifurcation points,” which in
turn leads to a contradiction derived from geometric constraints.

Definition 6.8. A vertex x is a trifurcation point if it belongs to an IOC, and there are
exactly three open edges incident to it, such that removing these three edges fractures the
cluster into exactly three distinct IOCs. Let Tx be the event that x is a tri-point.

The contradiction is built upon the following two lemmas, which we now prove.
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Lemma 6.9. If Pp(N = ∞) = 1, then Pp(T0) > 0.
Proof. Let MB(n)(0) be the number of IOCs existing entirely outside the box B(n) =
{x : ||x||∞ ≤ n}. Since N = ∞ a.s., for any integer k, Pp(N ≥ k) = 1. This implies
limn→∞ Pp(MB(n)(0) ≥ 3) = Pp(N ≥ 3) = 1. We can therefore choose a box radius n0 large
enough such that Pp(MB(n0)(0) ≥ 3) ≥ 1/2.

Let B0 = B(n0). Define an event J which depends only on edges inside B0: let J be the
event that there exist three open, edge-disjoint paths from the origin to the boundary ∂B0.
For any p > 0, such a configuration has positive probability, Pp(J) > 0.

The event T0 (origin is a tri-point) is implied by the joint occurrence of J and {MB0(0) ≥
3}, as the three internal arms can connect to the three distinct external IOCs. Thus,
J ∩ {MB0(0) ≥ 3} ⊆ T0. As J depends on edges inside B0 and {MB0(0) ≥ 3} depends on
edges outside B0, they are independent. This gives:

Pp(T0) ≥ Pp(J ∩ {MB0(0) ≥ 3}) = Pp(J) · Pp(MB0(0) ≥ 3)

Since Pp(J) > 0 and Pp(MB0(0) ≥ 3) ≥ 1/2, their product is strictly positive. We conclude
that Pp(T0) > 0. □
Lemma 6.10. Let P = {π1, . . . , πk} be a collection of 3-partitions of a finite set Y . If all
pairs in P are compatible (a part of one partition is a subset of a part of another), then
k ≤ |Y | − 2.
Proof. We proceed by induction on |Y |. The base case |Y | = 3 holds trivially, as k = 1 ≤
3 − 2 = 1. Assume the lemma holds for all sets of size up to m. Consider a set Y with
|Y | = m + 1, and let P be a collection of k pairwise compatible 3-partitions. Choose an
element y ∈ Y and let Z = Y \ {y}. We split P into two sub-collections:

(1) PA = {π ∈ P | {y} is not a standalone part of π}. Each π ∈ PA induces a compat-
ible 3-partition on Z. By the inductive hypothesis, |PA| ≤ |Z| − 2 = m− 2.

(2) PB = {π ∈ P | {y} is a standalone part of π}. Any two distinct, compatible parti-
tions in this set can be shown to be impossible. Thus, |PB| ≤ 1.

The total size is k = |PA|+ |PB| ≤ (m− 2) + 1 = m− 1 = |Y | − 2. □
Assuming these lemmas, we derive the contradiction. Let τC(B(n)) be the number of

tri-points in the box B(n) on a specific IOC, C. Each such tri-point induces a 3-partition on
the set of boundary points C ∩∂B(n). As all tri-points on the same IOC induce compatible
partitions, Lemma 6.10 implies:

τC(B(n)) ≤ |C ∩ ∂B(n)| − 2

Summing over all IOCs gives the total number of tri-points in B(n):∑
x∈B(n)

ITx =
∑

IOCs C

τC(B(n)) ≤
∑
C

(|C ∩ ∂B(n)| − 2) ≤ |∂B(n)|

where ITx is the indicator for event Tx. The last inequality follows because the sets C∩∂B(n)
are disjoint for distinct IOCs. Taking the expectation and using translation invariance:

Ep

 ∑
x∈B(n)

ITx

 = |B(n)| · Pp(T0)
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This yields the inequality |B(n)| · Pp(T0) ≤ |∂B(n)|, or

Pp(T0) ≤
|∂B(n)|
|B(n)|

For the box B(n), the volume is |B(n)| = (2n + 1)d. The boundary size is |∂B(n)| =
(2n+ 1)d − (2n− 1)d. By the mean value theorem, for some ξ ∈ (2n− 1, 2n+ 1),

|∂B(n)| = d(ξ)d−1 · 2 = O(nd−1)

The inequality becomes:

Pp(T0) ≤
O(nd−1)

O(nd)
= O

(
1

n

)
As this must hold for all n, we take the limit as n→ ∞:

Pp(T0) ≤ lim
n→∞

O

(
1

n

)
= 0

This forces Pp(T0) = 0, which directly contradicts the result of Lemma ??. The assumption
Pp(N = ∞) = 1 must be false.

Since k is an almost-sure constant, k ≥ 1, and we have shown Pp(N ≥ 2) = 0 (which
implies k < 2) and Pp(N = ∞) = 0 (which implies k ̸= ∞), the only remaining possibility
is k = 1. Therefore, Pp(N = 1) = 1. □

For bond percolation on the lattice Ld with d ≥ 2, if the edge probability p is in the
supercritical phase, p > pc(d), then there is almost surely exactly one infinite open cluster.

7. Conclusion and Further Topics

This paper introduced bond percolation on Zd, defining the lattice Ld = ⟨Zd,Ed⟩ and the
product Bernoulli measure Pp on edge configurations Ω = {0, 1}Ed . We established the fun-
damental properties of the critical probability pc(d) = sup{p ∈ [0, 1] | θ(p) = 0}, including
pc(1) = 1, 0 < pc(d) < 1 for d ≥ 2, and pc(d+1) ≤ pc(d). The uniqueness of the infinite open
cluster for p > pc(d) (d ≥ 2) was proven using techniques involving FKG and BK inequali-
ties. We also demonstrated that pc(d) = sup{p | Ep[|C0|] <∞}, and established exponential
decay for cluster properties in the subcritical phase: Pp(origin connects to ∂B(n)) ≤ e−nh(p)

and Pp(|C0| ≥ n) ≤ e−β(p)n1/d for h(p), β(p) > 0.

7.1. Further Directions. Key areas for further study involve the precise characterization
of the critical behavior. While pc(2) = 1/2 is known for the square lattice, the determination
of pc(d) for d ≥ 3 remains an open problem. Near pc(d), various quantities exhibit power-
law scaling defined by critical exponents. For example, the percolation probability θ(p)
behaves as θ(p) ∼ (p − pc)

β for p ↓ pc, and the mean cluster size χ(p) = Ep[|C0|] diverges
as χ(p) ∼ |p − pc|−γ for p ̸= pc. The **correlation length** ξ(p), representing the typical
diameter of finite clusters, diverges as ξ(p) ∼ |p − pc|−ν . These exponents (β, γ, ν, . . . )
are believed to be universal, depending only on dimension d and not on lattice specifics.
Rigorous proofs and exact values for these exponents are known only for d = 2 (e.g.,
β2D = 5/36, γ2D = 43/18, ν2D = 4/3) and for d ≥ 6 (where mean-field exponents apply).

Further research also include percolation on general graphs and other variants, such as
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• Site percolation, where vertices, rather than edges, are open.
• Oriented percolation, where edges permit directed paths.
• Bootstrap percolation, where nodes are activated based on the number of active
neighbors and exhibits discontinuous phase transitions.

• Percolation on random graphs (e.g., Erdős-Rényi graphs or scale-free networks),
where the critical phenomena and cluster structures differ significantly from lattice
models. This also has connections with network robustness.
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