Proving the Mordell-Weil Theorem on Elliptic Curves

Yunus Annanepesov

July 10, 2025

The Mordell-Weil Theorem

Statement

Let E/\mathbb{Q} be a non-singular elliptic curve. Then:

$$E(\mathbb{Q}) \cong \mathbb{Z}^r \oplus T$$

where T is a finite torsion subgroup and r is the rank of E.

What is an Elliptic Curve?

- Curve defined by $y^2 = x^3 + Ax + B$, with $A, B \in \mathbb{Q}$
- \bullet Smooth if $\Delta = -16(4A^3 + 27B^2) \neq 0$
- Rational points form a group with a geometric addition law

The Group Law (Geometric View)

- Add P and Q: draw line through them
- Intersects curve at third point R; reflect R to get P+Q
- ullet Identity is the point at infinity O

Torsion Points and Nagell-Lutz

- Torsion: points P with nP = O
- Nagell-Lutz Theorem:
 - \bullet If E has integer coefficients, torsion points have integer coordinates
 - If P=(x,y) has finite order and $y\neq 0$, then $y^2\mid \Delta$

Height Functions

- For $x = \frac{m}{n}$ in lowest terms, define $H(x) = \max(|m|, |n|)$
- For P = (x, y) on $E(\mathbb{Q})$, set H(P) = H(x)
- Logarithmic height: $h(P) = \log H(P)$
- Finiteness: only finitely many points with height $\leq M$

Behavior of Heights

- $h(P+Q) \le 2h(P) + \kappa$ (fixed Q)
- $h(2P) \ge 4h(P) \kappa$
- This gives control over how heights grow under group operations

Weak Mordell-Weil Theorem

- \bullet $E(\mathbb{Q})/2E(\mathbb{Q})$ is finite
- Use homomorphism $\alpha: E(\mathbb{Q}) \to \mathbb{Q}^*/(\mathbb{Q}^*)^2$
- Image of α is finite \Rightarrow only finitely many cosets mod $2E(\mathbb{Q})$

Descent and the Proof

- Given P, write $P=Q_1+2P_1$, then $P_1=Q_2+2P_2$, etc.
- Heights drop: $h(P_{n+1}) \leq \frac{1}{2}h(P_n) + C$
- Sequence must stop: heights cannot go below zero

Bounding $E(\mathbb{Q})$

- Each P becomes a sum of:
 - Elements from finitely many cosets
 - Points of small height (only finitely many of those)
- \bullet So $E(\mathbb{Q})$ is finitely generated

Conclusion: The Mordell-Weil Theorem

- $E(\mathbb{Q}) \cong \mathbb{Z}^r \oplus T$
- ullet T is finite (torsion), \mathbb{Z}^r part comes from descent
- Elliptic curves combine algebra, geometry, and number theory

Why It Matters

- Used in Fermat's Last Theorem (via modularity)
- Basis for elliptic curve cryptography (ECC)
- Illustrates the power of descent and finiteness techniques

References

- Silverman and Tate, Rational Points on Elliptic Curves
- Cassels, Lectures on Elliptic Curves
- Washington, *Elliptic Curves in Cryptography*