
AN EXPLICIT EVALUATION OF THE ROGERS-RAMANUJAN
CONTINUED FRACTION.

YOANN IAIROS*

Abstract. In this paper we provide a proof of Ramanujan’s first non-elementary explicit
evaluation of the Rogers-Ramanujan Continued Fraction using the Jacobi Triple Product
Identity and the theta function transformations as our main ingredients. We also prove the
celebrated Rogers-Ramanujan identities. A theme of the subject is that the interchange
between any two of infinite series, infinite products and infinite continued fractions often
leads to beautiful results in mathematics.

1. Introduction.

The story of how Ramanujan amazed Hardy with theorems on continued fractions, among
which was included the explicit evaluation
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is very famous.
In this paper we will provide a proof of (1.1), using the Jacobi Triple Product Identity 4.1 and
the theta function transformations 6.1 as our main ingredients. A moderate understanding
of complex analysis, in particular Liouville’s Theorem and analytic continuation, and a basic
understanding of Fourier series are assumed. Moreover, the reader is expected to be quite
comfortable when dealing with infinite products as well as infinite series.
Let x equal the right side of (1.1). Basic algebraic manipulations show that
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The last equation is a special case of the more general relationship:
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proved in Section 7, where R(q) denotes the Rogers-Ramanujan continued fraction:

(1.4) R(q) :=
q

1
5

1 +
q

1 +
q2

1 +
. . .

,

where q = eπiτ for any ℑ(τ) > 0.
By putting q = e−2π in (1.3), and comparing with (1.2), we see that we are required to prove
that
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In fact, (1.5) is obtained by putting τ = i
5
in the more general transformation
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obtained in Section 6 using the theta function transformations.
We will now indicate a prominent theme of this paper. Conversions between any two of
infinite series, infinite products and infinite continued fractions often lead to beautiful results
in mathematics. For example, it is well-known how the equation

∞∑
n=1

(−1)n−1 x2n−1

(2n− 1)!
= x

∞∏
n=1

(
1− x2

n2π2

)
leads to the resolution of the Basel problem

π2

6
=

∞∑
n=1

1

n2
.

In this paper we will repeatedly be converting between infinite series, infinite products, and
infinite continued fractions.
After establishing some preliminary notions and definitions in the next section, we discuss
the convergence of the Rogers-Ramanujan continued fraction (1.4) and also convert it into
the quotient of two infinite series in Section 3 by using the Rogers-Ramanujan functions.
This is followed in Section 4 by a short complex analytical proof of the Jacobi Triple Product
Identity, an immensely important result that gives a product representation for the theta
functions.
Then in Section 5 we express R(q) as an infinite product by proving the celebrated Rogers-
Ramanujan identities.
In Section 6 we establish the important theta function transformations, used to prove (1.5).
Finally, we will be able to prove Ramanujan’s evaluation of R(e−2π) in Section 7.
In the last section we state more theorems about R(q) and provide references to the literature
for the proofs.
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2. Preliminary notions.

By convention, an empty sum is zero, while an empty product is 1.
Throughout the entire paper, q and τ will be related by q = eπiτ with τ having positive
imaginary part. We also define q′ = eπiτ

′
where τ ′τ = −1. These definitions will be used

freely from now on.
While R(q), defined by (1.4), converges on |q| < 1, we will only prove its convergence for
0 < q < 1 in Section 3, because this will be sufficient for our purposes. Of primary importance
in this paper will be the theta functions, which we now define.

Definition 2.1 (Theta Functions). For every z ∈ C,

ϑ4(z, q) :=
∞∑

n=−∞

(−1)nqn
2

e2niz

ϑ3(z, q) := ϑ4

(
z +

π

2
, q
)
=

∞∑
n=−∞
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2

e2niz

ϑ2(z, q) := e
πiτ
4 · eizϑ4

(
z +

π

2
+

πτ

2
, q
)
=

∞∑
n=−∞

q(n+
1
2)

2

e(2n+1)iz

Remark 2.2. If we denote ℑ(τ) = t > 0 and we suppose that |z| ≤ M for arbitrary positive
real numbers M , then

|ϑ3(z, q)| ≤
∞∑

n=−∞

|eπiτn2+2niz| ≤
∞∑

n=−∞

e−πtn2+2nM .

Since the last series converges, it follows that ϑ3(0, q) is an entire function of z for every
fixed ℑ(τ) > 0, and is a holomorphic function of q in the unit disk |q| < 1 for every fixed
z ∈ C. The same is true, of course, for the other theta functions.

Immediate consequences of the previous definition are stated in the next corollary.

Corollary 2.3.

ϑ2(z + π, q) = −ϑ2(z, q) ϑ2(z + πτ, q) = e−πiτ · e−2izϑ2(z, q)

ϑ3(z + π, q) = ϑ3(z, q) ϑ3(z + πτ, q) = e−πiτ · e−2izϑ3(z, q)

ϑ4(z + π, q) = ϑ4(z, q) ϑ4(z + πτ, q) = −e−πiτ · e−2izϑ4(z, q)

Also following immediately from Definition 2.1 is the corollary which is stated next.

Corollary 2.4.

ϑ2(z, q) = e
πiτ
4 · eizϑ3

(
z +

1

2
πτ, q

)
= e

πiτ
4 · eizϑ4
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z +

1

2
π +

1

2
πτ, q

)
ϑ3(z, q) = ϑ4

(
z +

1

2
π, q

)
= e

πiτ
4 · eizϑ2

(
z +

1

2
πτ, q

)
ϑ4(z, q) = ie

πiτ
4 · eizϑ2

(
z +

1

2
π +

1

2
πτ, q

)
= ϑ3

(
z +

1

2
π, q

)
In this paper we will prove the Rogers-Ramanujan identities. Accordingly, we define the

Rogers-Ramanujan functions next.
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Definition 2.5 (Rogers-Ramanujan functions).

G(q) := 1 +
∞∑
k=1

qk
2

(1− q) . . . (1− qk)

H(q) := 1 +
∞∑
k=1

qk(k+1)

(1− q) . . . (1− qk)

3. Convergence of R(q).

It is not the purpose of this paper to develop a whole theory of continued fractions. An
excellent book discussing general convergence properties, among other things, of these inter-
esting mathematical objects, is [LW08].
Our discussion of the Rogers-Ramanujan continued fraction R(q) in this paper will be re-
stricted to positive real values of q such that 0 < q < 1. Accordingly, when we discuss the
convergence of R(q), we will not consider complex values of q, although R(q) does actually
converge in the open unit disk |q| < 1. The reader interested in the latter fact will find a
useful reference in [Ber06, Chapter 7].

Theorem 3.1. The continued fraction

1 +
aq

1 +
aq2

1 +
. . .

converges for all positive real values a and q such that a > 0 and 0 < q < 1.

Remark 3.2. Actually the result is valid for all a ∈ C and all complex values q in the open
unit disk |q| < 1; but as we have already mentioned before, we are not considering complex
values of a and q in this paper.

We need to prove that the sequence of approximants to the continued fraction is conver-
gent. Accordingly, the proof of Theorem 3.1 relies on the following lemma:

Lemma 3.3. If, for every positive integer n,

µn : = 1 +

⌊n+1
2

⌋∑
k=1

(1− q) . . . (1− qn−k+1)akqk
2

{(1− q) . . . (1− qk)}{(1− q) . . . (1− qn−2k+1)}
,

νn : = 1 +

⌊n
2
⌋∑

k=1

(1− q) . . . (1− qn−k)akqk(k+1)

{(1− q) . . . (1− qk)}{(1− q) . . . (1− qn−2k)}
,

then,

µn

νn
= 1 +

aq

1 +
aq2

1 +
. . . +

aqn

1

.
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Proof. We need to define a new series: for every positive integer n and every integer 0 ≤ r ≤
n,

Fn,r := 1 +

⌊n−r+1
2

⌋∑
k=1

(1− q) . . . (1− qn−r−k+1)akqk(r+k)

{(1− q) . . . (1− qk)}{(1− q) . . . (1− qn−r−2k+1)}
.

Consequently, Fn,0 = µn and Fn,1 = νn. Also Fn,n = 1 and Fn,n−1 = 1 + aqn. Moreover,
since a > 0 and 0 < q < 1, it immediately follows that Fn,r ≥ 1, so that division by Fn,r ̸= 0
is permitted. We want to develop µn/νn = F0/F1 into a continued fraction by finding a
recurrence relation for Fn,r on r for every fixed n. To achieve this we consider the difference

Fn,r − Fn,r+1 =

⌊n−r+1
2

⌋∑
k=1

(1− q) . . . (1− qn−r−k+1)akqk(r+k)

{(1− q) . . . (1− qk)}{(1− q) . . . (1− qn−r−2k+1)}

−
⌊n−r

2
⌋∑

k=1

(1− q) . . . (1− qn−r−k)akqk(r+1+k)

{(1− q) . . . (1− qk)}{(1− q) . . . (1− qn−r−2k)}
,

where 0 ≤ r ≤ n− 2. Now two cases arise according to whether n− r is odd or even. First,
suppose that n− r is odd.The right side becomes

n−r+1
2∑

k=1

(1− q) . . . (1− qn−r−k+1)akqk(r+k)

{(1− q) . . . (1− qk)}{(1− q) . . . (1− qn−r−2k+1)}

−
n−r−1

2∑
k=1

(1− q) . . . (1− qn−r−k)akqk(r+1+k)

{(1− q) . . . (1− qk)}{(1− q) . . . (1− qn−r−2k)}
,

(3.1)

and we can combine the two sums by temporarily separating the ultimate summand of the
first sum to obtain

n−r−1
2∑

k=1

(1− q) . . . (1− qn−r−k)akqk(r+k)

{(1− q) . . . (1− qk)}{(1− q) . . . (1− qn−r−2k)}

(
1− qn−r−k+1

1− qn−r−2k+1
− qk

)
+ a

n−r+1
2 q

n+r+1
2 (r+n−r+1

2 )

= aqr+1 +

n−r+1
2∑

k=2

(1− q) . . . (1− qn−r−k)akqk(r+k)

{(1− q) . . . (1− qk−1)}{(1− q) . . . (1− qn−r−2k+1)}

= aqr+1 + akqr+1

n−r−1
2∑

k=1

(1− q) . . . (1− qn−(r+2)−k+1)akqk(r+2+k)

{(1− q) . . . (1− qk)}{(1− q) . . . (1− qn−(r+2)−2k+1)}

= aqr+1Fn,r+2.

We reach the same result, for the case where n − r is even, by following much the same
procedure except that (3.1) must first be replaced by

n−r
2∑

k=1

(1− q) . . . (1− qn−r−k)akqk(r+k)

{(1− q) . . . (1− qk)}{(1− q) . . . (1− qn−r−2k)}

(
1− qn−r−k+1

1− qn−r−2k+1
− qk

)
.
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It would be futile to supply these calculations inasmuch as the reader will have no difficulty
in filling in these straightforward and easy steps.
We have therefore shown that, for 0 ≤ r ≤ n− 2,

Fn,r − Fn,r+1 = aqr+1Fn,r+2.

Equipped with this recurrence, we now develop µn/νn into a finite continued fraction as
follows:

µn

νn
=

Fn,0

Fn,1

=
Fn,1 + aqFn,2

Fn,1

= 1 +
aq

Fn,1/Fn,2

= 1 +
aq

1 +
aq2

1 +
. . . +

aqn−1

Fn,n−1/Fn,n

= 1 +
aq

1 +
aq2

1 +
. . .

aqn−1

1 +
aqn

1

.

■

Corollary 3.4. For any a > 0 and 0 < q < 1,

1 +
∑∞

k=1
akqk

2

(1−q)...(1−qk)

1 +
∑∞

k=1
akqk(k+1)

(1−q)...(1−qk)

= 1 +
aq

1 +
aq2

1 +
. . .

Proof. This is apparent by letting n → ∞ in the previous lemma. We show that the infinite
series in the numerator and denominator are convergent. This is easily achieved:

∞∑
k=1

akqk
2

(1− q) . . . (1− qk)
≤

∞∑
k=1

akqk
2

(1− q)k
.

Now the series on the right converges by the ratio test. We similarly prove the convergence

of
∑∞

k=1
akqk(k+1)

(1−q)...(1−qk)
. ■

Theorem 3.1 is now an immediate consequence of Corollary 3.4.

Corollary 3.5. Recall Definition 2.5. We have

R(q) = q
1
5
H(q)

G(q)
.

Proof. This is an immediate consequence of the previous corollary and the definition of R(q)
by (1.4). ■

4. The Jacobi Triple Product Identity.

We have already alluded to the Jacobi Triple Product Identity in the introduction. This
powerful result is perhaps the most important result in the theory of theta functions and,
in fact, gives product representations for the theta functions in Definition 2.1. All known
proofs of Theorem 7.2, namely [Hir00,Wat29b], utilise the Jacobi Triple Product Identity.
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Theorem 4.1 (Jacobi Triple Product Identity). For all z ∈ C,

ϑ3(z, q) =
∞∏
n=1

(1− q2n)(1 + q2n−1e2iz)(1 + q2n−1e−2iz).

We will give a short proof of Theorem 4.1 by first proving two lemmas due to Euler [Eul51]
after discussing the holomorphic properties of an infinite product.

Lemma 4.2. Let us denote the infinite product
∏∞

m=0(1+ymω) by F (ω) when |y| < 1. Then
F (ω) is an entire function of ω for every fixed |y| < 1.

Proof. Let |ω| < M for an arbitrary positive real number M . Since |y| < 1, there exists
a minimum non-negative integer M0 for which M |y|m < 1

2
whenever m > M0. For every

m > M0, we have, if we make use of the principal branch of the logarithm,

| log (1 + ωym)| ≤ M |y|m
∞∑
n=1

Mn−1|y|m(n−1)

n
≤ M |y|m

∞∑
n=1

1

n · 2n−1
≤ 2M |y|m

and since
∑∞

m=M0+1 |y|m converges, it follows that
∑∞

m=M0+1 log (1 + ymω) is holomorphic
on |ω| < M if |y| < 1 is fixed. From this it follows that

exp

(
∞∑

m=M0+1

log (1 + ymω)

)
=

∞∏
m=M0+1

(1 + ymω),

and hence
∏∞

m=0(1 + ymω), is an entire function of ω for every fixed |y| < 1. ■

Lemma 4.3. For all ω ∈ C and all y such that |y| < 1, we have

∞∏
m=0

(1 + ymω) =
∞∑
r=0

y
r(r−1)

2 ωr

(1− y) . . . (1− yr)
.

Proof. We denote the Taylor expansion of the left side, which, by the previous lemma, is an
entire function of ω provided that |y| < 1, by

(4.1) F (ω) =
∞∑
n=0

anω
n.

Then it immediately follows that a0 = 1. But now

F (ωy) =
∞∏

m=0

(1 + ωym+1),

so that

(1 + ω)F (ωy) = F (ω).

Therefore
∞∑
n=0

anω
nyn +

∞∑
n=1

an−1ω
nyn−1 =

∞∑
n=0

anω
n.

Equating coefficients of ω on both sides gives

any
n + an−1y

n−1 = an,
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so that we have the recurrence relation

an =
an−1y

n−1

1− yn

for n ≥ 1. Since a0 = 1, it follows that

an =
y0+1+···+(n−1)

(1− y) · · · (1− yn)
=

yn(n−1)/2

(1− y) . . . (1− yn)
.

The lemma now follows by replacing this value of an in (4.1). ■

Lemma 4.4. For all |y| < 1 and |ω| < 1, we have

∞∏
m=0

(1 + ymω)−1 =
∞∑
r=0

(−1)rωr

(1− y) . . . (1− yr)
.

Proof. Inasmuch as the proof of this lemma is very similar to that of Lemma 4.3, we leave
it as an exercise to the reader. ■

We can now prove Theorem 4.1.

Proof. In Lemma 4.3, put y = q2 and ω = qe2iz to find
∞∏
n=1

(1 + q2n−1e2iz) =
∞∑
n=0

e2nizqn
2

(1− q2) . . . (1− q2n)
=

∞∑
n=0

e2nizqn
2
(1− q2n+2)(1− q2n+4) . . .

(1− q2)(1− q4) . . .

=

[
∞∏
j=0

(1− q2j+2)−1

][
∞∑
n=0

e2nizqn
2

∞∏
m=0

(1− q2n+2+2m)

]

=

[
∞∏
j=0

(1− q2j+2)−1

][
∞∑

n=−∞

e2nizqn
2

∞∏
m=0

(1− q2n+2+2m),

]
because

∏∞
m=0(1 − q2n+2+2m) equals zero whenever n is a negative integer. By making use

of Lemma 4.3 again but this time by putting y = q2, and ω = −q2n+2, the last expression
equals [

∞∏
j=0

(1− q2j+2)−1

][
∞∑

n=−∞

e2nizqn
2

∞∑
r=0

(−1)rq(2n+2)r+r2−r

(1− q2) . . . (1− q2r)

]
,

which can be written as[
∞∏
j=0

(1− q2j+2)−1

][
∞∑

n=−∞

∞∑
r=0

(−1)re2nizq(n+r)2+r

(1− q2) . . . (1− q2r)
.

]
We can invert the double sum provided that it converges absolutely. For any fixed q such
that |q| = R where R < 1, we have∣∣∣∣∣

∞∑
r=0

(−1)re2inzq(n+r)2+r

(1− q2) . . . (1− q2r)

∣∣∣∣∣ ≤
∞∑
r=0

|e2inz|R(n+r)2+r

(1−R2)r

≤ |e2inz|Rn2
∞∑
r=0

Rr2+r

(1−R2)r
= C|e2inz|Rn2

,
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for some C independent of n. Since
∑∞

n=−∞ |e2inz|Rn2
is convergent, the inversion of the

double sum is justified, so that

∞∏
n=0

(1 + q2n+1e2iz) =

[
∞∏
j=0

(1− q2j+2)−1

][
∞∑
r=0

(−1)re−2irzqr

(1− q2) . . . (1− q2r)

∞∑
n=−∞

e2i(n+r)zq(n+r)2

]
.

The ultimate sum being absolutely convergent, we can re-index it by changing n into n− r
without altering the value and the right side can be factorised as[

∞∏
j=0

(1− q2j+2)−1

][
∞∑
r=0

(−qe−2iz)r

(1− q2) . . . (1− q2r)

][
∞∑

n=−∞

e2inzqn
2

]
.

But now if we restrict |qe−2iz| < 1, we can make use of Lemma 4.4, with y = q2 and
ω = qe−2iz to deduce that

∞∏
n=0

(1 + q2n+1e2iz) =

[
∞∏
j=0

(1− q2j+2)−1

][
∞∏
k=0

(1 + q2n+1e−2iz)−1

][
∞∑

n=−∞

e2inzqn
2

]
,

i.e.
∞∑

n=−∞

qn
2

e2inz =
∞∏
n=0

(1 + q2n+1e2iz)(1 + q2n+1e−2iz)(1− q2n+2),

when |q| < 1 and |q| < |e2iz|. But both sides of the previous equality are entire functions of
z for every fixed |q| < 1, by Lemma 4.2 and Remark 2.2. Since, moreover, both sides agree
on a set of values of z, namely |e2iz| > |q|, a subset of which is the open lower half z-plane,
containing at least one limit point, therefore both sides agree on the entire complex z-plane
for every fixed |q| < 1, by analytic continuation. ■

It is now a straightforward exercise to give infinite product representations for the other
theta functions.

Corollary 4.5. For all z ∈ C,

ϑ4(z, q) =
∞∏
n=1

(1− q2n)(1− q2n−1e2iz)(1− q2n−1e−2iz),

ϑ3(z, q) =
∞∏
n=1

(1− q2n)(1 + q2n−1e2iz)(1 + q2n−1e−2iz),

ϑ2(z, q) = 2e
πiτ
4 cos z

∞∏
n=1

(1− q2n)(1 + q2ne−2iz)(1 + q2ne−2iz).

Proof. These follow from a direct application of Theorem 4.1 in Definition 2.1. ■

Two special cases of the Jacobi Triple Product Identity will be especially useful in this
paper.

Corollary 4.6. For |x| < 1,

∞∑
n=−∞

(−1)nx
n(5n+1)

2 =
∞∏
n=1

(1− x5n−3)(1− x5n−2)(1− x5n).
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Proof. Let q = e5πiu and z = (1 + u)π/2, where ℑ(u) > 0, in Theorem 4.1. This gives
∞∑

n=−∞

e5πiun
2

eπin(1+u) =
∞∏
n=1

(1− e10πiun)(1 + e5(2n−1)πiu+πi(1+u))(1 + e5(2n−1)πiun−πi(1+u)),

or, letting x = e2πiu,
∞∑

n=−∞

eπinx
5n2+n

2 =
∞∏
n=1

(1− x5n)(1− x5n−2)(1− x5n−3),

as desired.
■

Corollary 4.7. For |x| < 1,
∞∑

n=−∞

(−1)nx
n(5n+3)

2 =
∞∏
n=1

(1− x5n−4)(1− x5n−1)(1− x5n).

Proof. The proof proceeds similarly as in the last corollary, except that now we put q = e5πiu

and z = (1 + 3u)π/2. ■

Remark 4.8. By absolute convergence, we find that
∞∑

n=−∞

(−1)nx
n(5n+1)

2 =
∞∑

n=−∞

(−1)nx
n(5n−1)

2 ,

by changing n into −n, when |x| < 1. Similarly
∞∑

n=−∞

(−1)nx
n(5n+3)

2 =
∞∑

n=−∞

(−1)nx
n(5n−3)

2 .

We will use these representations interchangeably in the rest of the paper without further
comment.

5. The Rogers-Ramanujan Identities.

The goal of this section is to express R(q) as an infinite product. We will do this in
Theorem 5.7 but first we must prove the Rogers-Ramanujan Identities. These give product
representations for the Rogers-Ramanujan functions G(q) and H(q) from Definition 2.5.

Theorem 5.1 (Rogers-Ramanujan Identities).

G(q) =
∞∏
n=1

(1− q5n+1)−1(1− q5n+4)−1, H(q) =
∞∏
n=1

(1− q5n+2)−1(1− q5n+3)−1.

Remark 5.2. The perceptive reader who may have noticed some similarity between the
Rogers-Ramanujan Identities and Lemma 4.4 is encouraged to learn about more this by
researching on Ramanujan pairs, references to which can be found in [Ber85, p. 130].

We give a sequence of lemmas, in the first of which we define a function G(x) which
generalises the infinite sum of Corollary 4.6 which equals G(1). We will subsequently find a
recurrence, of a similar type as that found in the proof of 4.3, for a closely related function
which will then be expressible as a series which generalises both the Rogers-Ramanujan
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functions G(q) and H(q). This will enable us to prove Theorem 5.1. Corollary 3.4 will then
be used to express R(q) as an infinite series.

Lemma 5.3. If, for every x ∈ C, we define

G(x) := 1 +
∞∑
n=1

(−1)nx2nq
n(5n−1)

2 (1− xq2n)
(1− xq)(1− xq2) . . . (1− xqn−1)

(1− q)(1− q2) . . . (1− qn)
,

then

G(x) =
∞∑
n=0

(−1)nx2nq
1
2
n(5n+1)(1− x2q4n+2)

(1− xq) . . . (1− xqn)

(1− q)(1− q2) . . . (1− qn)
.

Remark 5.4. Although we have used a similar notation, the functions G and G are obviously
different.

Proof.

G(x) = 1 +
∞∑
n=1

(−1)nx2nq
1
2
n(5n−1) (1− xq)(1− xq2) . . . (1− xqn−1)

(1− q)(1− q2) . . . (1− qn−1)

+
∞∑
n=1

(−1)nx2nq
1
2
n(5n+1) (1− xq)(1− xq2) . . . (1− xqn)

(1− q)(1− q2) . . . (1− qn)
.

By taking away the first summand of the first infinite series on the right and re-indexing, we
deduce that

G(x) = 1− x2q2 +
∞∑
n=1

(−1)n
(
x2nq

n(5n+1)
2 − x2n+2q

(n+1)(5n+4)
2

) (1− xq) . . . (1− xqn)

(1− q) . . . (1− qn)

= 1− x2q2 +
∞∑
n=1

(−1)nx2nq
1
2
n(5n+1)(1− x2q4n+2)

(1− xq) . . . (1− xqn)

(1− q)(1− q2) . . . (1− qn)
.

■

Lemma 5.5. For G defined as in the previous lemma,

G(x)
1− xq

− G(xq) = xq(1− xq2)G(xq2).

Proof. If we denote the right side by H(x), then, using the previous lemma

H(x) = xq

+
1

1− xq

∞∑
n=1

{
(−1)n(1− xq) . . . (1− xqn)

(1− q)(1− q2) . . . (1− qn)
x2nq

1
2
n(5n+1)

[
(1− x2q4n+2)− qn(1− xq2n+1)

]}

= xq +
1

1− xq

∞∑
n=1

(−1)n
(1− xq) . . . (1− xqn)

(1− q) . . . (1− qn−1)
x2nq

1
2
n(5n+1)

+
1

1− xq

∞∑
n=1

(−1)n
(1− xq) . . . (1− xqn+1)

(1− q) . . . (1− qn)
x2n+1q

1
2
n(5n+1)+3n+1,

where the last step has been achieved by rewriting

(1− x2q4n+2)− qn(1− xq2n+1) = (1− qn) + xq3n+1(1− xqn+1).
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Now we separate the first sum in the first infinite series on the right, re-index, and deduce
that

H(x) = xq(1− xq2)

+
1

1− xq

∞∑
n=1

(−1)n(1− xq) . . . (1− xqn+1)

(1− q) . . . (1− qn)

[
x2n+1q

n(5n+1)
2

+3n+1 − x2n+2q
(n+1)(5n+6)

2

]
= xq(1− xq2)

(
1 +

∞∑
n=1

(−1)n(1− xq3) . . . (1− xqn+1)

(1− q) . . . (1− qn)
x2nq

n(5n+1)
2

+3n(1− xq2n+2)

)
= xq(1− xq2)G(xq2).

■

Lemma 5.6. For G(x) as in Lemma 5.3, if |x| ≤ 1, we have

G(x)
∞∏
n=1

(1− xqn)−1 = 1 +
∞∑
n=1

xnqn
2

(1− q) . . . (1− qn)
.

Proof. Let us denote the left side by F(x). Then Lemma 5.5 takes the form

F(x) = F(xq) + xqF(xq2).

Then we find that

F(x) = 1 +
∞∑
n=1

xnqn
2

(1− q) . . . (1− qn)
.

We omit the last justification because the reader will have no difficulty in supplying it
inasmuch as it is completely analogous to the proof of Lemma 4.3 detailed above. ■

We can now prove Theorem 5.1.

Proof. By putting x = 1 and x = q successively in Lemma 5.6, we find, using the Rogers-
Ramanujan functions defined in Definition 2.5,

G(1)
∞∏
n=1

(1− qn)−1 = G(q), G(q)
∞∏
n=1

(1− qn+1)−1 = H(q).

But now, using the definition of G, given in Lemma 5.3, and Corollaries 4.6 and 4.7 we find
that

G(1) = 1+
∞∑
n=1

(−1)nq
n(5n−1)

2 (1+qn) =
∞∑

n=−∞

(−1)nq
n(5n−1)

2 =
∞∏
n=1

(1−q5n−3)(1−q5n−2)(1−q5n),

and that

(1− q)G(q) = 1 +
∞∑
n=1

(−1)nq
n(5n+3)

2 − q +
∞∑
n=1

(−1)n+1q
n(5n+3)

2 q2n+1

= 1 +
∞∑
n=1

(−1)nq
n(5n+3)

2 +
∞∑
n=1

(−1)nq
n(5n−3)

2 =
∞∑

n=−∞

(−1)nq
n(5n−3)

2

=
∞∏
n=1

(1− q5n−4)(1− q5n−1)(1− q5n).
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This means that

G(q) =
∞∏
n=1

(1− q5n−4)(1− q5n−1), H(q) = (1− q5n−2)(1− q5n−3).

■

Using the Rogers-Ramanujan identities, we are now able to express R(q) as an infinite
product.

Theorem 5.7.

R(q) = q
1
5

∞∏
n=1

(1− q5n−4)(1− q5n−1)

(1− q5n−2)(1− q5n−3)
.

Proof. This is an immediate consequence of Corollary 3.5 and Theorem 5.1. ■

6. Theta Function Transformations.

The importance of the theta function transformations cannot be overstated. To give but
one example of their depth, we note that Riemann made use of the first result in Theorem
6.1 in order to give a second elegant proof of the functional equation of the Riemann zeta
function in his epoch-making memoir published in 1859, where the Riemann hypothesis was
first stated, a transcription of which can be found in [Rie05]. As we will see later on, it is the
theta function transformations which will make the actual closed form evaluation of R(e−2π)
possible in this paper.

Theorem 6.1 (Theta Function Transformations). For the theta functions defined in
2.1,

ϑ3(0, q) =
1√
−iτ

ϑ3(0, q
′).

ϑ4(0, q) =
1√
−iτ

ϑ2(0, q
′).

ϑ2(0, q) =
1√
−iτ

ϑ4(0, q
′).

To prove these results, our chief instrument will be the Poisson summation formula which
we will prove shortly. This result relates the sum of a function at integer points to the sum
of its Fourier transform at integer points. When dealing with Fourier series we often want to
do things such as differentiating infinite series termwise and interchanging summation and
integration signs. Accordingly, we want our functions to be as ‘nice’ as possible in order
for these operations to be justified. The technical term for ‘nice’ function in this case is
‘Schwartz function’.

Lemma 6.2. Let f : R → C be an infinitely differentiable function such that f (n)(x) =
o(|x|−N) for all nonnegative integers n and N as x → ±∞ (i.e. f rapidly decays to 0 as
x → ±∞). We call f a Schwarz function. Define the Fourier transform of f as

f̂(x) :=

∫ ∞

−∞
f(y)e−2πiyxdy.
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Then
∞∑

n=−∞

f(x+ n) =
∞∑

n=−∞

f̂(n)e2πinx

for all x ∈ R.

Proof. For all x ∈ R, define F (x) =
∑∞

n=−∞ f(x+n). Since f is Schwartz, the infinite series∑∞
n=−∞ f (m)(x + n) are absolutely convergent for all non-negative integers m for all x ∈ R,

and F (x+ 1) = F (x). Thus F (x) can be expanded into a Fourier series

F (x) =
∞∑

n=−∞

c(n)e2nπix

where

c(n) =

∫ 1/2

−1/2

F (y)e−2nπiydy =

∫ 1

0

F (y)e−2nπiydy.

Now since f is Schwartz, therefore
∑∞

n=−∞ f(x+n) converges uniformly in the finite interval
(0, 1) and it may therefore be integrated term-wise there. Hence,

c(n) =
∞∑

m=−∞

∫ 1

0

f(y +m)e−2nπiydy =

∫ ∞

−∞
f(y)e−2nπiydy = f̂(n).

Therefore

F (x) =
∞∑

n=−∞

f̂(n)e2nπix.

■

The Poisson summation formula, stated in the next theorem, follows easily from the
previous lemma.

Theorem 6.3 (Poisson Summation Formula). If f : R → C is a Schwartz function,
then

∞∑
n=−∞

f(n) =
∞∑

n=−∞

f̂(n).

Proof. This follows by putting x = 0 in the previous lemma. ■

Before coming to the proof of the theta function transformations, we will fist need a lemma.

Lemma 6.4. Define the gaussian function f(x) = e−πx2
for all x ∈ R.Then f(x) = f̂(x).

Proof. We have

f̂(x) =

∫ ∞

−∞
e−πy2e−2πiyxdy.

Let n ∈ R>0 and let M > 0 arbitrarily. Let R denote the positive oriented rectangle with
vertices at the points (−M, 0), (M, 0), (M,ni) and (−M,ni) (see Figure 1). Then, since e−z2

is an entire function of z, ∫
R

e−z2−n2

dz = 0
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Figure 1. The positively oriented rectangular contour R.

(M, 0)

(M,ni)(−M,ni)

(−M, 0)

by the Cauchy-Goursat theorem. A straightforward application of the ML-inequality reveals
that the integral vanishes over the vertical sides of R as M → ∞. Therefore

lim
M→∞

∫
R

e−z2−n2

dz = lim
M→∞

∫ M

−M

e−z2−n2

dz + lim
M→∞

∫ −M

M

e−(z+ni)2−n2

dz

so that ∫ ∞

−∞
e−z2−2nzidz =

∫ ∞

−∞
e−z2−n2

dz.

If we changed z to −z we also find that∫ ∞

−∞
e−z2+2nzidz =

∫ ∞

−∞
e−z2−n2

dz.

By combining these two results we deduce that, for all n ∈ R,∫ ∞

−∞
e−z2 cos(2nz)dz =

∫ ∞

−∞
e−z2−n2

dz = e−n2√
π,

where we have made use of the famous Gaussian integral∫ ∞

∞
e−z2dz =

√
π.

But now ∫ ∞

−∞
e−z2 sin (2nz)dz = 0

since the integrand is odd. This means that∫ ∞

−∞
e−y2(cos(2ny) + i sin(2ny))dy =

∫ ∞

−∞
e−y2e−2nyidy =

√
πe−n2

.

By changing y into
√
πy and n into

√
πx, we deduce that∫ ∞

−∞
e−πy2e2xπyidy = f̂(x) = e−πx2

= f(x)

for all x ∈ R. ■

Corollary 6.5. For all x ∈ R and all t > 0, we define ft(x) = e−πtx2
. Then f̂t(x) = t−

1
2 e−

πx2

t .
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Proof. From the previous lemma we have∫ ∞

−∞
e−πy2e2πixydy = e−πx2

.

The required result follows upon substituting yt
1
2 for y and xt−

1
2 for x. ■

We can now finally prove the theta function transformations in Theorem 6.1.

Proof. First of all, we note that the second and third equations, respectively, follow from
the first by changing z into z + 1

2
π and z + 1

2
πτ , using Corollary 2.4. It therefore suffices to

prove only the first transformation.
Applying the Poisson summation formula of Theorem 6.3 to the Schwartz function ft(x) =

e−πtx2
for all x ∈ R and t > 0 from the previous Corollary, and using its Fourier Transform

found there, we find that
∞∑

n=−∞

e−πtn2

= t−
1
2

∞∑
n=−∞

e−
πn2

t .

This is precisely the result which we wish prove but only for all τ on the positive imaginary
axis, which is a set of points in the open half upper τ -plane with limit point. But both sides
extend to a holomorphic function on the entire upper half τ -plane, namely the right side to
ϑ3(0, q) and the left side to (−iτ)

1
2ϑ3(0, q

′). Since they agree on a set with limit point they
have the same analytic continuation to the upper half-plane and we thence conclude that

ϑ3(0, q) = (−iτ)
1
2ϑ3(0, q

′)

for all ℑ(τ) > 0. ■

We will now utilise the theta function transformations to achieve our next goal for this
section, which is to prove the relation (1.6) as our next theorem.

Theorem 6.6.

e
πi
2 (τ+

1
τ )

∞∏
n=1

(
1− e2nπiτ

1− e−
2nπi
τ

)6

=
1

iτ 3
.

Proof. By putting z = 0 in Corollary 4.5, and multiplying the results together, we find that

ϑ2(0, q)ϑ3(0, q)ϑ4(0, q) = 2q
1
4

∞∏
n=1

(1− q2n)3,

so that
∞∏
n=1

(1− q2n)6 =
1

4
q−

1
2ϑ2

2(0, q)ϑ
2
3(0, q)ϑ

2
4(0, q).

Therefore, using the theta function transformations of Theorem 6.1, we have
∞∏
n=1

(
1− q2n

1− q′2n

)6

=
q−

1
2

q′−
1
2

· ϑ
2
2(0, q)

ϑ2
4(0, q

′)
· ϑ

2
3(0, q)

ϑ2
3(0, q

′)
· ϑ

2
4(0, q)

ϑ2
2(0, q

′)

=
q−

1
2

q′−
1
2

· 1

iτ 3
.

■
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The relevant particular case of the previous theorem for this paper is (1.5), which is proved
in the next corollary.

Corollary 6.7.

e
2π
5

∞∏
n=1

(
1− e−

2nπ
5

1− e−10nπ

)
=

√
5.

Proof. This is an immediate consequence of putting τ = i/5 in Theorem 6.6 and taking
the sixth root of both sides, remembering that the result for each side should be a positive
number. ■

7. Ramanujan’s first non-elementary evaluation of R(q).

We have now reached the last stages of our little adventure. We start we a simple lemma.

Lemma 7.1.
∞∑

n=−∞

(−1)nq
n(n+1)

2 = 0.

Proof. By absolute convergence, the sum is unchanged when we replace n by −n − 1. But

in so doing, the sum becomes −
∑∞

n=−∞(−1)nq
n(n+1)

2 , which is the negative of the original
series. We conclude that the latter equals zero. ■

In our next theorem, we prove (1.3), one of the most famous and useful results about R(q).

Theorem 7.2.
1

R(q)
− 1−R(q) = q−

1
5

∞∏
n=1

(
1− q

n
5

1− q5n

)
.

Proof.
∞∏
n=1

(
1− q

n
5

)
=

{∏∞
n=0

(
1− q

5n+1
5

)(
1− q

5n+4
5

)(
1− q

5n+5
5

)}{∏∞
n=0

(
1− q

5n+2
5

)(
1− q

5n+3
5

)(
1− q

5n+5
5

)}
∏∞

n=0

(
1− q

5n+5
5

)
=

{∑∞
r=−∞(−1)rq

r(5r−3)
10

}{∑∞
s=−∞(−1)sq

s(5s−1)
10

}
∏∞

n=0(1− qn+1)
,

where we have made use of Corollaries 4.6 and 4.7. We rewrite the last formula as{∑∞
r=−∞(−1)rar · q r2−r

2

}{∑∞
s=−∞(−1)sa2s · q s2−s

2

}
∏∞

n=0(1− qn+1)
,

where we have put a = q
1
5 . We can put the last formula equal to

∞∑
n=−∞

ancn(q),
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where

cn(q) =
∞∏
k=0

(1− qk+1)−1 ·
∑

r+2s=n

(−1)r+sq
r2−r+s2−s

2 .

We will now evaluate c5n(q), c5n+1(q), c5n+2(q), c5n+3(q) and c5n−1(q) successively.
Putting r = n− 2t and s = 2n+ t, so that r + 2s = 5n, and summing over all t, we find

c5n(q) =
∞∏
k=0

(1− qk+1)−1 ·
∞∑

t=−∞

(−1)n+tq
[(n−2t)2−(n−2t)+(2n+t)2−(2n+t)]

2

= (−1)nq
5n2−3n

2 ·
∞∏
k=0

(1− qk+1)−1 ·
∞∑

t=−∞

(−1)tq
5t2+t

2

=
(−1)nq

5n2−3n
2∏∞

k=0(1− q5k+1)(1− q5k+4)
,

where we have used Corollary 4.6.
If we put r = n+ 1− 2t and s = 2n+ t, so that r + 2s = 5n+ 1, and we sum over all t, we
find

c5n+1(q) =
∞∏
k=0

(1− qk+1)−1 ·
∞∑

t=−∞

(−1)n+t+1q
[(n+1−2t)2−(n+1−2t)+(2n+t)2−(2n+t)]

2

= (−1)n+1q
5n2−n

2 ·
∞∏
k=0

(1− qk+1)−1 ·
∞∑

t=−∞

(−1)tq
5t2−3t

2

= − (−1)nq
5n2−n

2∏∞
k=0(1− q5k+2)(1− q5k+3)

,

where now we have used Corollary 4.7.
Similarly, we evaluate c5n+2(q) and c5n+3(q), respectively, by putting (r, s) = (n−2t, 2n+1+t)
and (r, s) = (n+1− 2t, 2n+1+ t), summing over all t and using Corollaries 4.7 and 4.6. In
so doing we obtain

c5n+2(q) = − (−1)nq
5n2+n

2∏∞
k=0(1− q5k+2)(1− q5k+3)

, c5n+3(q) =
(−1)nq

5n2+3n
2∏∞

k=0(1− q5k+1)(1− q5k+4)
.

Lastly, we put r = n− 1− 2t and s = 2n+ t, so that r+ 2s = 5n− 1, and by summing over
all t we obtain

c5n−1(q) =
∞∏
k=0

(1− qk+1)−1 ·
∞∑

t=−∞

(−1)n+t+1q
[(n−1−2t)2−(n−1−2t)+(2n+t)2−(2n+t)]

2

= (−1)n+1q
5n2−5n+2

2 ·
∞∏
k=0

(1− qk+1)−1 ·
∞∑

t=−∞

(−1)tq
5t2+5t

2 = 0,
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by Lemma 7.1. From these evaluations it now follows that

∞∏
n=1

(1− q
n
5 ) =

∑∞
n=−∞(−1)na5nq

5n2−3n
2∏∞

k=0(1− q5k+1)(1− q5k+4)
−
∑∞

n=−∞(−1)na5n+1q
5n2−n

2∏∞
k=0(1− q5k+2)(1− q5k+3)

−
∑∞

n=−∞(−1)na5n+2q
5n2+n

2∏∞
k=0(1− q5k+2)(1− q5k+3)

+

∑∞
n=−∞(−1)na5n+3q

5n2+3n
2∏∞

k=0(1− q5k+1)(1− q5k+4)
.

Recalling that a = q
1
5 , we see that the fourth summand on the right side is zero because the

numerator has the factor
∑∞

n=−∞(−1)nq
5n2+5n

2 which equals zero by Lemma 7.1. When now
we apply Corollaries 4.6 and 4.7 on the right side, it becomes

∞∏
n=0

(1− q5n+5)

{
∞∏
k=0

(1− q5k+2)(1− q5k+3)

(1− q5k+1)(1− q5k+4)
− q

1
5 − q

2
5

∞∏
k=0

(1− q5k+1)(1− q5k+4)

(1− q5k+2)(1− q5k+3)

}
.

By using Theorem 5.7, we deduce that
∞∏
n=1

(1− q
n
5 ) = q

1
5

{
1

R(q)
− 1−R(q)

} ∞∏
n=1

(1− q5n).

■

At last, we arrive at Ramanujan’s evaluation of R(q).

Theorem 7.3.

R(e−2π) =

√
5 +

√
5

2
−

√
5 + 1

2

Proof. Putting q = e−2π in Theorem 7.2 and using Corollary 6.7, we obtain

1

R(e−2π)
− 1−R(e−2π) = e

2π
5

∞∏
n=1

(
1− e−

2nπ
5

1− e−10nπ

)
=

√
5.

The evaluation follows by solving the quadratic equation and noting that R(e−2π) > 0. ■

8. Further Results.

There is a vast amount of beautiful mathematics surrounding the Rogers-Ramanujan
continued fraction. The particular evaluation proved in this paper is fascinating, although
it is only the tip of the iceberg. With only a little additional work, the results in this paper
can be used to established the evaluation

−R(−e−π) =

√
5−

√
5

2
−

√
5− 1

2
,

as well as the modular equation of degree 5 in the next theorem:

Theorem 8.1. If v = R(q) and u = R(q5), then

v5 = u
1− 2u+ 4u2 − 3u3 + u4

1 + 3u+ 4u2 + 2u3 + u4
.
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Both of the previous results were in Ramanujan’s first letter to Hardy. For proofs the
reader may consult [Wat29b]. The proof of another evaluation of Ramanujan, namely

R(e−2π
√
5) =

√
5

1 +

(
5

3
4

(√
5−1
2

) 5
2 − 1

) 1
5

−
√
5 + 1

2
,

can be found in [Wat29a], where the author also proves another remarkable theorem of
Ramanujan, namely:

Theorem 8.2. If αβ = π2, then{√
5 + 1

2
+R(e−2α)

}{√
5 + 1

2
+R(e−2β)

}
=

5 +
√
5

2
,

with which one can obtain two closed-form evaluations of R(q) from only one. One single
method is not sufficient in order to obtain other beautiful closed-form evaluations ofR(q). For
many such evaluations, as well as other wonderful results about R(q), the reader is strongly
encouraged to study [BA05], in which an extensive list of references to the literature is also
to be found. For a particularly amazing theorem about closed-form evaluations of R(eπ

√
n)

whenever n is a positive rational number, the reader is referred to [BCZ96, Theorem 6.2].
The Rogers-Ramanujan identities in Theorem 5.1 also have a vast amount of literature about
them.The reader interested in studying more about them is encouraged to consult Berndt’s
commentary on the paper [RR19] of Rogers and Ramanujan, found in [Ram00, pp. 375-378].
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