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Introduction

Marshall H. Stone Karl Weierstrass
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Weierstrass Approximation Theorem

Theorem 2.1

Let f ∈ C ([a, b],R) be continuous. Then, there is a sequence of
polynomials pn(x) that converge uniformly to f on [a, b]. So, for any
ϵ > 0, there exists a polynomial P such that

|P(x)− f (x)| < ϵ, for all x ∈ [a, b].

What this means is that for any continuous real-valued function f in the
closed interval [a, b], the function can be approximated using polynomials
pn arbitrarily well.
The theorem also makes use of the concept called density. Here is how
we define it formally.

Definition 2.2

Density

Subset A ∈ T is dense in T if every point in T belongs to A or is
arbitrarily close to A.

Note: T is a topology and will be defined later.
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Bernstein polynomials

Sergei Bernstein provided a constructive and explicit proof of the
Theorem.

He created the Bernstein polynomials which are defined as:

Bn(f )(x) =
n∑

k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k , for all x ∈ [0, 1].

We represent P(x) as Bn(f )(x). So, |Bn(f )(x)− f (x)| < ϵ.
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Visual Proof of the Weierstrass Approximation Theorem
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Definitions

Definition 3.1

Metric Space
A metric space is a set S with a function d : S × S → R+ if any of the
following conditions are met:

1 d(a, b) ≥ 0. d(a, b) = 0 ⇔ a = b.

2 d(a, b) = d(b, a).

3 The Triangle Inequality: d(a, c) ≤ d(a, b) + d(b, c).

Definition 3.2

A topology, denoted as T , over a set X is a collection of subsets of X
such that:

1 ∅ and X are in T .

2 The intersection of any finite number of elements in T is in T .

3 Arbitrary unions of elements are in T .
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Definitions

Definition 3.3

Hausdorff Space

Consider two points x , y ∈ X, where X is a topological space. The two
points have a set for example, U of x and V of y , such that they are
disjoint (U ∩ V = ∅).

Definition 3.4

Compact space

Compactness generalizes the idea of a closed and bounded subset of a
Euclidean space. Similarly, a compact space is one that includes all of the
limiting values or points, so it is closed and bounded.
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The Stone-Weierstrass Theorem

Stone generalized the Weierstrass Approximation Theorem. It is known
as a generalization because both of them are interlinked through the
density property.

Theorem 3.5

Let X be a compact metric space, and let A ⊆ C (X ,R) be a sub-algebra
which separates points of X. Then A is dense in C (X ,R).

Note: All metric spaces here are Hausdorff spaces.



Introduction Weierstrass Approximation Theorem Stone-Weierstrass Theorem Application of the Stone-Weierstrass Theorem Conclusion

Neural Networks

A neural network is a model inspired by the structure and function
of the human brain.

We divide a neural network into three parts: an input layer, a hidden
layer, and an output layer.
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Shallow feedforward network

A shallow feedforward network (a single hidden layer) can be defined
as:

F :=

f : Rn → R | f (x) =
N∑
j=1

αj · G (wT
j x + bj)


where:

x ∈ Rn are the input vectors,
Each G(wT

j x + bj) is a neuron with weights wj ∈ Rn and bias
bj ∈ Rn, and activation function G ,
α ∈ Rn is the output vector.
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Neural Network (diagram)

We can therefore, draw the diagram of a neural network using the
following information.
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Universal Approximation Theorem

A really crucial part theorem in Neural Networks is the Unviersal
Approximation theorem which makes use of the Stone-Weierstrass
theorem.

Theorem 4.1

Let σ : R → R be a nonconstant, bounded, and continuous function. Let
C (K ) be the space of real-valued continuous functions on a compact
subset K ⊂ Rn. Then for every, function f ∈ C (K ) and ϵ > 0, there
exists a neural network function:

fN(x) =
N∑
j=1

αj · σ(wT
j x + bj)

such that,
sup
x∈K

||f (x)− fN(x)|| < ϵ.

The theorem is used in deep learning. It can learn to perform
complex tasks like, Natural Language Processing and image
recognition.
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Activation functions

In the Stone-Weierstrass interpretation of the Universal
Approximation Theorem, we only make use of activation functions
like, sigmoid and tanh functions.

We don’t use other types of functions like, ReLU because they are
unbounded.
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How do we use the Stone-Weierstrass theorem

We want to show that F meets the criteria of the Stone-Weierstrass
Theorem.

Firstly, we show that it separates points. Firstly, if we have x ̸= y ,
we can choose a w and b such that:

wT x + b ̸= wT y + b.

Since G is injective, we get that

G (wT x + b) ̸= G (wT y + b).

Secondly, we show that F contains constants. We show this by
taking

w = 0 ∈ Rn,

which allows us to show that

f (x) = α · G (b),

which is a constant.



Introduction Weierstrass Approximation Theorem Stone-Weierstrass Theorem Application of the Stone-Weierstrass Theorem Conclusion

Conclusion

Weierstrass Approximation Theorem tells us that any continuous
function on [a, b] can be uniformly approximated by polynomials.

The Stone-Weierstrass theorem generalizes this idea to algebras of
continuous functions on compact Hausdorff spaces.

Provides the foundation for the Universal Approximation Theorem in
neural networks.

The Universal Approximation Theorem serves as a crucial theorem
to understand neural networks and proves that even a single hidden
layer is enough to approximate continuous functions.
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