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Abstract. This paper tries to create an intuition behind the proof of the fundamental
theorem–Weierstrass approximation theorem–which will be shown using Bernstein polyno-
mials and its generalization beyond polynomials–the Stone-Weierstrass theorem. The paper
will look at a few applications of the theorem in the Universal Approximation Theorem and
abstract algebra.

1. Introduction

The history of the Stone-Weierstrass theorem, and how it evolved to be so, is one that is
half a century long. Its roots trace back to the mathematician Karl Weierstrass.

Karl Weierstrass was a German mathematician who is often referred to as the “father of
modern analysis”. He had not started mathematics until he was in his late 30s or early
40s! In 1885, when Karl Weierstrass was 70, he proved one of the most important results,
in approximation theory and real analysis: any function in the closed interval [a, b] can be
uniformly approximated by polynomials.

Today, there exist multiple different proofs of the Weierstrass approximation theorem, which
vary from each other, but the most notable was by the Ukrainian mathematician, Sergei
Bernstein. He provided an alternative constructive using what we now refer to as Bernstein
polynomials. This offered mathematicians a method to compute the Weierstrass approxima-
tion theorem explicitly.

Before moving further, it is crucial to note that the Weierstrass approximation theorem and
Taylor’s theorem are different, even though they may seem similar and turns out to be a
common misconception. So, first, what does Taylor’s theorem tell us? Taylor’s theorem
gives us a local approximation for any function k times differentiable around a given point
a by a polynomial of degree k, which is known as the k-th-order Taylor Polynomial.

Although the two may sound very similar, they are very different from each other. In
Taylor’s theorem, while we may be able to make the polynomials very close to the actual
function on a point, we would require function to be highly differentiable–which means that
the function has a derivative at each point in its domain–which is a very small subclass of
functions [Joh21].

Nevertheless, the Weierstrass approximation theorem does not require differentiability at
all. Moreover, Taylor’s theorem allows for local approximations (approximations around a
point) to take place, however, the Weierstrass approximation theorem guarantees for global
approximations (approximations in a closed interval, so all points in the interval [a, b] can
be approximated within a distance ϵ). Lastly, Taylor’s theorem controls errors at a singular
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point using derivatives and distance, which makes it accurate for smooth functions. How-
ever, the Weierstrass approximation theorem guarantees that all functions, even those that
are non-differentiable (like |x|), can be approximated as closely as possible using a set of
polynomials.

However, the original theorem only applied to continuous functions in compact intervals in
R, and approximating them using a set of polynomials. Naturally, mathematicians expanded
the question and began asking whether more general functions or topological spaces can be
used to prove the same.

This was done in 1937 by Marshall H. Stone, an American mathematician, who published his
generalization of Weierstrass’s result by building upon work in topology. Stone considered
the space C(X) of real-valued continuous functions on a compact Hausdorff space X under
the uniform norm. The result now called the Stone-Weierstrass theorem can be summarized
as follows:

Let A be a subalgebra of C(X,R) , where X is a compact Hausdorff space. If A contains the
points and separates the points of X, we can prove that A is uniformly dense in C(X,R).

Stone’s result shifted the focus from just approximating using polynomials to using elements
of arbitrary subalgebras. The study was influential in multiple mathematical contexts but
also extended to other subjects.

In this paper, we will look at the proof of the Weierstrass approximation theorem using
Bernstein polynomials followed by the proof of the Stone-Weierstrass Theorem, and finally
look at a few applications of the Stone-Weierstrass Theorem in the Universal Approximation
Theorem and abstract algebra.

2. Notations and Key Definitions

Before looking at the Weierstrass approximation theorem, below are a few key definitions
and notations that are vital for understanding the theorem.

Definition 2.1. Fields
A field is a set that contains two operations: addition and multiplication. It satisfies all of
the ring axioms (from definition 5.7) but also includes multiplicative inverses (which means
for any a ∈ R, there exists a−1 such that a · a−1 = 1).

Note: We denote R to represent real numbers and C to represent complex numbers.

Example.
The real numbers R or the complex numbers C are examples of a field because they are
closed under addition, multiplication, and their inverses (which means that any of these
operations would give a result in the same field).

Definition 2.2. Metric Space
A metric space is a set S with a function d : S × S → R+ if any of the following conditions
are met:

(1) d(a, b) ≥ 0. d(a, b) = 0 ⇔ a = b.

(2) d(a, b) = d(b, a).
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(3) The Triangle Inequality: d(a, c) ≤ d(a, b) + d(b, c).

Example. (Metric Space in Cartesian Coordinates) A simple example of this would be using
Cartesian coordinates. If we haveX that includes all points in the form (x, y) in the Cartesian
coordinate system, then we have d(a, b) that distance between two points in X, which is a
valid metric.

Definition 2.3. Topology A topology, denoted as T , over a set X is a collection of subsets
of X such that:

(1) ∅ and X are in T .

(2) The intersection of any finite number of elements in T is in T .

(3) Arbitrary unions of elements are in T .

Sets in T are normally referred to as open sets of X, and X is referred to as a topological
space.

Definition 2.4. Uniform Continuity
For any ϵ > 0, choose δ > 0, such that |x− y| < δ, we have |f(x)− f(y)| < ϵ [Her15].

Definition 2.5. Norm
A norm, denoted by ||x|| for a vector x must satisfy the following properties (which are very
similar to a Metric Space):

(1) ||x|| ≥ 0 and ||x|| = 0 only if ||x|| is a 0 vector.

(2) ||λx|| = |λ| · ||x||

(3) The Triangle Inequality: ||x+ y|| ≤ ||x||+ ||y||

Example. On Rn, we define

||x|| =

√√√√ n∑
i=1

x2
i .

This is known as the Euclidean norm (also known as the magnitude of a vector).

A few other key definitions that we will come across later in the paper but are important to
be defined before are: bounded and closed sets, compact space, density, and closures.

Definition 2.6. Bounded sets
A set is called bounded if all of its points are said to be in a certain distance of each other.

Definition 2.7. Closed sets
Closed sets are those sets that contain all of their limit points.

Definition 2.8. Compact space
Compactness generalizes the idea of a closed and bounded subset of a Euclidean space.
Similarly, a compact space is one that includes all of the limiting values or points.

Example. The interval (0, 1) is open and therefore is not compact. However, the interval
[0, 1] is closed and therefore, includes the limiting points 0 and 1 and is compact.
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Definition 2.9. Density
A subset A ∈ T is dense in T if every point in T belongs to A or is arbitrarily close to A.

Example. The rational numbers Q are dense in the subset of R because every element in R
is either Q or is arbitrarily close to Q.

Definition 2.10. Topological Closure
In topology, the closure of a subset A, denoted by A, of a topological space consists of all
points in A along with all of its limit points. A limit point of set A–not necessarily in set
A–is the point you can get arbitrarily close to using other elements of A.

Example. Let us say that A ⊆ Q in the interval [0,1]. Then, we can say that A is all the real
numbers in the same interval because this set contains all the rational numbers and for any
real number you can find a sequence of rational numbers that get arbitrarily close to it.

Note: Sometimes, closure also refers to a subset being closed under an operation. Though
this out of the scope of this paper, it is still worth noting.

3. Weierstrass Approximation Theorem

The Stone-Weierstrass theorem was a generalization of the Weierstrass Approximation the-
orem. Therefore, it becomes crucial to address this theorem to lay the groundwork for the
Stone-Weierstrass theorem.

Theorem 3.1. (Weierstrass Approximation theorem, 1885) [Rud76] Let f ∈ C([a, b],R)
be continuous. Then, there is a sequence of polynomials pn(x) that converge uniformly to f
on [a, b]. So, for any ϵ > 0, there exists a polynomial P such that

|P (x)− f(x)| < ϵ, for all x ∈ [a, b].

In simpler terms, the theorem states that for any continuous real-valued function f in the
closed interval [a, b], the function can be very closely approximated arbitrarily well using
polynomials pn.

In order to prove the theorem, the Bernstein polynomial provides a constructive proof [PT96].

3.1. Bernstein Polynomial.

Theorem 3.2. (Bernstein Polynomial)

Described by [You06] as:

For each n ∈ N, the nth Bernstein Polynomial of a function f ∈ C([0, 1],R) is defined as

Bn(f)(x) =
n∑

k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k, for all x ∈ [0, 1].

Note: First, we define Bn(f)(x) := P (x). Second,(
n

k

)
=

n!

k!(n− k)!
,
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is the binomial co-efficient and is also denoted as Bin(n, x).

Before giving a proof of the Weierstrass approximation theorem, there are a few important
properties of the Bernstein polynomials.

Lemma 3.3. We have:
n∑

k=0

(
n

k

)
xk(1− x)n−k = 1, for all n ≥ 0.

Proof. Using the binomial expansion, the right-hand side expands to

(x+ (1− x))n.

So for any n, we always get 1. ■

Lemma 3.4. We have:
n∑

k=0

k

(
n

k

)
xk(1− x)n − k = nx.

Proof. We begin by applying the identity

k

(
n

k

)
= n

(
n− 1

k − 1

)
.

So we get

n∑
k=0

k

(
n

k

)
xk(1− x)n−k =

n∑
k=1

n

(
n− 1

k − 1

)
x(k−1)+1(1− x)(n−1)−(k−1)

= nx
n∑

k=1

(
n− 1

k − 1

)
xk−1(1− x)(n−1)−(k−1)

= nx(1) (From lemma 3.3). ■

3.2. Proof of the Weierstrass Approximation Theorem using the Bernstein Poly-
nomial.

Proof of the theorem. Since f is continuous on the closed interval [0, 1], it is uniformly con-
tinuous. So, by definition, given ϵ > 0, choose δ > 0 such that:

(3.1) |f(x)− f(y)| < ϵ

2
whenever |x− y| < δ, for all x, y ∈ [0, 1].

Note: By an affine (linear) change of variables, any closed interval [a, b] can be mapped [0, 1],
so it suffices to prove the theorem in [0, 1].

The Bernstein Polynomial can be represented as the expected value of f
(
k
n

)
. In other words,

(3.2) Bn(f)(x) = E
[
f

(
k

n

)]
.
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This is because the weights
(
n
k

)
xk(1 − x)n−k correspond exactly to the probability mass

function of the binomial distribution with parameters n and x. In other words, if k ∼
Bin(n, x) then

Bn(f)(x) =
n∑

k=0

f

(
k

n

)
P(k) = E

[
f

(
k

n

)]
and therefore, we get the equation 3.2.

Therefore,

|Bn(f)(x)− f(x)| =
∣∣∣∣E [

f

(
k

n

)
− f(x)

]∣∣∣∣ .
Note: that this expectation can be written as follows

E
[
f

(
k

n

)]
=

∣∣∣∣∣
n∑

k=0

f

(
k

n

)
− f(x)

(
n

k

)
xk(1− x)n−k

∣∣∣∣∣ .
Using linearity of summation and applying the triangle inequality (from definition 2.2, item
3),

(3.3) |Bn(f)(x)− f(x)| ≤ E
[∣∣∣∣f (

k

n

)
− f(x)

∣∣∣∣] .
For any δ > 0, we the expectation is split into two:

• The near points:
∣∣ k
n
− x

∣∣ < δ,

• The far away points:
∣∣ k
n
− x

∣∣ ≥ δ,

such that,

E
[∣∣∣∣f (

k

n

)
− f(x)

∣∣∣∣] = A+B,

where we call these two parts as,

A :=
∑

| kn−x|<δ

∣∣∣∣f (
k

n

)
− f(x)

∣∣∣∣ (nk
)
xk(1− x)n−k

B :=
∑

| kn−x|≥δ

∣∣∣∣f (
k

n

)
− f(x)

∣∣∣∣ (nk
)
xk(1− x)n−k.

A < ϵ
2
through uniform continuity (definition 3.1)

Similarly, we need to prove that B < ϵ
2
for some large n. Choose M > 0, such that
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∣∣∣∣f (
k

n

)
− f(x)

∣∣∣∣ ≤ M +M = 2M.

Therefore, we have

B ≤ 2M
∑
| kn−x|

(
n

k

)
xk(1− x)n−k.

We want

(3.4) 2M
∑
| kn−x|

(
n

k

)
xk(1− x)n−k <

ϵ

2
.

We can observe that the sum is a tail probability of a binomial distribution. If we let k be
a random variable with the parameters being n and x, we can represent the sum as∑

| kn−x|

(
n

k

)
xk(1− x)n−k = P

(∣∣∣∣kn − x

∣∣∣∣ ≥ δ

)
.

The variance (which is the measure of how spread out a set of numbers is) of k
n
is

V ar

(
k

n

)
=

x(1− x)

n
.

An important definition to move on to the next step is the Chebyshev Inequality.

Definition 3.5. Chebyshev Inequality
The Chebyshev Inequality is as follows:

P (|x− E[x]| ≥ a) =
V ar(x)

a2
.

So, applying Chebyshev inequality, we get,

P

(∣∣∣∣kn − x

∣∣∣∣ ≥ δ

)
=

V ar
(
k
n

)
δ2

=
x(1− x)

δ2n
.

Notice that x(1− x) ≤ 1
4
because the vertex of x(1− x) is 1

4
. Therefore,

P

(∣∣∣∣kn − x

∣∣∣∣ ≥ δ

)
≤ 1

4δ2n
.

On multiplying both sides by 2M , we get

2M
∑
| kn−x|

(
n

k

)
xk(1− x)n−k <

M

2δ2n
.
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So, for n large enough, specifically

n >
M

δ2ϵ
,

we have,

B ≤ 2M
∑
| kn−n|

(
n

k

)
xk(1− x)n−k <

ϵ

2
.

From this we get,

B <
ϵ

2
.

As a result,

|Bn(f)(x)− f(x)| ≤ A+B <
ϵ

2
+

ϵ

2
< ϵ.

So,

|Bn(f)(x)− f(x)| < ϵ. ■

Example. To create intuition, we shall create a visual proof.

We consider the function f(x) = sin(πx). We will approximate this using Bernstein polyno-
mials in the interval [0, 1].
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Each dashed curve represents the Bernstein polynomial of different degrees. Each cruve
makes use of a different degree n. As the value of n increases from 1 to 20, we see that the
approximation becomes far more accurate and closer to the original curve. This proves that
as

n → ∞,

the Bernstein polynomial converges to f(x) proving that for any function f(x), we can find
a set of polynomials Bn(f)(x) such that they are in a very small ϵ > 0.

4. The Stone-Weierstrass Theorem

Before moving on to the theorem we shall define a few key terms that will be important to
understand the theorem.

Definition 4.1. Supremum norm
Let f ∈ C(X), where X is compact. Then the sup norm is defined as:

||f ||∞ = sup
x∈X

|f(x)|.

Definition 4.2. Hausdorff Space
Consider two points x, y ∈ X, where X is a topological space. The two points can be
separated by neighborhoods if there exists a neighborhood U of x and a neighborhood V of
y such that they are disjoint (U ∩ V = ∅). Therefore, X would be a Hausdorff space if any
two distinct points in X can be separated by their neighborhoods.

Theorem 4.3. (Stone-Weierstrass Theorem) Let X be a compact (recall from definition
2.8) metric space, and let A ⊆ C(X,R) be a sub-algebra which separates points of X. Then
A is dense (recall from definition 2.9) in C(X,R) [Puk17].

Note: All metric spaces here are Hausdorff. The more general version of the Stone-Weierstrass
theorem is stated for compact Hausdorff spaces.

Proof. Fix ϵ > 0. For any f ∈ C(X,R), we want to show that there exists g ∈ A such that

(4.1) ||f − g||∞ < sup
x∈X

|f(x)− g(x)| < ϵ

which implies that f ∈ A, and so A = C(X), which proves density (recall the definition of
closures from definition 2.10).

Through affine (linear) interpolation, given any two distinct points x, y ∈ X, and any real
numbers α, β ∈ R, we say that there exists g ∈ A such that g(x) = α and g(y) = β. This is
true because we know that since A separates points, there exists h ∈ A, h(x) ̸= h(y) [You06].

Therefore, we can define

g(z) = α + (β − α)
h(z)− h(x)

h(y)− h(x)
.

So, when z = x,

g(x) = α + (β − α)
h(x)− h(x)

h(y)− h(x)
= α + (β − α) · 0 = α,
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and when z = y,

g(y) = α + (β − α)
h(y)− h(x)

h(y)− h(x)
= α + (β − α) · 1 = α + β − α = β.

The interpolation shows that the algebra can control function values at specific points which
is vital in proving the idea of density (which in simpler terms is the ability to closely ap-
proximate continuous functions, in this context).

Because X is compact, we can find a point p ∈ X which has a neighborhood Up on which
we can approximate f closely. We can choose finitely many points p1, p2, . . . , pn ∈ X such
that their neighborhoods Up1 , Up2 , . . . , Upn cover all of X.

We can construct a function gi(x) ∈ A such that,

gi(x) ∈ [f(x)− ϵ, f(x) + ϵ] for all x ∈ Upi .

So on each neighborhood, we have a function gi that always stays very close to f .

Now we define two new functions as

G(x) := min{g1(x), g2(x), . . . , gn(x)}
H(x) := max{g1(x), g2(x), . . . , gn(x)}

Since we are not very sure that the functions are in A, we can safely say that

G,H ∈ A.

From equation 4.1 we get,

f(x)− ϵ < gi(x) and f(x) + ϵ > gi(x)

Thus,
f(x)− ϵ < G(x) and f(x) + ϵ > H(x).

Since all of gi(x) are within an ϵ of f (that means some are above and below f), we can say
that

G(x) ≤ f(x) ≤ H(x)

and

H(x)−G(x) < (f(x) + ϵ)− (f(x)− ϵ)

< 2ϵ.

Therefore, we have

|f(x)− g(x)| ≤ H(x)−G(x)

2
< ϵ.

So,
A = C(X). ■

Since A contains all the functions that can be uniformly approximated by elements of A,
A = C(X) shows that A is dense in C(X).
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5. Applications of the Stone-Weierstrass Theorem

The Stone-Weierstrass theorem is not just limited to its generalization of polynomial ap-
proximation but rather it extends and plays a vital role in other mathematical setups too.
The theorem extends to non-classical and abstract settings. Under this section, we will look
at the following applications of the Stone-Weierstrass theorem: we shall look at how the
Stone-Weierstrass Approximation theorem is used in the Universal Approximation theorem
which will be followed by an f -ring interpretation of the theorem, under abstract algebra.

5.1. Universal Approximation Theorem.

In this subsection, under the Universal Approximation Theorem, we will look at neural
networks. Therefore, it is pertinent to understand what we mean by neural networks. A
neural network is a model that is inspired by the structure and function of the human brain.
A neural network is divided into three sections: an input layer, followed by hidden layers,
and an output layer.

The diagram below shows a very simplified version of a neural network with a single hidden
layer.

x1Input #1

x2Input #2

x3Input #3

x4Input #4

y Output

Hidden
layer

Input
layer

Output
layer

A one-hidden layer neural network was defined by [Cyb89]. We define the set of functions
in a one-hidden layer neural network (also known as a shallow feedforward neural network),
as:

F :=

{
f : Rn− > R | f(x) =

N∑
j=1

αj ·G(wT
j x+ bj)

}

where:

• x ∈ Rn are the input vectors,

• Each G(wT
j x+ bj) is a neuron with weights wj ∈ Rn and bias bj ∈ Rn, and activation

function G,

• α ∈ Rn is the output vector.

This leads us to define a few key terms used above.
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Definition 5.1. Weights
These are the numerical values that determine the influence an input has on a neuron’s
output.

Definition 5.2. Bias
A bias is a constant added to the neuron’s weighted input which shifts the activation graph
horizontally.

Using the new definitions, we can draw an even more accurate neural network that includes
weights, biases, summation, and an activation function.

x1

x2

b

∑w1

w2

b

G y

Now we shall move on to the Universal Approximation theorem. We shall begin by defining
it formally.

Theorem 5.3. Universal Approximation Theorem [HSW89]. Let σ : R → R be a noncon-
stant, bounded, and continuous function. Let C(K) be the space of real-valued continuous
functions on a compact subset K ⊂ Rn. Then for every, function f ∈ C(K) and ϵ > 0, there
exists a neural network function:

fN(x) =
N∑
j=1

αj · σ(wT
j x+ bj)

such that,

sup
x∈K

||f(x)− fN(x)|| < ϵ.

To simplify this and understand more intuitively, if we have an activation function, then
even a single hidden layer neural network using the activation functions, is powerful enough
to approximate any continuous function defined on a compact space with arbitrary precision
as you add more neurons (N) to the approximation.

Note: an activation function can be of different sorts. The ones that will be considered in
this paper are tanh and sigmoid curves. A sigmoid curve is defined as:

σ(x) =
1

1− ex
,

and a tanh curve is defined as:

tanh(x) =
(ex − e−x)

(ex + e−x)
.
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As
lim
x→∞

σ(x) = 1 and lim
x→−∞

σ(x) = 0.

Similarly,
lim
x→∞

tanh(x) = 1 and lim
x→−∞

tanh(x) = 0.

The figure below draws the two functions and represents the information mentioned above.

Note: for this version of the Universal Approximation theorem, that makes use of the Stone-
Weierstrass Theorem, we must use functions like sigmoid and tanh because they are contin-
uous (they behave nicely under limits), bounded (so their outputs are under control), and
nonconstant (allowing them to have a rich enough approximations).

The Stone-Weierstrass interpretation of the Universal Approximation theorem cannot be
applied in other activation functions like ReLU (Rectified Linear Unit) because they are
not bounded. The ReLU functions output 0 whenever there is a negative input. However,
for positive values, it can grow infinitely large and, therefore, they are unbounded and
cannot be used by the Stone-Weierstrass interpretation of the Universal Approximation
Theorem. However, keep in mind that ReLU functions can be approximated by the Universal
Approximation theorem just not using the Stone-Weierstrass theorem.

Returning to theorem 5.3, we can recognize from theorem 4.3, that

sup
x∈K

||f(x)− fN(x)|| < ϵ.

The goal now becomes to prove that F satisfies the conditions of the Stone-Weierstrass
theorem and is therefore dense in C(X) which would allow us to prove that any continuous
function can be approximated by functions in F .

The function set F is closed under addition, scalar multiplication, and (approximately) under
function multiplication. For detailed formal proofs, refer to [HSW89]. In this paper, we shall
look at the proof for point separation and show that the function set contains constants.

First, we prove that F separates points.
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Proof. If we have x ̸= y, we can choose a w and b such that:

wTx+ b ̸= wTy + b.

Note: we are not trying to prove that x ̸= y because that is a given and we want to prove
instead that whenever we choose two distinct points x, y ∈ F , we can find a function in F
such that we get different outputs at those two points.

Since G is injective (a on-to-one function), we get that

G(wTx+ b) ̸= G(wTy + b)

.

So by choosing the right biases and weights, the neurons outputs differ at the distinct points
x and y. Therefore, we can say that F separates points. ■

Second, we shall show that F contain constants. Why is showing constants crucial? That is
because we must be able to approximate constants of a function.

Example. So, for instance, let us take a function like sin(x)+2. Our approximation must be
able to approximate the +2 aspect of the function which are intuitively important to build
the target function.

Proof. We can show that F contains constants by taking

w = 0 ∈ Rn

in order to eliminate the the dependence on x.

Then, we are able to get

f(x) = α ·G(b),

which is a constant.

Therefore, we are able to prove that F contains constants. ■

As a result, we are able to prove that F is an algebra. We are able to invoke the Stone-
Weierstrass theorem, which tells us that if F ⊆ C(X,R) separates points and contains
constants, we can say that F is dense in C(X,R).

Therefore, using the Stone-Weierstrass theorem we are able to prove that a shallow feedfor-
ward neural network, can approximate any continuous function arbitrarily well, leading us
directly to the Universal Approximation Theorem.

Overall, the Universal Approximation theorem serves as a crucial theorem in the study of
neural networks. The theorem allows us to prove that a single hidden layer is sufficient
enough to approximate any continuous function, defined on a compact subset of Rn just by
using suitable activation functions, to arbitrary precision. This idea allows the theorem to be
further applied in deep learning, where it plays a very crucial role. Therefore, neural networks
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can learn to perform complex tasks like image recognition, natural language processing
(NLP), among others, by approximating the functions that define these tasks.

However, a key limitation of this is that it is not something that can be applied practically
simply because it does not tell us the number of neurons required for a specific task and
does not prescribe an architecture for doing so either, but rather just tells us that there is a
structure like such that exists–even though this is a crucial result for neural networks.

5.2. f-Ring interpretation of the Stone-Weierstrass theorem.

First, let us begin by understanding what an f -ring is. Consider R to be a commutative
l-ring (which is a commutative poring with a lattice). R is an f -ring if for all x, y, z ∈ R we
have

(5.2.1) x ∧ y = 0 and 0 ≤ z, such that zx ∧ y = 0 ⇒ xz ∧ y = 0.

It is important to to define a few key terms here. We must first begin by understanding
what we mean by a lattice.

Definition 5.4. Lattice
A lattice can be defined as a type of poset such that every pair of elements has an infimum
(the meet, denoted by a ∨ b) and a supremum (the join, denoted by a ∧ b).

To understand what porings are we need to understand the partial orders, posets, and rings.

Definition 5.5. Partial Orders
It is a relation (or in simpler terms a rule for comparing things) that satisfies the following
three properties:

• Reflexivity: Every item is related to itself. a ≤ a.

• Antisymmetric: If a ≤ b and b ≤ a, then a = b.

• Transitive: If a ≤ b and b ≤ c, then a ≤ c.

Definition 5.6. Partially Ordered Sets (Posets)
A poset is a pair (X,≤), where X is a set of elements with a partial order, in this case ≤ in
X, such that the elements satisfy the three conditions stated in a partial order 5.5.

Definition 5.7. Rings
A ring is a set R with the two binary operations, addition (+) and multiplication (·) such
that it satisfies the following axioms:

(1) R is an abelian group under addition, which means that there is:

• Associativity under addition: (a+ b) + c = a+ (b+ c) for all a, b, c ∈ R,

• Commutativity: a+ b = b+ a.

• Additive Inverse: For each a ∈ R, there exists −a ∈ R, such that a+ (−a) = 0.

• Additive identity: this states that for all a ∈ R, a + 0 = a and therefore 0 is
the additive identity because it leaves any element unchanged under addition.
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(2) R is monoid under multiplication, which means that there is:

• Associativity under multiplication: (a · b) · c = a · (b · c) for all a, b, c ∈ R,

• Multiplicative identity: 1 is the multiplicative identity (an element that leaves
an element unchanged under multiplication) because a · 1 = a and similarly,
1 · a = a for all a ∈ R.

(3) Multiplication is distributive under addition, which means that:

• a ·(b+c) = (a ·b)+(a ·c) for all a, b, c ∈ R (this is often called left distributivity),

• (b + c) · a = (b · a) + (c · a) for all a, b, c ∈ R (similarly, this is called right
distributivity).

Having looked at all the things required for understanding porings, let us define porings.

Definition 5.8. Partially Ordered Rings (Porings)
A poring is a ring R with a partial order, let’s say ≤, such that:

• (R,≤) is a poset;

• x ≤ y implies that x+ z ≤ y + z for all x, y, z ∈ R;

• if 0 ≤ x and 0 ≤ y, then 0 ≤ xy.

The equation we have used to understand what f -rings (equation 5.2.1) makes use of two
notations ∧ and ∨ which are known as meet and join respectively. Their definitions are given
below.

Definition 5.9. Meet and Join (in Lattice Structures)
The meet of a subset S of a poset P is the infimum (greatest lower bound) of S and is
denoted by ∧ S. Similarly, a join of a subset S of a poset P is the supremum (least upper
bound) of S and is denoted by ∨S.

To simplify equation 5.2.1, if the meet of two elements is 0, then even multiplying by a
non-negative element will not introduce any overlap.

The Stone-Weierstrass theorem applies directly to sub-f -rings in C(X). [Ban01], in his 2001
paper shows the correlation between the Stone-Weierstrass theorem and f -rings.

He redefines the Stone-Weierstrass theorem by slightly tweaking it to be applicable under
f -ring structures.

Theorem 5.10. Let X be a compact Hausdorff space. Suppose R ⊂ C(X) is a subring
satisfying the following:

• R separates points of X: for any x ̸= y ∈ X, there exists f ∈ R such that f(x) ̸=
f(y),

• R is closed under pointwise minimum and maximum; that is, for all f, g ∈ R, we
have min(f, g),max(f, g) ∈ R,

then we know that R is uniformly dense in C(X) and ||f − g||∞ < ϵ.
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The importance of the use of the f -ring interpretation of the Stone-Weierstrass theorem,
stems from the fact that the classical Stone-Weierstrass theorem 4.3, does not necessarily
guarantee that the approximation will always stay positive, bounded, and maintain the order
(maintaining increasing or decreasing behavior). These three conditions may be important
in certain applications (such as, probability or ordered function spaces). However, with the
f -rings interpretation of the Stone-Weierstrass theorem, we are able to preserve the three
conditions widening its applications.

To further understand this concept, we will take a relatively simple and intuitive example.
For instance, let X = [0, 1], and let R be a set of piecewise linear functions (that is functions
pieced together from multiple linear segments) on [0, 1]. This set forms a sub-f -ring of
C([0, 1]) since it is a ring under pointwise minimum and maximum, it separates points of
[0, 1], and it’s closed under min and max (because it takes pieces from the functions inside
the ring and, therefore, it stays inside the ring).

6. Conclusion

In this paper, we began with the Weierstrass approximation theorem which shows that
any continuous function on a closed interval can be uniformly approximated by a set of
polynomials. The proof of the Weierstrass approximation theorem was given by the Bernstein
polynomials because they are explicit, constructive, and allow mathematicians to compute
these functions.

Then, the paper looked at the Stone generalization of the Weierstrass approximation theorem
to broader subalgebras of continuous functions and compact Hausdorff spaces. We looked
at a few key strategies to prove the theorem, like interpolation, compactness, and min and
max operations to construct uniform global approximations.

It also looks at a few of the key applications of the Stone-Weierstrass theorem to the Universal
Approximation theorem and neural networks. After that, the f -ring interpretation of the
Stone-Weierstrass theorem was also briefly discussed.

The applications of the Stone-Weierstrass theorem can be further developed into other more
abstract and complex function spaces, like Banach function spaces or C∗-algebras.

Overall, this paper tries to intuitively explain the two theorems and show how the 19th
century analysis still continues to define the 21st century’s mathematical and computational
practices.
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