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Motivation

Motivating the talk

I wish to give my audience a glimpse into why I found de Rham cohomology, its
consequences and prerequisite mechanisms so exciting. I hope to motivate the
audience enough to where they will engage with de Rham cohomology
independently.

Motivating de Rham cohomology

We motivate de Rham cohomology simply as a tool to detect holes in the domain.
Recall the fact from multivariable calculus that a vector field F with curl F = 0 is
the gradient of a function. Turns out, this fails if the simply connected domain
has a hole.
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Motivation - Example

Example

Example If U = R3\{z-axis}, and

F =

〈
−y2

x2 + y2
,

x

x2 + y2
, 0

〉
.

To show that curl F = 0, let F = ⟨P,Q,R⟩. Then,

P =
−y

x2 + y2
, Q =

x

x2 + y2
, R = 0.

By curl F = ∇× F =
(

∂R
∂y − ∂Q

∂z ,
∂P
∂z − ∂R

∂x ,
∂Q
∂x − ∂P

∂y

)
, the first, second and third

components evaluate to 0.
Thus, an integral about a loop, must be zero. Take s = (cos t, sin t), the unit
circle. Then (by parametrisation and the dot product),∫

s

F · dr =
∫ 2π

0

F(s(t)) · s ′(t)dt =
∫ 2π

0

1 dt = 2π − 0 = 2π ̸= 0.

Vikramaditya Ghosh Motivating de Rham cohomology 11th July, 2025 3 / 15



Preliminary Constructions

Smooth Functions
A function is considered smooth or C∞ if

∂f k

∂x1∂x2 . . . ∂xk

is defined and continuous over a point x ∈ Rk .

Tangent Spaces

A tangent space over a point p ∈ Rk , denoted Tp(U), for U is an open set
containing p, is the vector space of all vectors tangent to each component of
p = (p1, p2, . . . , pk).

Vector Fields in Rk

A vector field in Rk is a function that maps one vector from the tangent space
Tp(U) to p.
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Exterior Algebra - Dual Space

Dual Space

The space Hom(V ,R) is the set of all linear maps from V → R, known as the
dual space of V , denoted V V . Its elements are called 1-covectors.

We care about dual spaces because it allows for defining directional derivatives
with respect to the elements of the vector space.
We define the directional derivative of a function f ∈ C∞ about a neighborhood
of a point p at p to be

Dv =
n∑

i=1

v i ∂f

∂x i

∣∣∣∣∣
p

,

taking vi ∈ v ∈ V , thus assigning a ’direction’ to each partial derivative
component.
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Exterior Algebra - Tensors

k-tensor space

Consider the cartesian product of vector space

V k = V × V × · · · × V︸ ︷︷ ︸
k

.

Trivially, this is a vector space. Thus, the dual space of V k is the set of all
k-tensors, denoted Lk(V ), is the vector space of all maps f : V k → R, satisfying
the multilinearity property

f (. . . , av + bw , . . . ) = af (. . . , v , . . . ) + bf (. . . ,w , . . . ).

k-tensors are multilinear maps. Intuitively, this means that each argument is linear
when all others are fixed.

We also have an operation that maps Ak(U) and Al(U) to Ak+l(U). We will
define it no further.

∧ : Ak(U)× Al(U) → Ak+l(U).
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Differential Forms

Differential Forms
A differential form can be understood as a covector field; a vector field which
maps 1-covectors from the cotangent space T ∗

p (U) to p.

Differential 1-forms and the differential

A covector field mapping 1-covectors from T ∗
P (U) to p. A nice example is the

differentials, dx , dy , dz in R3. Thus, 1-forms or differentials motivate calculus in
R3.

Differential k-forms
We can define the differential k-form about a point p ∈ Rn to be

ωp : Tp(Rn)× Tp(Rn)× · · · × Tp(Rn) → R.

See how its similar to a k-tensor, but for tangent spaces instead.

Here’s a cool geometric perspective: A differential k-form returns the oriented
volume of the dim k parallelepiped spanned by k-tangent vectors. Use this for
intuition.
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Exact and Closed Forms, the Exterior Derivative

Exterior Derivative
We first note that

∧ : Ωk(Rn)× Ωl(Rn) → Ωk+l(Rn),

when the wedge product is defined over differential forms. Take this on faith. We
now say that the exterior derivative is a map

d : Ωk(Rn) → Ωk+1(Rn), de : ω → dω.

Closed Forms
A closed form is a k-form such that its differential dω = 0.

Exact Forms
An exact form is a k-form ω such that ∃τ , a k − 1-form such that ω = dτ .
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Exact Sequences

A sequence of homomorphisms on vector spaces

A
f−→ B

g−→ C

is exact if Im f = ker g . The logic behind this is that by exact forms ω = dτ , and
they are closed meaning dω = 0. This means dτ → ω → dω is analogous to this
sequence. The rest is self-explanatory. This blows up into large sequences, where
we cannot consider the first and last terms as exact because then it would blow up
to infinity.

A0 f 0−→ A1 f 1−→ A2 f 2−→ . . .
f n−1

−−−→ An.
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Cochain Complex

Defining the Cochain Complex

A cochain complex C is a collection of vector spaces {C k}k∈Z together with a
sequence of linear maps d:C

k → C k+1,

. . .
d−2−−→ C−1 d−1−−→ C 0 d0−→ C 1 d1−→ . . .

such that,
dk ◦ dk−1 = 0, ∀k .

Obscure property? No. Here’s an original explanation: If we map dk−1 to the next
vector space, we receive the image of it. now if we apply dk to that image, then
we’re effectively applying dk to the kernel of dk , which is 0, since
Im dk−1 ⊂ ker dk . However, this creates a circular argument with
Im (dk−1) ⊂ ker dk , with both proving each other (they are equivalent
statements). This is just a part of the machinery of cochain complexes.
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de Rham complex

The de Rham complex is a cochain complex of Ω∗(M). In this case, the vector
spaces are the vector spaces Ωk(Rn), and the homomorphism is the exterior
derivative d , and the property d ◦ d = 0.

0 → Ω0(Rn)
d−→ Ω1(Rn)

d−→ Ω2(Rn)
d−→ . . .

d−→ Ωk(Rn) → . . .

A property of the de Rham complex is that the image of each homomorphism is
contained in the kernel of the next, by the definition of a cochain complex. This
means that Im d ∈ ker d , however the converse may not be true. Recall that
d2 = 0, d(dτ) = 0 thus every exact form is closed, but not the converse. This is
very similar to closed and exact forms.

An essential idea
The idea of exactness is associated with the ’consistency and stability’ of the de
Rham complex without holes. It is exact when it has no holes, thus the de Rham
cohomology is 0 by its quotient definition. When there is a hole, the de Rham
complex is non-exact.
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Detecting holes I - Stokes’ Theorem & the geometric
interpretation

Recall the generalised Stoke’s Theorem, and the the condition of the de Rham
complex where d2 = 0 for d is the exterior derivative defining k + 1-forms from
k-forms, ∫

D

dω =

∫
∂D

ω

for ω is a k-form. Recall the definition of an exact form τ such that ∃σ, a
k − 1-form such that τ = dσ, we can define about the boundary of a disk D,
denoted by ∂D, ∫

∂D

dσ =

∫
∂(∂D)

τ =

∫
0

τ = 0.

Think of exterior derivative as a map between consecutive-dimensional surfaces; a
form on a line (a boundary) maps to a form on a surface (the disk enclosed by the
boundary). So we use the exterior derivative property on the boundary vs. the
plane D, following d2 = 0, thus we can detect whether there is a hole if the period
of a differential form is 0.
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Example
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Detecting holes II - the de Rham cohomology

de Rham cohomology

A de Rham cohomology is the quotient vector space of closed and exact forms

Hk(M) =
Z k(M)

Bk(M)
,

where Z k(M) is the set of all closed forms and Bk(M) is the set of all exact
forms. Alternatively, by the containment of Im d ∈ ker d ,

Hk(M) =
ker d

Im d
.

The idea behind this leads back to closed and exact forms; all exact forms are
closed, but there can exist non-0-closed forms ω that are not exact. What this
means is that dω = 0, but ω ̸= dτ , for any k − 1-form τ . So ’zero-ness’ arbitrarily
stems from ω, which seems odd.
When Hk(M) ̸= 0, the quotient does not ’cancel out’. Rather it becomes 0,
indicating zero differences in the two sets.
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Further Reading

My paper!

I have included proofs and a lot of juicy mathematics which motivates most of
what may seem oddly developed in this talk. It’s a great complement to today’s
content.

In all seriousness though, go read Tu’s ’Introduction to Manifolds’ followed by
Bott & Tu’s ’Differential forms in Algebraic Topology’ for a rigorous yet intuitive
introduction to de Rham cohomology.
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