CONSTRUCTING DE RHAM COHOMOLOGY

VIKRAMADITYA GHOSH

ABSTRACT. The function of cohomology in algebraic topology, and its extensions in an
array of mathematics, calls upon the mathematics enthusiast to be astute in its general
principles. However, it may come at a level of abstraction and maturity for which many
may not be suited. This paper aims to introduce de Rham cohomology, a crucial subsection
of cohomology, both intuitively and rigorously, stemming from the contents of elementary
calculus. Building from its foundations in exterior algebra, we will define differential forms
and construct smooth manifolds to explore the detection of ’holes’ both geometrically, us-
ing the de Rham complex and the generalised Stokes’ Theorem, as well as the de Rham
cohomology. The paper will conclude with the basic mechanisms of de Rham cohomology.

1. INTRODUCTION

I was motivated to write this paper to offer a concrete and multifaceted pathway to
introduce de Rham cohomology in the best way by linking its construction to different
subfields of mathematics. Thus, this paper adopts different styles of approach to create a
unique pedagogy to de Rham cohomology.

First, we would like to set up the structure of de Rham cohomology to motivate its
construction.

de Rham cohomology is the study of how cohomologies as quotient vector spaces, labeled
H%(M), defined over a smooth manifold M, single-out the topological properties, like holes,
in the manifold with properties of differential forms or the exterior derivative in the de Rham
complex defined over M. The de Rham cohomology H*(M) takes the expression

_ ZM(M) _ kerd
~ B¥M)  imd’
for Z¥(M) is the set of all closed k-forms on M, and B¥(M) is the set of all exact k-

forms on M. d is the exterior derivative as the linear map between Q*(M), vector spaces of
differential forms over M where x = 1,2,3,..., on the de Rham complex

H* (M)
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Everything defined above in italics is the culmination of exterior algebra, differential forms,
and manifold theory. While it may seem like technical jargon right now, its beauty in
the parallels of its structure is revealed from a rigorous and intuitive understanding of its
components. Now, we would like to motivate an example of detecting holes; a key component
of de Rham cohomology.

Recall the fact from multivariable calculus,

Remark 1.1. A vector field F with curl F = 0 is the gradient of a scalar function in a simply

connected domain.
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Definition 1.2. A simply connected domain is one where every closed loop can be contracted
to a point without leaving the domain

Thus, a domain with a "hole’ is not simply connected. We can see that the fact fails for
an unconnected domain.

Example. [5] Let U = R3\{z-axis}, and a vector field F as

2
F— : 0.
<:c2+y2 r? + y? >

We must first show that curl F = 0, we define F component wise. Let F = (P,Q, R),
where

2
:—’ = - R:O'
7y 9 Y

For curl F = VXF = (%—1; — %—Cj, %—f — %, g—f — %—5) , we need to evaluate each component.

oQ 9P\ [0 x 0 —y? _
(13) (% - 6’_y) B <% (x2+y2> Oy (x2+y2)) -

The last expression was evaluated using the quotient rule. It is long thus has not been
included.

Since V. x F = (0,0,0), curl F = 0. From this we may infer that any integral about a
loop must also evaluate to 0.

Claim 1.3. Any integral about a loop for F = <ﬁ, 31:29”Ty2,()> must evaluate to 0 in a

simply connected domain, by Stokes” Theorem.

The simplest loop for our computation is the unit circle s = (cosf, sin#,0). We then
integrate F over s,
/ F.dr
S
which we parametrise to obtain

/SF(s(t)) CS(t)dt = /0% 1dt =27 — 0 = 2r,

This contradicts our claim, which means the domain is not simply connected.

This example highlights how simple integration in R3 allows us to detect holes. However,
a lot of mathematics is centered around different domains, such as smooth manifolds and
spaces with different properties. This method is not suitable to detect holes in such spaces,
because they may not even be Euclidean in the first place! Thus, we turn our attention to
de Rham cohomolgy, which allows us to study the topological properties like holes in a wide
variety of spaces.
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2. PRELIMINARIES IN EUCLIDEAN SPACE [5]

We must first define some constructs which allow us to define calculus, specifically inte-
gration, in abstract spaces.

Definition 2.1. A function or its k" derivative is continuous about a structure (point, open
set, topological space or entire domain), labeled C* if its all its derivatives up to the k"
index

ok f
ox't ... Oxt
exist and are continuous. A function is smooth or C'*° over z if all its derivatives exist
and are defined about z.

Definition 2.2. A tangent space over a point p = (p',p?,...,p") € R", denoted T,,(U), for
U C R" is an open subset containing p, is the set (vector space) of all vectors tangent to p.

With the vectors in a tangent space, we can define the directional derivative of a function
feC*>® onp.

Proposition 2.3. The line through p = (p',...,p") € R™ with direction v = (vy, ..., v,) has
parametrisation
I(t) = (p' +to', p* + 1%, ..., p" +tu"),
where its i component I'(t) = (p*+tv?). Ifv is a tangent vector, the directional derivative
of f in the direction v over p is given by the expression

t—0 t T odt =0 —~ dt o’ —~ O '

When considering the partial derivative as an operator on a function, we get

szzvaxi

=1

p

We define it as such so tangent vectors v € T,,(U) can act as operators on functions.

2.1. Germs & Derivations. Suppose we have pairs (f,U), (g,V) where U, V are neigh-
borhoods of a point p. Here,

(2.1) f:U—=R,
(2.2) g:V—-R

are C*°. The set where both are defined must be U NV, and to examine how they work
as smooth functions locally, if IW C U NV is an open set of p. We say that f and g
are equivalent if f = g on W. The equivalence classes of these functions are called their
germs. The set of all germs over a point p € R" is referred to as C;°(R"), or just C}°. The
representative of a germ of f in C3° is written [f].

We use germs to define the derivation.
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Definition 2.4. For each vector v in T,(U), U C R" is an open subset containing p, the
directional derivative induces a linear map

D, : C;O —R
that satisfies the Leibniz rule
Dy(fg) = f(p)(Dug) + (Duf)g(p)

as a result of the properties of partial derivatives. Any linear map satisfying these conditions
is called a derivation of C}°.

Derivations are crucial in our argument for differentials of differential forms.
2.2. Vector Fields.

Definition 2.5. A vector field is a function defined over an open subset U that assigns a
tangent vector from each tangent space about p € U, to each point in U.

Since T,,(U) has the partial derivatives basis, we can write a vector field about a point p

as
XP: § :a(p>8$7' »

Thus, a vector field about the entire field U would be

; 0
X:Zaaxi.

A vector field can be thought of as a derivation as well. Its mathematical exposition,
however, is unimportant to this papers arguments. Later, the reader may notice the parallels
between covector fields and vector fields in terms of differentials and derivations not explicitly
stated.

3. EXTERIOR ALGEBRA OF TENSORS [5]

Consider a vector space V with basis ey, es, ..., e,. Like defined previously, a linear map is
a map between two vector spaces satisfying two properties listed above. Here, we can define

a new vector space V* called the dual space, which is the set of all maps from V — R,
defined by

V* = Hom(V,R).
The elements of V* are called covectors, 1-covectors or 1-tensors.
Additionally, Vv € V, we write

_Z i
V= vej
i’j

We say o', a? ... a" is the basis for V* (proof is omitted). If the map o'(v) = v, gives
the index ¢, we say

i i Li=y
O‘<€j):53:{0i7éj
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We want to prove that |V| = |V*|, thus |e,| = |a@"|. To do this, we can take a map
b'(v) € R. Thus,

a'(v) = ij(v) e; = ij(v)5; =b'(v).

3.1. Permutations & Tensors. A permutation is a function which reorders a set. Consider
the set {1,2,3,...,k}, and the set of all permutations of these to be Sk.

Definition 3.1. We say a permutation o is cyclic if o(1) = 2, 0(2) = 3,...,0(k — 1) =
k, o(k) = 1. This means o shifts elements in a single cycle.

Example. An example of a cyclic permutation is one with mod
o(i) = (i+ 1) mod k.

We do not care about any particular o, but any o.

The sign of o denoted sgn(o) is the sign of the permutation: it is +1 if it can be rewritten
as a combination of an even number of transpositions, and is —1 if it can be rewritten as a
combination of an odd number of transpositions.

Definition 3.2. A transposition is a 2-cycle, that is, a cycle of the form (a b) that inter-
changes a and b, leaving all other elements of A fixed.

Definition 3.3. Consider the vector space V¥ =V x V x V x --- x V which is a result of
the Cartesian product of k vector spaces V. A map from f : V¥ — R is called a k-tensor if:

flo.;av+bw,...)=af(...,v,...)+bf(...,w,...).

Apart from my personal bias for the word tensor, it is very important in our construction
of differential forms. A k-tensor an also be called a multinlinear map of k-arguments. The
set of all k-tensors for V¥ is L (V).

Intuitively, the multilinearity property states that for all k-arguments taken by the k-
tensor, if k& — 1 arguments are set constant and one is free, then that argument obeys the
linearity axioms. We can also call

We also have two different types of tensors: namely symmetric and alternating tensors.

Definition 3.4. A symmetric k-tensor f follows the property
F(Wo(1)s Vo2), Va(3)s - - - Vok)) = f(V1, 02,03, ..., ).
Definition 3.5. An alternating k-tensor follows the property
f(Ua(1)7 Vo (2)s Vo(3)) - - - 7U0(k)) =sgn(o) f(v1, v2,v3, ..., V).
The set of all alternating k-tensors is denoted Ay (V).

An alternating k-tensor encodes orientation through sgn o of volumes. This will be moti-
vated in later sections.



6 VIKRAMADITYA GHOSH

3.2. The Tensor Product and the Wedge Product. We can define the symmetrical
and alternating properties of k-tensors as operators which act on k-tensors.

We say S to be the operator that ‘operates’ on a k-tensor f to make it symmetric, and A
to make it alternating.

Sf= > of Af= Y (sen(0))o(f)

ol,02,.. 0k ol,02,..,0m
Its proof is quite easy. We must show that 7(Zf) = Zf, A,S = Z, but we will not
include the proof here.

Lemma 3.6. If f is an alternating k-tensor on a vector space V', then Af = k!f

Proof
Af = Z(Sgn(a))af = Z(sgn(o))(sgn(o))f = Z f=kf, |Sk] = k.
TES) o€ESy, €Sy

Using symmetrising and alternating operators makes defining the wedge product conve-
nient.

Definition 3.7. If f, g are k- and [-tensors respectively, then the tensor product between
them creates a new (k + [)-tensor

(f ® g)(vl>v27 s 7Uk+l> = f(vlav% cee 7Uk)g(vk+lavk+27 s 7vk+l>'

The tensor product is associative.

However, if we take two k- and [- alternating tensors, the tensor product does not preserve
the alternating operator. From this, we motivate the wedge product.

Definition 3.8. For f, g are k- and [-tensors, the wedge product f A g is defined by

1
(f A g)(vla V2, .. 7Uk+l) = WA(f ® g)'
Notice that
S (sen())of = 3 (sen(o))(sen(o))f = S f = Kif.
O'ESk O'ESk O’ES}€
This applies to two functions, where we obtain

> Klilfg.
oESE

We can avoid factorials by instead rewriting the os as (k,!)-shuffles, with the following
conditions

Conditions 3.9.

(3.1) o(l)<o(2) <+ <o(k),

(3.2) ok+1)<ok+2)<---<alk+1).
Thus, we can write the wedge product as

(fAg) (o1, k) = > (sgn(a))(af)(ag)-

o=(k,l)-shuffles €5},
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In this paper, we prefer the first expression for the wedge product.
The wedge product also has two properties, namely anticommutativity and associativity.
We will state their expressions but omit their proofs.

3.2.1. Anticommutativity. Anticommutativity states that the wedge product of a k- and
[-tensor f and g respectively

fAg=sen(r)(gAf)=(=1"(gAf)
This is a comment on how the wedge product encodes orientation.

3.2.2. Associativity. This property does not need deliberation beyond the following expres-
sion.

fA(gNAR)=(fNg)Nh.
4. DIFFERENTIAL FORMS

To understand the motivation of differential forms, we must first understand the issue of
integrating over manifolds. To do so, we must construct the idea of a manifold.

4.1. Manifold Theory. [5] [2]
Note that we will not be proving propositions and lemmas since we focus mainly on
efficiently and quickly constructing de Rham cohomology by motivating its components

Definition 4.1. A topological manifold is a dimn topological space that is Hausdorff and
second-countable. We also say that it is locally Fuclidean.

Definition 4.2. A topological space is locally Euclidean if there exists a homeomorphism
to R™ of a pair

(U,¢:U—R")
known as a chart. Here, U is the coordinate neighbourhood, and ¢ is the homeomorphism

(coordinate map).
We say (U, ¢) is centered at p if ¢(p) = 0. This means that it is in ker((U, ¢)).

Now that we have define a topological manifold, we would like to construct the idea of a
smooth manifold. To do so, compatibility of charts needs to be constructed.
Suppose we have two pairs

(U,¢:U—R"), (V,ibp:V = R")

where both U,V are open subsets of R". Trivially, U "'V € U, thus it is open, hence
»(UNYV) is also an open subset € R™. The same argument applies for (U NV).

Definition 4.3. Two charts are C*°-compatible if the maps
¢ pUNV) = o(UNV), Yo p(UNV) = p(UNV)
known as transition functions, are both C'*

Lemma 4.4. If two charts are compatible with the same atlas, they are compatible with each
other.

Recall compatibility. Compatibility on a smooth manifold ensures that a differential form
is defined globally over M if it is defined on one of the charts in a maximal atlas. This allows
differential forms to transform appropriately.
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Definition 4.5. A C*°-atlas is the set of all charts 4 = {(U,, ¢, )} of pairwise C*°-compatible
charts that cover M, in the form of

M:U%

Definition 4.6. A smooth manifold M is a topological manifold with a maximal atlas, also
known as a differentiable structure on M.

Proposition 4.7. Any atlas on a Fuclidean space is always contained in a unique maximal
atlas.

We can define coordinates on both R™ and a manifold M. The standard coordinates
(coordinates represented by standard basis vectors) on R™ are rq,r9,...,r,. The local co-
ordinates on U for (U, ¢) is a chart on a manifold M, are the elements of the range of the
homeomorphism from U — R™. {x1,2s,...,z,} denotes the local coordinates on U. They
are functions such that {z1(p), z2(p),...,zn(p)} = {r1,72,..., 70}, p€EU.

We can now transition to transmuting constructions we did for Euclidean space to mani-

folds.

Definition 4.8. A function f: M — Ris C* if fo¢™! amap from R* - U C M — R =
R™ — R is C*°. It should be defined over ¢(p).
f is independent of charts because of smooth transition maps.

Definition 4.9. Let N, M be C* manifolds. Thus, a map F': N — M is smooth if the map
poFo¢p ' :R" = Uy C N — Uy C M — R™ for the charts (V, 1) defined over F(p) € M
and (U, ¢) defined over p € N is C* at ¢(p) — 0 € R".

A key feature of this is that we compare Uy, Uy in terms of (F~1(V)) N U, and take the
homeomorphism ¢ as the starting point of R® — R™, because the composition is defined
only on the intersection of the open sets over N and M. Note that to prove C* of F, we

first assume it is continuous so the map from the open set in M to N of the chart is open in
N.

Definition 4.10. A diffeomorphism F' : N — M is a bijective smooth map where both F
and F~! are smooth. It is analogous to an isomorphism, but for manifolds.

When looking at a homeomorphism ¢ : U — R", U C M of a manifold M, we can define
it in terms of a diffeomorphism F'. It is sufficient to check that it is C'*°, as well as the inverse
condition.

We can also define smoothness component-wise.

Proposition 4.11. A map F : N — M is smooth if all its components F* F? ... F™ are
smooth.

This is important for understanding component-wise integration on charts, which is the
motivation for differential forms later in the paper.

Definition 4.12. Partial derivatives make sense, in terms of directional derivatives. We
define partial derivatives of f € C'™ with respect to x' as

| ()= ) = 25T 000 = 5| e

#(p)
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Figure 1. S? divided into upper- and low hemispheres

If we consider r* : R® — R then we know this maps a vector to its magnitude, which,
when evaluated at the homeomorphism over p, returns the component of the standard local
coordinates over the open set U C M evaluated over p. This means that partial derivatives
of smooth functions are analogous to directional derivatives.

Now, we may introduce the Jacobian.

Definition 4.13. Let F': N — M be a smooth map and (U, ¢), (V,4) be charts on N and
M respectively, and F(U) C V. Denote the i'" component of F in the chart (V) by F* € R
given by

Fi=2'oF=r'o¢poF:U—-R

Then the Jacobian Matrix given by [%} is the matrix representation of F'| relative to

the two charts (U, ¢), (V, ).

The determinant of the Jacobian is just the scaling factor for transfer between coordinate
systems to perform integration. The partials are meant to represent the nudges of the
differential forms spanning the space in directions. Keep this idea in mind for when we
motivate differential forms..

If we consider the smooth map F': N — N, for N is a dimn smooth manifold, we can
define the Jacobian in terms of the diffeomorphism between two charts of the same manifold.
This is the grounding we will use the motivate differential forms in terms of integrating over
local coordinate charts.

4.2. Motivating Differential Forms. [1] Suppose we have a compact dimn manifold, and
we have a smooth function f : M — R. Integrating this function can be done over the
coordinates of the charts on the manifold.

For the sake of intuition, lets say M = S3.

Take a map from the upper hemisphere ™ — U™, an open subset of R?,
¢:ut —UT,
and a map from the lower hemisphere v~ — U~, another open subset of R?,

viu = U,
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To integrate f, we can sum the integrals of f over UT and U™,

/ fdxdy = / f oo tdedy + f oy Y dady.
52 U+ U-

To check if this is consistent, we pick different coordinates from a different local coordinate
chart to check if it is independent of coordinates and hence charts. We can try this for the
upper hemisphere by defining a different open subset Bt and a homeomorphism ¢y.

fdxdy = / f o ¢y dudy + fovy tdxdy.
52 B+t U-

We must now check if

foo tdedy = / f o ¢ytdxdy.
U+ Bt

We see that

fooy'ddy= [ (foot)oood;") dady,
B+ B+

where ¢o¢y,* is a change of variables map which can be resolved by multiplying the expres-
sion with an appropriate determinant of the Jacobian because it is not well-defined. Thus,
we must find something to integrate that transfers variables appropriately and consistently.
This is our motivation for differential forms.

We may start defining differential forms from differential 1-forms or simply 1-forms. A
1-form is a multilinear function taking one input vector and ’projects’ it onto its respective
dimensional factor.

Ezample. In R?, dx is a differential 1-form f(v), a multilinear function taking a vector v

and projecting it onto its z-factor. Similarly, dy is a 1-form that projects vectors onto their
y-factors.

The wedge product measures the volume of the parallepiped spanned by vectors inputted
into the 1-forms. This is quantised by the determinant of the derivations evaluated with
their respective vectors.

Generalising to R",

(dz' A...da™)(vy,. .., v,) = det [d2*(v;).]

We write differential forms in terms of linear functionals V' — R.

Note that this is simply an alternating tensor. They are suited for volume measurement
with the orientation factor.

We show this by some alternating tensor A : M — R, and a linear map 7' : R” — R",
T*A(vy, ..., v8) = A(T(v1), ..., T(vg)).

called the pullback of A by T.
We can also write this as
det TA(vy, ..., v).

It is up to the reader now to personalise this information to gain a strong intuition for it.
We can now rigorously treat differential forms.
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4.3. Rigorously treating Differential Forms. [5]
A cotangent space is the vector space of all maps from the tangent space to R

wp € Ty(R") = (T,R")", w, : T,(R") = R.

We can then to define a covector field of all w, on p. For this, we will need it over some
space, say R" for simplicity, which must be the union of all cotangent spaces (we can define it
over other spaces, especially manifolds, but that will be introduced later). Thus, a covector
field or tensor field w is a function that assigns each point in an open subset U C R" a
covector or tensor w, € T (R").

w:U— | Ty®"),
peRn
which is just a map from

P — Wy
From now, we will refer to covector fields as tensor fields. This tensor field is a differential
1-form, since it consists of 1-tensors. Trivially, all the cotangent spaces are disjoint, since
they are defined on different points.

Ezample. Take R?. If we define a differential form dz, it tells us
4.3.1. Differentials. We can define a 1-form on a C* function called the *differential® of f.

(df)p(Xp) = pr
A differential applies

n )
X, = z;az By
= p

to f to give its directional derivative at p in the direction of X,. So, we get a map between
T,(R") and C*(R"™) to R, formally written as

(d)p : T,(R") x C°(R") = R, fi € C;°(R"), X, € T,(R").
Thus, differentials are really good at spitting out directional derivatives. It is a derivation!
We can use differentials of derivations to define integration over an open subset U C R™.

4.4. Differential k-forms.

Definition 4.14. A differential k-form w is a function mapping to each point p an element
of Ax(T,(R™)).

By the original proposition that the wedge products of k-tensors is the basis of the alter-
nating tensor space, similarly the wedge products of these k-tensors is the wedge product of
this alternating tensor space. In this case, the basis is the wedge product of differentials

d:cfo = d:ci} A dx;? ARERWA dx;k.
Therefore, we may write a k-form acting on a point p as a linear combination from the
previous remark,
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Wp = Z aI<p>dx]€7

I
bridging it to the open subset,

w= E aydx’.
I

The wedge product of a k- and [-form are defined point-wise.

(WAT)y = wp A Tp.

Thus, we can also write the wedge product in terms of differentials

(WAT)y = (ar(p)bs(p))dz) A dax;.

and so, for the general forms

WAT = Z(albj)dxl Adz”.
1,J
Therefore, we now know, by the wedge product, the exterior derivative must map to a

(k + [)-form

A QF(R™) x QYR™) — QFF(R™).
This is a very important result for the exterior derivative and the de Rham complex.

Remark 4.15. We also see a consequence on the basis of T (R™). Consequently, since

o, 9 9,
Oxt'P 92 Qg P

is the basis of T,(R"), the set
{dz'|,, da?|,,...,dz"|,}

is the basis of T (R").

Remark 4.16. This section is for intuition only, requiring a rudimentary understanding of
representation theory. We can use representation theory on Si to explain how differential
forms encode oriented volume.

Take G = S*, the group of all k-permutations. Define V from (m, V) as V = C*. We can
thus define 71 as permutations on I € GL(V).

Define my = detm;. This encodes sgn o, for ¢ € S;. We can rewrite the alternating

k-tensor property as

f(vo(l)a Vs (2)s Vo (3)s - - - 7U0(k)) = 7.‘-Qf(vla V2, U3, . .. 7Uk)-
In short, we can write it has mo f. This means we are multiplying det 7; € R with the
multilinear map f: V¥ — R.
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4.5. The Exterior Derivative. The exterior derivative is a map

d, : QF(R™) — QFL(R™).
If we have a smooth k-form w, its differential is a smooth k+ 1-form dw. Thus, the exterior
derivative defines k-differentials in terms of k-tensors!
We may prove that for a k-form w, its differential dw € QF"1(R"). We know that any
k-tensor can be written as a linear combination of 1-forms

w = Zaldxl.

I
Thus, we may write a differential, defined as

dw="> daj Ndz' =" ( %dmj> Ada! e QFY(U).
I J

I
4.6. Closed & Exact Forms.

Definition 4.17 (Closed Forms). A closed form is a k-form such that its differential dw = 0.

Essentially, a differential describes how a k-form changes throughout U. If a k-form is
closed, it is constant throughout U.

Definition 4.18 (Exact Forms). An exact form is a k-form w such that 37, a k — 1-form
such that w = dr.

We note a very important condition between closed and exact forms. Every exact form is
closed, because d7 can just be a 0-form, thus 7 is also a O-form, but the converse may not
be true. This is crucial in defining de Rham cohomology.

5. CHAIN COMPLEXES, SEQUENCES & THE DE RHAM COMPLEX

[4] A cochain complex C is a collection of vector spaces {C*}cz together with a sequence
of linear maps d.C* — C*+1,

d_ d_
o A N oA Y oL
such that,

dk o dk_1 = O, Vk.
We call the collection of linear maps the differential of the cochain complex.

The vector space *(M) of differential forms on a manifold M with the exterior derivative
d is a cochain complex called the de Rham complex,

0= QM) S Q' (M) S2(M)S ..., dod=0, imdC kerd.

The property d o d seems obscure in terms of its motivation. One argument is that, if we
map di_; to the next vector space, we receive the image of it. Now, if we apply dj. to that
image, then we're effectively applying dj. to the kernel of d, which is 0, since im dy_; C ker d.
However, this creates a circular argument with im (dy_;) C ker di, with both proving each
other (they are equivalent statements). This is just a part of the machinery of cochain
complexes.
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5.1. Exact Sequences. A sequence of homomorphisms on vector spaces

AL BS% ¢

is exact if Im f = ker g. The logic behind this is that by exact forms w = dr, and they
are closed meaning dw = 0. This means dr — w — dw is analogous to this sequence. The
rest is self-explanatory. This can transmute into large sequences, where we cannot consider
the first and last terms as exact because then it would transmute to infinity.

0 1 2 n—1
A o L2 T e

Note: A 5-term exact sequence of the form

0—A—-B—-C—0

is said to be short exact.
If we have an exact sequence of the form

(ENY:ENTe
where A = 0, since it is the zero-vector space, zero vectors are only homomorphic to zero
vectors in other space, thus the image Im f = 0. We already know the kernel maps to zero,

and since zero maps to zero, ker g = 0. Therefore, ker g = Im f = 0, so g is injective.
When C' =0,

AL B

we see that ker g = B is obvious. However, we also see that Im f = B. This means Im f
is surjective! (we only say Im f is the same as ker g because we like exact sequences).
Some important propositions which follow from the above two assertions

Proposition 5.1. For a sequence

PRy ENVe
o f is surjective <= g is the zero-map
e g is injective <= f is the zero-map

Remark 5.2. The de Rham complex an exact sequence when the space it is defined on has
no holes.

Notice that if this is true, then the condition im d C kerd becomes im d = ker d, which
motivates d o d = 0 by ker (im d) = 0. To see how hole detection naturally arises from
the wviolation of this property, we must consider Riemann’s thoughts on integrating over
boundaries and planes.
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5.2. Integrating over boundaries & planes. Suppose we have a surface with a boundary
b, around a plane characterised by the hole, as seen in figure 2.

Figure 2. [3] A genus-2 orientable surface with boundaries labeled b,
and by about the holes.

We can define a closed differential form about the neighbourhood w. We will now say that
by = 0D, and the plane it encloses is D. Recall the generalised Stokes’ Theorem

/ w:/dw:(),
oD D

since dw = 0. We label [, apw as a period. Recall that a closed form is always exact.
Regarding the other side of the argument, suppose we have an exact form 7 such that

7 = do, then
oD oD a(oD) 0

because the boundary of a boundary is 0 This holds due to Stokes’ Theorem. Due to a
hole, the condition 9(0D) is violated. This is analogous to d o d not holding true in the de
Rham complex, so it is not exact, meaning there is a hole. Alternatively, we can say that
there is some closed form that is not exact. In a good sentence, non-zero periods of closed
forms detect holes.

6. DE RHAM COHOMOLOGY

Definition 6.1. A de Rham cohomology is the quotient vector space of closed and exact
forms

ZH(M)
- BHM)
where Z¥(M) is the set of all closed forms and B¥(M) is the set of all exact forms. Alterna-
tively, by the containment of Im d € ker d,

H*(M)

_ kerd
Imd’

The idea behind this leads back to closed and exact forms; all exact forms are closed, but
there can exist non-0-closed forms w that are not exact. What this means is that dw = 0,

H*(M)
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but w # dr, for any k — 1-form 7. So ’zero-ness’ arbitrarily stems from w, which seems odd.
Recall that closed forms which are not exact reveals holes. Thus, by quotienting the set of
all closed forms with the set of all exact, forms, we obtain the closed forms which violate
that property.

Note that when H*(M) # 0, the quotient does not ’cancel out’. Rather it becomes 0,
indicating zero differences between the two sets. This corresponds to im d = kerd in the de
Rham complex.

We may also explain the link between the image and kernel definition and the closed-
form and exact-form definition. In the de Rham complex, the exterior derivative is the map
d: QF(M) — QFFL(M). Recall its meaning in d : w — dw. It is appropriate to assume the
de Rham complex is exact, so it contains exact forms. The image-kernel equivalence implies
that all closed forms dw = 0 (by ker d) are exact v € Q¥ (M), dw = v, and all exact forms
are closed. When im d C kerd, then not all closed forms are exact. The reasoning is similar
to the geometric intuition given previously.

We may now move on to further constructing de Rham cohomology.

The properties of a quotient vector space create a relationship between two closed forms

W —w=dr,
where W', w are closed forms and d7 is an exact form. Regarding this difference, we can

explain it in terms of cosets.

6.1. Cosets.

Definition 6.2. A coset in W C V' where both are vector spaces (and obviously, W is a
subspace) is the set

v+W={v+w:weW}

Two cosets are equivalent v+W = v'+W <= v = v+w. In other words, v'—v =w € W.

V=v <<= vV—-—veW <= v+W=0v+W.

Thus any coset satisfying these conditions is an equivalence class.

Any element of v + W is a representative of v + W if it is equivalent on it.

% is a quotient vector space is a set of all cosets of W C V.

Now for differkential forms.
If H*(U) = 29 then o' = w + W, it W C V, then W = B*(U) and V = Z*(U).

Bk(U) )

sw=w = w —we BYU) by w =w+b", Ve B¥U).

Here, w’, w are cohomologous.
We care about cohomologous forms because a period of w, a k-form, then only depends
on its cohomology class. We must understand the role of cycles.

6.2. Singular Homology. [1] Suppose some set vy, . .., v, are any p+ 1 points in R". They
are said to be affinely independent if they are not contained in any (p — 1)-dimensional affine
subspace of R".
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Definition 6.3. A geometric p-simplex is a subset of R"

i=0 1=0

over affinely independent points.

Here, p is the dimension of the simplex. We can think of a simplex as the simplest possible
dim p polytope that exists in R". It can also be said as the convex hull of affinely independent
points.

We call the points of vy, ..., v, the vertices of the simplex. Notation wise, the simplex is
given by [vo, ..., v,

Ezxample. A 2-simplex in R? is a triangle. A O-simplex in R? is a point.

Any subset of the affinely independent subset that is a vertex of a simplex is called its face.
Vertices of dim (p — 1) are called boundary faces. There are (p — 1) boundary faces once we
omit every vertex to obtain the boundary faces. We call 0;[vy, . . ., v,] the face opposite v; in
the original simplex [vg, ..., Vi, ..., Vpl.

Definition 6.4. The standard p-simplex
A, =leg, ..., e
where ey, . .. e, is some subset of the basis standard basis of R".

Definition 6.5. A singular p-simplex of a topological space M is a map
o: A, — M.

Definition 6.6. The set of all free abelian groups generated by singular p-simplices C,(M)
is called the singular chain group of M. It has degree p. Elements of this group are called
chains singular p-chains, such that

C = Z n;o;.

One can skew the idea of singular p-chains a bit for intuitive purposes, to think of it as
creating a ’cover’ of singular p-simplices over the structure space, rather than the entire
space. For example, we can use singular p-chains as a method to explore the differentiable
structure of a smooth manifold. However, this is not a very accurate perspective. It is only
meant for intuitive purposes.

Definition 6.7. An affine singular simplex is the restriction of a unique affine map R? — R™
to A, is given by

A(w, ..., wp),
where {wy, ..., w,} is a subset of the standard basis of R™.

This is the result of a potential affinely dependent set in a convex subset M C R™ (since
subsets of M need not be affinely independent).

Essentially, this refers to simplices in non-coordinate environments, so we can generalise
them to topological spaces using affine simplices.

Definition 6.8. The i face map is the affine singular simplex of degree (p — 1), mapping
consecutive-dimensional simplices

F;’p : Ap—l — Ap.
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We say it maps A,_; — 9;A,. Thus, it maps to the face opposite e;.

Think of it as mapping a singular simplex onto the boundary of an incremental-degree
simplex. Intuition-wise, a triangle can be the boundary face of a pyramid (this simplifies
the idea of singular simplices to a great extent; a more accurate interpretation would be
deforming triangles onto tetrahedra).

The boundary of a singular p-simplex is the singular (p — 1)-chain

p

0o = (=)o oFy,

i=0
Notice the parallel between degrees of simplices and the idea of dimensions of boundaries

and planes. We may link the idea of singular chains to the boundary argument 0(0D) = 0.
In essence, the boundary as an operator d maps a plane to its boundary.

0:Cp(M) — Cpq(M).
Lemma 6.9. If ¢ is any singular chain, then 9(0c) = 0.
Proof. Let o :— AP — X be a singular (p + 1)-simplex.

p+1

Op10 = Z(—l)ia ° Fipt1),;

1=0

by the previous definition. Then, applying 0,, we get

p+1 p+1 P
Op(Op410) = Z(_1>Zap(0 o Fipt1)) = Z(_l)l (=10 0 Fp1) © Fip-
=0 i=0 =0

We can therefore see that, from the identity
Fip o Fjp—1 = Fjp o Fln),p-1), 0> ],

which is verifiable by examining the effect of the composition on A,_5, each pair (i, j) appears
twice with opposing signs, which maps to 0.
We can rewrite the sum as
p+1l p
(o) = DD (=) Yoo Fypiny o iy,
i=0 j=0
The term
(1) oo F;piyo Fjp = (—1)%(271)0 o Fj(p+1) © Fliz1)p-
In the sum, we therefore get
[ |
A singular p-chain c is called a cycle if 0c = 0, and a boundary of ¢ = 9b for some singular
(p + 1)-cycle (notice the parallel between cycles and closed forms, this is important to us).
We can think of singular p-chains as ’compact submanifolds with no boundary’.

We say this is the homeomorphisms linking abelian groups in the sequence known as the

chain complex

c Co (M) S (M) S (M) = .
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We define the de Rham complex as incremental degrees rather than decremental degrees
to signify differential forms analogous to singular p-chains. Thus, we see something familiar

Definition 6.10. The p'* singular homology group is defined as the quotient vector space
of the set of cycles and boundaries

HP(M) = Bp(M)7

where Z,(M) is the set of all p-cycles and B, (M) is the set of all p-boundaries.

This is exactly the definition of a de Rham cohomology group but with cycles and bound-
aries instead. It shows the link between the geometric detection of holes using integrals of
differential forms.

We call closed forms cocycles and exact forms coboundaries. We may now explore the idea
of cohomologous differential forms on integration and de Rham’s theorem.

For any cycle ~,
/w’ —w= /dT
g gl

depends only on the cohomology class, since dc = 0 for a cycle. We cannot use the
geometric argument from above over here, thus we can check for holes by integration over
cycles via the cohomology class. Thus, we have freed ourselves from the boundary-dependent
argument.

Finally, we would like to culminate in a central result of the prolific de Rham’s theorem.

Theorem 6.11. The maximal number of independent cycles equals the maximal number of
independent closed forms.

Essentially, this shows that some dc = dw. It creates links between singular homology and
de Rham cohomology.

7. CONCLUSION

de Rham cohomology is usually introduced in an abstract manner in different styles which
often do not do justice to how it truly exists. A student of de Rham cohomology benefits
best through a quick and intuitive foundation discussing all the links and motivations of the
subject. However, this paper has only discussed the initial constructions and implications
of de Rham cohomology. There exists a vast amount of interesting mathematics centered
around this subfield, which unravels its structure beautifully. We suggest the curious reader
read about de Rham cohomology, and algebraic topology in general, from John Lee’s ‘Intro-
duction to Smooth Manifolds” and Loring W. Tu’s ‘Introduction to Manifolds’ as thorough
introductions composing the essence of this paper in different perspectives. The reader would
best benefit by working with them simultaneously.
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